
CS779 Competition: Machine Translation System for India

Shivam Pandey
200938

shivamp20@iitk.ac.in

Indian Institute of Technology Kanpur (IIT Kanpur)

Abstract

Neural Machine Translation (NMT) has emerged as a critical component in bridging linguistic gaps
and facilitating global communication. This research project endeavors to tackle the complex task of
translating seven diverse Indian languages into English, employing NMT techniques. The project
extends beyond the basic transformer-based architecture, incorporating several modifications aimed at
enhancing both the efficiency and the quality of translations. These modifications include the strategic
reduction of the training dataset using predefined heuristics, the development of a rule-based tokenizer
from scratch, optimization of the training loop, and the implementation of strategies to improve the
speed and accuracy of the inference process. The results of these enhancements are evaluated and
discussed, shedding light on the potential of NMT for multilingual translation tasks, particularly in
the context of the Indian subcontinent.

1 Competition Result

Codalab Username: S 200938
Final leaderboard rank on the test set: 6
charF++ Score wrt to the final rank: 0.355
ROGUE Score wrt to the final rank: 0.330
BLEU Score wrt to the final rank: 0.129

2 Problem Description

The challenge was to translate seven distinct Indian languages into English, each endowed with its
linguistic heritage. There was strict requirement to abstain from utilizing pre-trained models, repre-
senting a deviation from standard NMT practices. Model had to rely solely on the provided training
data, necessitating the creation of translation models from the ground up. External GPU usage was
strictly prohibited, with computational resources confined to Google Colab and Kaggle’s GPU in-
frastructure, ensuring a uniform and fair competition. Additionally, the prohibition of pre-trained
tokenizers mandated the development of tokenization processes tailored to the intricacies of Indian
languages.

3 Data Analysis

The dataset was in JSON format, and a script in the “dataset generation.ipynb” notebook was em-
ployed to split it into separate training and validation files for each language. The extracted files were
then placed in a new folder called “new dataset.” In Table 1, the corpus statistics were presented.
Notably, the training data for Gujarati, Kannada, and Telugu each contained one sentence with null
values, necessitating addressing in the preprocessing pipeline.

1

Source Language No of Sentences Average Length of Sentence Total Words in Vocabulary

Source Target Source Target

Hindi 80796 18.98 18.72 96444 67782
Bengali 68848 14.37 18.39 117733 62500
Gujarati 47481 15.99 18.95 92670 49459
Kannada 46794 11.59 16.44 107436 44133
Tamil 58361 12. 53 17.89 145792 54626
Telugu 44904 11.77 16.32 98732 46213
Malayalam 54056 10.46 16.14 146604 50363

Table 1: Corpus Statistics for Training Data

4 Model Description

1. Seq-to-Seq using GRU and attention

Seq2seq with attention was implemented first because the addition of attention would never hurt
the accuracy using a plain vanilla RNN/GRU seq-to-seq model. The architecture mainly used 3
components: an encoding, an attention mechanism, and a decoder.

Encoder: The input sequence was first fed in an embedding layer. This layer converted each
input token to word embeddings. This embedded sequence is then fed into a Gated Recurrent
Unit (GRU) to capture the sequential information. Another type of RNN based model : LSTM,
was also used during experimentation but it did not perform equally well; hence, it was replaced
with a GRU. The Encoder finally returns both: the outputs from GRU layer (which is later used
for attention calculation), and the final hidden state.

Attention mechanism: This implementation uses a dot product attention mechanism which cal-
culates a similarity score between the current hidden state of Decoder and each hidden state in
Encoder’s output sequence. These similarity scores are then used to compute attention weights.
Masking is used to so that attention is applied only to valid tokens and not padding tokens. A
mask is applied to attention scores to prevent model from attending to padding tokens.

Decoder: The Decoder’s hidden state is initialized with the final hidden state of the Encoder.
This serves as the initial context for decoding the target sequence. For each time step in the
output sequence:
Previously generated token is passed(<eos> for first step) through the embedding layer to get
word embedding. This embedded representation is then passed a GRU layer, which updates its
hidden state based on it. This hidden state from the Decoder GRU is then used as a query to the
attention mechanism, which computes attention weights that signify how much attention should
be given to each position in the source sequence. These attention weights are used to compute
a weighted sum (context vector) of encoder outputs, highlighting the source sequence’s relevant
information for generating the current output token. The concatenation of context vector with
the output of Decoder GRU is passed through a linear layer to produce the output logits for the
current token. The token with the highest probability in the logits is selected as the predicted to-
ken for the current time step. This process is repeated for each time step in the output sequence
until either an end-of-sequence token (<eos>) is generated or a maximum sequence length is
reached.

During training phase, the cross-entropy loss is optimized by comparing its predicted logits with
the actual target sequence. The Adam optimizer updates the model’s parameters to capture
complex relationships.

2

Figure 1: Seq-2-Seq GRU + Attention architecture used

During the inference, the model is employed to generate translations. This is done by using
“translate sentence” function, which takes an input sentence, applies tokenization, converts to-
kens into embeddings, and decodes the output sequence. This is accomplished one token at a
time in a greedy manner. Using the learned probabilities, the model selects the most probable
tokens at each time step.

This model is inspired by official pytorch tutorial[1], paper by Ezeani et al. (2020)[2] and its
implementation.

2. Seq-to-Seq using Transformers

This model uses a standard encoder-decoder architecture for sequence-to-sequence tasks where
encoder processes input sequence, and decoder generates output sequence. It consists of multiple
layers of Transformer encoder and decoder blocks, to capture complex linguistic relationships.
Token embeddings for both source and target sequences are created using TokenEmbedding lay-
ers. Positional Encoding incorporates information about the position of tokens in the sequence.
This encoding uses a combination of sine and cosine functions to encode token positions so there
is no need for learned position embeddings.

Attention mechanisms are used in both encoder and decoder to focus only on relevant parts of
the input sequence when generating the output. In source and target sequences, masking helps
prevent the model from attending to padding tokens. The final output is then passed through a
linear layer to produce logits, which are used to predict the target sequence.
The model uses the Adam optimizer to minimize the cross-entropy loss(with padding tokens

ignored) between predicted logits and ground truth target sequences

Categorical Cross-Entropy Loss = −
∑V

i=1 yi log(pi)
where V is the vocabulary size. yi is the true probability (1 or 0) for the actual token. pi is the
predicted probability for the same token.

During inference, the model generates translations by selecting the most probable tokens at each

3

Figure 2: Seq-2-Seq Transformers architecture used

step. Model parameters are initialized using Xavier initialization. Batch Processing is used to
improve efficiency during training.

Beam search was implemented but it introduced another hyperparameter: beam width, which
needed to be tuned. Greedy decoding was preferred to save computational resources while ex-
perimenting.
This model is inspired by official Pytorch Tutorial implementation.

5 Experiments

Here are the experiments and modifications tried with different parts of the architecture:

1. Tokenization Approach and Experimentation

(a) The initial tokenization strategy employed Spacy’s “en core web sm” model with specific
components, such as the parser, tagger, and named entity recognizer (NER), disabled. This
selective deactivation aimed to streamline the tokenization process and prevent any unin-
tended interference with the linguistic structure of the English text. For tokenizing the
Indian languages, the Indic NLP tokenizer was employed.

(b) However, subsequent to receiving new instructions from our academic advisor, the directive
was to abstain from the use of any pre-trained tokenizers. This necessitated the develop-
ment of a rule-based tokenizer tailored specifically for the English language. The rule-based
tokenizer addressed various aspects of tokenization. Firstly, it focused on the separation
of punctuation and whitespace, distinguishing between white spaces (whitespace charac-
ters, commas, semicolons, full stops, exclamation marks, question marks, and hyphens) and
words.

(c) Notably, non-capturing groups, such as contractions (e.g., “don’t”) and phrases enclosed
within quotation marks (e.g., “He said ’I’m here’.”) were treated as distinct entities, ensuring
accurate tokenization. This process involved the utilization of regular expressions from the
Python “re” library.

(d) It is worth noting that the implementation of this rule-based tokenizer was relatively complex
for the seven Indian languages, thus relying solely on white space separators for tokenization
was deemed the most feasible approach. This approach maintained consistency and fairness
across all languages, even in the absence of pre-trained tokenizers.

2. Dataset Reduction Strategy

(a) The necessity for dataset reduction emerged due to the excessive duration of training for a
single language during one epoch. Attempts were made to augment the batch size for accel-
erated training, although this proved ineffective for languages with substantial vocabularies
such as Tamil, mainly due to GPU constraints.

4

(b) Experimentation with minimum word frequencies (1, 2, and 3) for vocabulary creation
yielded a drastic reduction in vocabulary size, adversely impacting model performance. As
a solution, a heuristic was implemented, which involved filtering out the least frequently
occurring words and replacing them with a generic token (“<unk>”). However, this ap-
proach introduced undesirable consequences as it led to the model acquiring incorrect word
representations and subsequently generating inaccurate translations.

(c) To address these issues, sentences containing any of the least frequently occurring words
in the vocabulary were systematically removed from the training set, with a primary focus
on the source language. After extensive experimentation, it was determined that filtering
out the lowest 10% of the least frequently occurring words in the vocabulary provided an
optimal solution. This approach resulted in a training set size reduction of approximately
15-17%, depending on the source language. This reduction did not significantly compromise
training quality while enabling an increase in batch size, thus reducing the time required for
each training epoch.

3. Training loop optimizations and improvements:

(a) The training loop represented a substantial time-consuming component within the overall
pipeline, comprising multiple sub-parts. C profiling was employed to discern the time con-
sumption at both sub-part and line levels, revealing an excessive computational delay in
calculating operations. This was attributed to GPU constraints, wherein calculations were
deferred in the GPU stack, leading to wait times even for rudimentary calculations such as
loss computation. Consequently, this served as a substantial bottleneck within the training
loop.

(b) To address this bottleneck, an approach was adopted in which variables pertaining to less
computationally intensive operations were detached from the GPU and relocated to the CPU
using the “.detach()” function. This shift allowed simpler tensor calculations to be executed
on the CPU, mitigating the time spent within the GPU stack. However, the optimization
delivered only marginal improvements in training time due to the computational overhead
associated with the detachment process.

(c) C profiling also unveiled that gradient calculations were a major bottleneck. To rectify
this issue, gradient accumulation was implemented. Instead of updating model weights
after each batch, this technique involved accumulating gradients across several mini-batches
before executing a singular weight update. Gradients from each mini-batch were aggregated
to form accumulated gradients. While this approach enabled training with larger effective
batch sizes without necessitating additional GPU memory, it introduced a trade-off: model
weight updates occurred less frequently, potentially extending the convergence time. The
optimal number of loops before model updates with accumulated gradients was determined
to be 4-5, concurrently reducing training time and moderately extending the total loops
required for convergence.

(d) Furthermore, within the training loop, measures were instituted to mitigate overfitting.
Early stopping was applied based on the validation set, a 20% subset of the initial training
data. If an upward trend in validation loss was observed, even as training loss continued to
decrease, the training loop was terminated, thereby addressing concerns related to overfit-
ting.

4. Inference Experiments:

(a) In the initial stages of the inference process, a straightforward greedy decoding strategy was
employed. Two conditions determined when to halt the decoding: encountering the ”¡eos¿”
token or reaching a maximum length for the target language translation. The determination
of the maximum length was derived from an examination of the average length of source
and target sentence pairs within the training set for all seven language pairs. The chosen
maximum length was set at 10 tokens more than the number of words in the source language.
This value of 10 was preferred over 5 because it allowed for a more comprehensive capture
of the context within the translation. The larger value of 10 facilitated more coherent and
contextually accurate translations.
Let: yt be the next token to be generated. y1, y2, . . . , yt−1 be the previously generated to-
kens.

5

Hyperparameter Value

Embedding size 200

Number of attention heads 10

Feed-Forward Network Hidden Dimension 500

Batch Size 30

Number of Encoder Layers 4

Number of Decoder Layers 4

Number of Training Epochs 60

Learning Rate 10−4

Beta1 0.9

Beta2 0.98

Epsilon 10−9

Optimizer Adam

Table 2: Hyperparameters of the final model

For Greedy Decoding: P (yt|y1, y2, . . . , yt−1) is determined by selecting the token with the
highest probability.

(b) Subsequently, an exploration of beam search was conducted with varying hyperparameters,
including different beam widths (2-4) and diverse values for the top k tokens (k values from
5-8). Despite the potential for improved translation quality, beam search incurred signifi-
cantly longer processing times compared to greedy decoding. This extended processing time
resulted from the exhaustive exploration of various translation paths. The selected range of
hyperparameters was chosen because it strikes a balance between exploring multiple trans-
lation options and maintaining computational efficiency.
For Beam Search: P (yt|y1, y2, . . . , yt−1) = P (yt|h), where h represents the hypothesis or
partial sequence.

(c) Top-p sampling, which prioritizes tokens based on cumulative probability thresholds (rang-
ing from 0.6 to 0.9), was also investigated. However, top-p sampling did not surpass the
performance of greedy decoding in this NMT task. The reason for this lies in the inherent
complexities of NMT and the limitations of sampling-based decoding strategies. The range
of 0.6 to 0.9 was chosen for the probability threshold experimentation because it captures a
sweet spot in balancing exploration and exploitation during decoding, even though the final
performance did not surpass that of greedy decoding.
For Top-p Sampling: P (yt|y1, y2, . . . , yt−1) is calculated based on the chosen sampling strat-
egy.

(d) Furthermore, after identifying a performance bottleneck through C profiling, efforts were
made to optimize the process of finding corresponding target language words after obtaining
logits. Default vocabulary structures in torchtext employ linear searches for token-to-number
and number-to-token conversions, which can be computationally intensive with large vocabu-
laries. To address this, a two-way dictionary was implemented, with one dictionary facilitat-
ing number-to-token conversions and another handling token-to-number conversions. This
modification significantly reduced inference time, as the query time for finding corresponding
tokens was reduced from O(n) to O(1).

6 Results

Hyperparameters of the final model:

6

2 4 6 8 10
Epoch

4.5

5.0

5.5

6.0

6.5

Ca
te

go
ric

al
 C

ro
ss

-E
nt

ro
py

 L
os

s

Training and Validation Loss for Hindi-English dataset
Training Loss
Validation Loss

(a) Hindi-English

2 4 6 8 10
Epoch

5.0

5.5

6.0

6.5

7.0

Ca
te

go
ric

al
 C

ro
ss

-E
nt

ro
py

 L
os

s

Training and Validation Loss for Bengali-English dataset
Training Loss
Validation Loss

(b) Bengali-English

2 4 6 8 10
Epoch

5.0

5.5

6.0

6.5

7.0

Ca
te

go
ric

al
 C

ro
ss

-E
nt

ro
py

 L
os

s

Training and Validation Loss for Malayalam-English dataset
Training Loss
Validation Loss

(c) Malayalam-English

2 4 6 8 10
Epoch

5.0

5.5

6.0

6.5

7.0

Ca
te

go
ric

al
 C

ro
ss

-E
nt

ro
py

 L
os

s

Training and Validation Loss for Kannada-English dataset
Training Loss
Validation Loss

(d) Kannada-English

2 4 6 8 10
Epoch

5.0

5.5

6.0

6.5

7.0

Ca
te

go
ric

al
 C

ro
ss

-E
nt

ro
py

 L
os

s

Training and Validation Loss for Tamil-English dataset
Training Loss
Validation Loss

(e) Tamil-English

2 4 6 8 10
Epoch

5.0

5.5

6.0

6.5

7.0

Ca
te

go
ric

al
 C

ro
ss

-E
nt

ro
py

 L
os

s

Training and Validation Loss for Telgu-English dataset
Training Loss
Validation Loss

(f) Telgu-English

2 4 6 8 10
Epoch

5.0

5.5

6.0

6.5

7.0

Ca
te

go
ric

al
 C

ro
ss

-E
nt

ro
py

 L
os

s

Training and Validation Loss for Gujarati-English dataset
Training Loss
Validation Loss

(g) Gujarati-English

Figure 3: Categorical Cross-Entropy Loss Plot for all 7 language pairs

7

Phase 1 Phase 2

Metric Validation Set Test Set Validation Set Test Set

CHRF Score 0.299 0.315 0.325 0.355

ROUGE Score 0.258 0.255 0.327 0.330

BLEU Score 0.089 0.103 0.109 0.129

Table 3: Evaluation Scores of final model for Phase 1 and Phase 2

7 Error Analysis

In this phase of NMT competitions, observations were made during the error analysis of the Trans-
former model. It was noted that the model exhibited remarkable adaptability to various Indian lan-
guages, effectively deciphering complex linguistic nuances and context, rendering it a reliable choice
for translation tasks. Nevertheless, the Transformer model was not without its limitations; struggles
were occasionally observed with less common words, leading to the generation of translations that were
grammatically sound but contextually incorrect.

To address these limitations, various solutions were explored. One approach involved the incorpora-
tion of additional domain-specific datasets or in-domain training data, aimed at enhancing the model’s
vocabulary and comprehension of specialized terminology. Insights from attention heatmaps revealed
areas where the model’s focus faltered, guiding improvements in attention mechanisms for future en-
hancements. Ultimately, the analysis shed light on the strengths and weaknesses of the Transformer
model in NMT, providing valuable insights for future research and advancements in the field.

8 Conclusion

The problem of translating seven distinct Indian languages into English, posed a captivating chal-
lenge in the domain of Natural Language Processing. Although baseline models demonstrated com-
mendable performance, a series of precise optimizations were required to achieve an optimal balance
between translation quality and efficiency. Notably, a customized rule-based tokenizer was crafted for
the English language, and thorough performance profiling unveiled the time-consuming bottlenecks
within the training loop. The exploration of various decoding techniques, including top-p sampling,
beam search, and greedy decoding, each tuned with differing hyperparameters, played a pivotal role
in finding the right trade-off between translation speed and accuracy.

While the model constitutes significant improvement, it is important to recognize that it is not
exempt from limitations. It occasionally grapples with less frequent words and context, leaving room
for further enhancements. Prospective research may entail the utilization of supplementary in-domain
data, the integration of domain-specific training, and the application of advanced data augmentation
techniques to bolster vocabulary and domain knowledge.

References

[1] S. Robertson, “Nlp from scratch: Translation with a sequence to sequence network and attention,”
in Pytorch Tutorials, 2019.

[2] I. Ezeani, P. Rayson, I. Onyenwe, C. Uchechukwu, and M. Hepple, “Igbo-english machine transla-
tion: An evaluation benchmark,” in ICLR, 2020.

8

	Competition Result
	Problem Description
	Data Analysis
	Model Description
	Experiments
	Results
	Error Analysis
	Conclusion

