
CS779 Competition: Machine Translation System for India

Moinuddin
roll no. 231110030

moinuddin23@iitk.ac.in

Indian Institute of Technology Kanpur (IIT Kanpur)

Abstract

The project aimed to build a translation model from scratch for seven Indian languages to English
using PyTorch, without pre-trained models. A subset of the large training data was used for faster
training. We tested various sequence-to-sequence models with different hyperparameters. The best
model, featuring attention mechanism in sequence-to-sequence, achieved a rank of 23 on the leader-
board, with a charF++ Score of 0.097, ROGUE Score of 0.097, and BLEU Score of 0.000. Challenges
included incorrect translations in the dataset.

1 Competition Result

Codalab Username: M 231110030
Final leaderboard rank on the test set: 23
charF++ Score wrt to the final rank: 0.097
ROGUE Score wrt to the final rank: 0.097
BLEU Score wrt to the final rank: 0.000

2 Problem Description

The task of this competition was to develop a model that can translate from 7 Indian languages to
English language. those Indian languages are Hindi, Bengali, Telugu, Malayalam, Gujarati, Kannada
and Tamil.
We were not allowed to use any pre-trained model. we had to develop it from scratch using PyTorch
and had to train it on Google Colab.
We can use any approach such as sequence to sequence with attention or without attention, Trans-
formers, etc. which gives better results and accuracy on validation data and test data. we had to
make improvements in our model by doing different experiments on various components of the Model.
We had to make 3 submissions per week. and for each submission, The model was evaluated based on
corpus-level BLEU-4 score, ROUGE-L score, and chrF++ score.
Taking feedback from the evaluation we had to improve the Model, and in this way, we came up with
a final model.

3 Data Analysis

initially, Training and Validation data were provided for this task, Both were in JSON format.
Training data:
Each training example consists of a pair of the source text and its corresponding translations each pair
has a unique ID number.
An example of training data for English-Bengali is given in fig.
Similar data is given for all other remaining languages.

1



Language-pair Number of sentence pairs

1 English-Hindi 80797

2 English-Malayalam 54057

3 English-Telugu 44904

4 English-Tamil 58361

5 English-Kannada 46794

6 English-Gujarati 47482

7 English-Bengali 68848

Total 401243

Table 1: Training data

The size of the Training data provided is given in the above table:

Validation data: it consists of a source sentence for each language.
each sentence has a unique ID.
The Size of the dataset for each language is given below :

Language Number of source(English) sentences

1 English-Hindi 11542

2 English-Malayalam 7722

3 English-Telugu 6415

4 English-Tamil 8337

5 English-Kannada 6685

6 English-Gujarati 6783

7 English-Bengali 9835

Total 57319

Table 2: Validation data

Test data : Test data for this task contains Source sentences for each language

2



example :

The Size of Test dataset for each language is given below :

Language Number of source(English) sentences

1 English-Hindi 23085

2 English-Malayalam 15445

3 English-Telugu 12830

4 English-Tamil 16675

5 English-Kannada 13370

6 English-Gujarati 13567

7 English-Bengali 19671

Total 114643

Table 3: Test data

As we have a large Training dataset our Model was taking a large amount of time to train so chose
random sentences from the large dataset and trained on that subset.

4 Model Description ref erence
1

I developed the sequence-to-sequence model consisting of two RNNs called the encoder and decoder.
The encoder reads an input sequence and outputs a single vector, and the decoder reads that vector
to produce an output sequence.
Structure of Encoder and Decoder:
The given figure shows the structure of the encoder and decoder.

1https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

3

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html


Figure 1: Encoder Figure 2: Decoder

Figure 3: Structure of Encoder and Decoder

As given in the figure we are using the GRU layer in both the encoder and decoder. I did transla-
tions with this model and tried to get good results by changing hyperparameters.
After this, I replaced the GRU layer of the encoder with the LSTM layer.
Next, I also used the attention mechanism in sequence-to-sequence models.

Workflow of Encoder and Decoder Model:

All images taken from the pytorch tutorial 2

5 Experiments

I extracted the training data from the JSON file and stored each pair in a list as a nested list. As
given training data was too large our model was taking a long time due to the large size of the training
data. hence, we extract 5000 sentence pairs from the training data and train our Gru-Gru model on
that subset.

Outcomes :

1. Using single GRU layer with 1 gru unit in both encoder and decoder :

In all cases, I chose hyperparameters randomly and used the Adam optimizer to optimize the
parameters of an encoder neural network and decoder neural network.And used NNL(Negative Log
Likelihood Loss) also known as cross-entropy loss.

Results are given in following table :

2https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

4

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html


Model Batch-size Hidden
size

Number
of epoch

Learning
rate

Training
data size

Score

M1 128 32 80 0.001 5000 0.089

M2 128 16 80 0.001 5000 0.218

Table 4: variation in scores on different Hyperparameters

2.using a single LSTM layer with 1 LSTM unit in the encoder and a single GRU layer with 1 GRU
unit in Decoder

Model Batch-size Hidden
size

Number
of epoch

Learning
rate

Training
data size

Score

M3 128 32 80 0.001 5000 0.226

M4 64 32 10 0.001 5000 0.215

Table 5: variation in scores on different Hyperparameters

Here also I chose hyperparameters randomly I used the Adam optimizer to optimize the parameters
of an encoder neural network and decoder neural network and used NNL(Negative Log Likelihood Loss)

3.I also implemented the attention mechanism in the seq-to-seq model, but I could not submit the
result in the training phase.

6 Results

Scores on Validation data :

Model chrf score rouge score bleu score Total score

M1 0.058 0.030 0.001 0.089

M2 0.142 0.075 0.001 0.218

M3 0.124 0.101 0.001 0.226

M4 0.139 0.075 0.001 0.215

Table 6: Scores of different models

From experiments, we have various results:
For training purposes size of the training data set is very important as we increase the size our models
learn a lot but on increasing data-set size models take a long time to train.
If we compare M1 and M2 both have the exact same hyperparameters except batch size, so from this,
we get when we reduce batch size Model performs better.
By comparing M3 and M4 we observe that if we reduce hidden size then the performance of our model
is reduced. The best-performing model on validation data is M3 which uses the LSTM layer in the
encoder. I could not check for model with attention mechanism in the training phase. all these results
are based on my experiments.
For test data, I used a sequence-to-sequence model with attention mechanism.

5



chrf score rouge score bleu score Total score

0.097 0.097 0.000 0.194

Table 7: Scores on test data

7 Error Analysis

Traditional RNNs are prone to the vanishing gradient problem, which makes it challenging to capture
long-range dependencies.
So we use the GRU and LSTM layers to improve its ability to capture long-term dependencies.
I trained the model on a small subset of the training set which was extracted using random sampling so
it might be possible our training subset consisted of similar sentences and our model could not capture
or learn complex things.
Also, Our training process has encountered challenges due to the presence of incorrect translation
pairs within our training dataset, which has hindered the effective training of our model. These
inaccuracies in the training data have had a detrimental impact on the model’s ability to learn and
perform optimally.

8 Conclusion

We tried the RNN model for translation and found that RNNs can give good results if we set optimal
hyperparameters. Our best model gives a score of Test 0.226 in the training phase even though we
have inconsistency in our training data and we train on a small subset of training data because of
resource constraints.
later we also used sequence-to-sequence model with Attention mechanism for test data . it can focus
on specific relevant words using attention mechanism. we get score of 0.194.

References

For model implementation, I refer tutorial from pytorch official documentation TRANSLATIONWITH
A SEQUENCE TO SEQUENCE NETWORK AND ATTENTION

6

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html
https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

	Competition Result
	Problem Description
	Data Analysis

