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a b s t r a c t

This survey presents the most relevant neural network models of autism spectrum disorder and
schizophrenia, from the first connectionist models to recent deep neural network architectures. We
analyzed and compared the most representative symptoms with its neural model counterpart, detailing
the alteration introduced in the network that generates each of the symptoms, and identifying their
strengths and weaknesses. We additionally cross-compared Bayesian and free-energy approaches, as
they are widely applied to model psychiatric disorders and share basic mechanisms with neural
networks. Models of schizophrenia mainly focused on hallucinations and delusional thoughts using
neural dysconnections or inhibitory imbalance as the predominating alteration. Models of autism rather
focused on perceptual difficulties, mainly excessive attention to environment details, implemented
as excessive inhibitory connections or increased sensory precision. We found an excessively tight
view of the psychopathologies around one specific and simplified effect, usually constrained to the
technical idiosyncrasy of the used network architecture. Recent theories and evidence on sensorimotor
integration and body perception combined with modern neural network architectures could offer a
broader and novel spectrum to approach these psychopathologies. This review emphasizes the power
of artificial neural networks for modeling some symptoms of neurological disorders but also calls for
further developing of these techniques in the field of computational psychiatry.

© 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In the world, there is a prevalence of schizophrenia (SZ) that
ranges between four and seven per 1000 individuals (between
thirty and fifty million people) (Saha, Chant, Welham, & McGrath,
2005) and a prevalence of Autism Spectrum Disorder (ASD) that
ranges between six and 16 per 1000 children (between 1 of 150
and 1 of 59 children) (Baio et al., 2018). SZ and ASD have in
common that they both cause deficits in social interaction and are
characterized by perceptual peculiarities. While ASD has its onset
in early childhood, SZ is typically diagnosed in adults, although in
very rare cases, appears during development (Rapoport, Chavez,
Greenstein, Addington, & Gogtay, 2009). Similar neural bases have
been observed for both disorders (Pinkham, Hopfinger, Pelphrey,
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Piven, & Penn, 2008), which has even led to the suggestion that
some SZ cases might be part of the autism spectrum (King & Lord,
2011). In fact, there are similarities such that both pathologies
show atypical sensorimotor integration and perceptual interpre-
tation. However, there are also striking differences between these
disorders. A common symptom of SZ is the occurrence of hallu-
cinations or delusions, in contrast to ASD which is characterized
by atypical non-verbal communication and emotional reciprocity.
Furthermore, a few savant syndrome cases were reported in ASD
individuals with extraordinary skills like painting (Treffert, 2009).
Fig. 1 depicts, in an artistic way, the reality perceived by two
individuals in the spectrum of these disorders.

For both disorders, neurological, genetic and environmental
factors have been suggested, but to date the actual causes and un-
derlying cognitive processes remain unclear. A major challenge in
diagnosis is their heterogeneity and non-specificity. Heterogene-
ity means that symptoms, prognosis and treatment responses
vary significantly between different subjects. Non-specificity ex-
presses that a single biological basis can be underlying differ-
ent phenotypes (multifinality) and different biological bases can
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Fig. 1. Artistic pieces representing different perceptions of the world. (a) Hunted, c⃝2019 Henry Cockburn, a SZ diagnosed artist. (b) Drawing by Nadia Chomyn at
the age of 5, a gifted ASD diagnosed child, reprinted from Selfe (2012), c⃝2012 Lorna Selfe.

result in a single phenotype (equifinality). Non-specificity, as
a biological abnormality related to a psychiatric disorder, can
be found in many other neurological disorders (C.-D. G. of the
Psychiatric Genomics Consortium et al., 2013; Redish & Gordon,
2016).

Computational modeling of psychopathologies or Computa-
tional Psychiatry is one of the potential key players (Montague,
Dolan, Friston, & Dayan, 2012; Redish & Gordon, 2016; Wang &
Krystal, 2014) to tackle heterogeneity and non-specificity, and
to better understand the cognitive processes underlying these
disorders. Eventually, computational models might help to ob-
tain a deeper understanding of theoretical models, generate new
hypothesis or even suggest new treatments. There are different
levels of descriptions or units of analysis to study these disorders,
which encompass from genes to molecules, to cells, to circuits,
to physiology, and then to behavior. ‘‘Computational Psychiatry
provides some of the tools to link these levels’’ (Adams, Huys, &
Roiser, 2016).

In particular, neural network models serve, due to their anal-
ogy to biological neurons, as a tool to test and generate hy-
potheses on possible neurological causes (Huys, Moutoussis, &
Williams, 2011). Artificial neural networks cannot only be useful
from the data-driven point of view (e.g., fitting a model to fMRI2
data), but can also be used as a simplified model of the human
brain to replicate and predict human behavior and to investigate
which modifications in the connectionist models cause a specific
alteration in the behavior.

1.1. Artificial neural network modeling of psychopathologies

Artificial Neural Networks (ANNs or NNs) were first intro-
duced in the 1950s as an attempt to provide a computational
model of the inner processes of the human brain (Rosenblatt,
1958). Nevertheless, their potential was not fully unraveled until
the last decades because of limited computational power and
data shortage (Schmidhuber, 2015). Due to the inspiration from
biological processes of our brain and their connectionist nature,
these technologies have also opened a door to new research fields
that combine disciplines, such as neuroscience and psychology
with artificial intelligence and robotics. Within the field of cog-
nitive neuroscience, neural networks are already used as a tool
for getting insights into the complex structures of our brain and
gaining a better understanding of how learning, memory or visual
perception might work on a neural level (Crick, Mitchison, et al.,
1983; Spitzer, 1995).

In the late 80s and early 90s, neural networks were used for
the first time related to psychiatry, trying to imitate psychological
disorders (Cohen & Servan-Schreiber, 1992; Hoffman, 1987). Early

2 fMRI: functional magnetic resonance imaging.

efforts in compiling ANN models for cognitive disorders can be
found in Reggia, Ruppin, and Berndt (1996) and in Gustafsson
and Paplinski (2004), in particular, for autism. Due to immense
advances in computational power, 20 years later, computational
modeling using ANNs and deep learning is becoming a power-
ful asset to aid the investigation of this type of disorders. The
challenge is to translate findings from behavioral or neurological
studies at different levels of description in a coherent way into a
mathematical connectionist model.

ANN models can process a vast amount of information, cope
with non-linearities in the data, and the structure of ANNs makes
it possible to systematically test which parameter modifications
cause effects similar to the symptoms of psychiatric disorders.
Furthermore, these ANN models and their alterations may be
directly implemented in artificial agents (e.g., robots) filling the
last level: comparing the behavior of such agents with behaviors
observed in patients (Cheng et al., 2007; Pfeifer & Bongard, 2006).
In this way, existing hypotheses from neuroscience and psychol-
ogy could be tested, and new hypotheses on potential causes
could be formulated.

1.2. Purpose and content overview

This historical review aims at serving as a reference for com-
putational neuroscience, robotics, psychology and psychiatry re-
searchers interested in modeling psychopathologies with neural
networks. This work extends general computational modeling re-
views (Anticevic, Murray, & Barch, 2015; Gustafsson & Paplinski,
2004; Moustafa, Misiak, & Frydecka, 2017; Reggia et al., 1996;
Valton, Romaniuk, Steele, Lawrie, & Seriès, 2017) by focusing on
neural network models for SZ and ASD with detailed explanation
of the alterations on a neural level and their associated symptoms,
including their technical architectures as well as their mathemat-
ical formulation. For completeness, we also included Bayesian and
predictive processing models due to their similarities to ANNs
and their relevance inside the neuroscience community. Actu-
ally, conceptually, ANN and Bayesian models often take similar
approaches to model psychiatric disorders (see Section 4.3 and
Section 5.5).

We start in Section 2 with an introduction to the mentioned
disorders, listing their main characteristics and symptoms based
on the latest Diagnostic and Statistical Manual of Mental Disor-
ders (DSM-5) descriptions.

For readability and due to the heterogeneity of the reviewed
methods, in Section 3, we first summarize and discuss the main
modeling approaches and hypotheses which are referenced in
the literature. Afterwards, Section 4 and Section 5 present a
comprehensive review of models of SZ and ASD, respectively,
organized by the type of modeling approach. To help the reader,
we summarized the content of Section 4 and Section 5 into two
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tables: Table 1 for SZ and Table 2 for ASD. Finally, in Section 6
we discuss the reviewed works and compile recommendations
for future research on ANNs for computational psychiatry, in
particular for ASD and SZ.

2. Pathologies and their symptoms

SZ and ASD are disorders that change the way we perceive
and act in the world. Atypicalities in perception and in cogni-
tive process cause difficulties in connecting with the world, in
particular for social interaction. Since the first reports of autis-
tic symptoms (Kanner et al., 1943), both conditions have been
closely related. Before ASD was recognized as a separate disorder,
subjects with ASD were often diagnosed as schizophrenic in-
stead (Kanner et al., 1943). Also nowadays, these two pathologies
remain strongly connected as both are associated with atypicali-
ties in sensory processing and information processing, and due to
their strong heritability (Aukes et al., 2008; Daniels et al., 2008;
Sandin et al., 2017).

2.1. Schizophrenia

SZ is a serious psychiatric disorder that affects a person’s
feelings, social behavior and perception of reality. Its biological
causes are still unknown, but genetic and environmental factors,
i.e., prenatal stress, traumatic experiences or drug use, can be
key factors for the development of this disorder. Its symptoms
are usually divided into positive symptoms and negative symp-
toms (Sims, 1988). Positive symptoms correspond to the presence
of abnormal functions, for instance, hallucinations and delusions.
Negative symptoms, corresponding to decreased function, are
a lack of the normal function such as diminished emotional
expression. Positive symptoms are more apparent and gener-
ally respond better to medication. Negative symptoms are more
subtle and less responsive to pharmacological treatment. Below
some of the most characteristic symptoms of SZ taken from the
DSM-5 (Association et al., 2013) are listed.
Positive symptoms:

1. Delusions: have convinced beliefs that are not real, and
cannot be changed despite clear evidence.

2. Hallucinations: perceive things that do not exist as real,
without an external stimulus.

3. Disorganized thinking: difficulty to keep track of thoughts,
drift between unrelated ideas during speech.

4. Disorganized or abnormal movements: difficulties to per-
form goal-directed tasks, catatonic (stopping movement in
unconventional posture) or stereotyped (repetitive) move-
ments.

Negative symptoms:

1. Diminished emotional expression: reduced expression of
emotions through speech, facial expressions or movements.

2. Avolition: lack of interests, inaction.
3. Alogia: diminished speech output.
4. Anhedonia: diminished ability to experience pleasure.
5. Asociality: lack of interest in social interaction.

Multiple reports have also associated self-other disturbances to
SZ. This means that schizophrenic patients can perceive own and
external actions or feelings, but may have problems differenti-
ating them. This could be part of the explanation for auditory
hallucinations and struggles during social interaction. Van der
Weiden and colleagues published an extensive review (van der
Weiden, Prikken, & van Haren, 2015) on possible causes for this
disorder. Finally, in more severe cases, motor disorders have been

reported (Morrens, Hulstijn, Lewi, De Hert, & Sabbe, 2006), such
as stereotypical and catatonic behavior.

SZ is investigated by many researchers because of its preva-
lence and its devastating effects on patients, which can have life-
changing consequences on the patient’s relationships and social
situation. Moreover, its close relation with the inner workings of
self-perception and self-other distinction, raises the interest of re-
searchers from multiple areas such as psychology, neuroscience,
cognitive science and even developmental robotics.

2.2. Autism spectrum disorder

ASD is a prevalent developmental disorder that has a behavior-
based diagnosis due to its still unclear biological causes. It was
first introduced in the 1940s by Kanner et al. (1943), who pre-
sented the cases of eleven children ‘‘whose condition [differed]
so markedly and uniquely from anything reported so far’’, some
of them being previously diagnosed as schizophrenic. Actually,
the term autistic was originally used for describing symptoms in
schizophrenic patients. This kind of disorder mainly affects indi-
vidual’s social interaction, communication, interests and motor
abilities. It is often referred to as a heterogeneous group (spec-
trum) of disorders, as individuals typically show distinct combi-
nations of symptoms with varying severity. Nevertheless, there
are some characteristic attributes that are commonly associated
with ASD, which we have listed from the DSM-5 (Association
et al., 2013).

Deficits in social communication and interaction:

1. Impairment in socio-emotional reciprocity: struggle to share
common interests and emotions, reduced response or in-
terest in social interaction,

2. Deficits in non-verbal communication: problems integrat-
ing verbal and nonverbal communication, and using and
understanding gestures or facial expressions,

3. Problems to maintain relationships: problems or absence
of interest in understanding relationships and adjusting
behavior.

Abnormal behavior patterns, interests or activities:

1. Stereotyped movements or behavior: repetitive motor move-
ments or speech,

2. Attention to sameness: adherence to routines, distress be-
cause of small changes,

3. Fixated and restricted interests: strong attachment to certain
objects, activities or topics,

4. Hyper- or hyporeactivity to sensory input: indifference to
pain, repulsive response to certain sounds or textures, vi-
sual fascination.

Deficits in social interaction are often the most obvious symp-
toms of ASD. Hence, for a long time, ASD was mainly considered
as a disorder of theory of mind, suggesting that individuals with
ASD are characterized by absence or weakening of their ability
to reason about the beliefs and mental states of others in social
contexts (Baron-Cohen, 1997). Actually, early identification of
individuals with ASD has focused on non-verbal communication
interaction, mainly observing attention and gaze behaviors using
standardized tests, such as the Autism Diagnostic Observation
Schedule (ADOS) (Lord et al., 2012). Whereas this explanation
could account for a vast amount of symptoms that become ob-
vious in development and socialization of children with ASD, it
was mainly criticized due to its failure to explain similarly promi-
nent non-social symptoms such as restricted interests, desire for
sameness or excellent performance in specific areas.
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An alternative was suggested in the 90s with the weak central
coherence theory (Frith & Happé, 1994; Happé & Frith, 2006).
It sees the underlying causes of ASD in the perceptual domain,
namely in difficulties to integrate low-level information with
higher-level constructs. This ‘‘inability to integrate pieces of infor-
mation into coherent wholes (central coherence)’’, stated in Frith
(2003), could offer explanations for the aforementioned deficits
and also be extended to an explanation of social deficits. An even
broader view is provided by the Bayesian brain hypothesis which
suggests general deficits in the processing of predictions and
sensory information, and can be applied to non-visual perception
as well as motor abilities.

ASD is thought to be caused by genetic disorders and environ-
mental factors and evidence points at high heritability (Sandin
et al., 2017). Furthermore, recent studies, using a computer model
of the human fetus, have also highlighted the importance of
intrauterine embodied interaction on the development of the
human brain and in particular cortical representation of body
parts (Yamada et al., 2016). Some authors have suggested that
preterm infants might have a higher risk of enduring such devel-
opmental disorders.

3. Modeling approaches and hypotheses

ASD and SZ are among the psychiatric disorders which are
most commonly investigated using computational modeling. A
reason might be the unclear underlying cognitive mechanisms
of these disorders which computational models might help to
unravel. The studies we discuss in this review often take similar
approaches for modeling ASD and SZ. In fact, these two disorders
share certain symptoms, such as deficits in social communica-
tion and motor impairments manifesting as decreased response
or repetitive and stereotyped movements. Although, perceptual
atypicalities in both disorders are usually differentiated in that
SZ involves perceptual experiences that occur without an exter-
nal stimulus (e.g., hallucinations) whereas ASD is more typically
characterized by hypersensitivity to certain stimuli from the envi-
ronment, there is some overlap. For instance, hypersensitivity can
be also found in SZ patients (Robbins, 1993). Furthermore, both
disorders present less sensitivity to some visual illusions (Happé,
1996; Notredame, Pins, Deneve, & Jardri, 2014). Despite of all
these similarities, it is still under debate how these two disorders
relate to each other (Wood, 2017).

In computational modeling, similarities between modeling ap-
proaches are not primarily motivated by the similarities in symp-
toms. In fact, studies modeling SZ focused mainly on delusions
and hallucinations which are not predominant in ASD. Similari-
ties, instead, can be found in the suggested biological causes and
in the type of altered neural network parameters.

There are three main biological causes that are commonly em-
ployed in computational models: neural dysconnections,3 imbal-
ance of excitation and inhibition, and alterations of the precision
of predictions or sensory information.

3.1. Dysconnection hypotheses

Especially for SZ, one of the most discussed theories is the
idea of functional disconnections (Friston, 1998; Lynall et al.,
2010). The main motivation is that SZ cannot be explained by an
impairment of a single brain region, but only by a (decreased)
interaction between multiple brain regions (Friston, 1998). Dis-
connections or underconnectivity are also discussed as a potential

3 Note that disconnection usually refers to a lack of connection whereas
dysconnection describes atypical connectivity which might include decreased as
well as increased connectivity.

cause of ASD (Anderson et al., 2010; Frith, 2004; Just, Cherkassky,
Keller, & Minshew, 2004), but more recent evidence also points at
increased connectivity (Keown et al., 2013; Supekar et al., 2013)
or a distortion of patterns of functional connectivity (Hahamy,
Behrmann, & Malach, 2015).

In the discussed studies for SZ, dysconnection is primarily im-
plemented by an increased pruning of synapses (Hoffman & Dob-
scha, 1989; Hoffman et al., 2011; Hoffman & McGlashan, 1997).
Such a pruning is a normal developmental process between ado-
lescence and early adulthood (Huttenlocher et al., 1979). Com-
putational models using Hopfield networks (Hoffman & Dobscha,
1989) or feed-forward networks (Hoffman et al., 2011; Hoffman &
McGlashan, 1997) demonstrate that too strong pruning can cause
fragmented recall or the recall of new patterns, which can be
related to the symptom of hallucinations in SZ.

Notably, the SZ symptoms replicated with connection pruning
focus solely on hallucinations or delusions and might not be
appropriate for modeling ASD. In fact, in a biological context,
it might be more appropriate to disturb connections between
neurons instead of simply cutting them. This idea was followed by
Yamashita and Tani (2012) who induced noise between different
hierarchies of neurons (suggested by Friston & Frith, 1995). They
demonstrated in a robotic experiment that this leads to the emer-
gence of inflexible, repetitive motor behavior similar to catatonic
symptoms in SZ. This motor behavior could also be present in
ASD.

Just a single study focused on dysconnection in ASD. Park and
colleagues (Ichinose et al., 2017; Park et al., 2019) showed, using
a spiking neural network, that local over-connectivity, especially
locally in the prefrontal cortex (Courchesne & Pierce, 2005), can
account for the emergence of aberrant frequency patterns of
neural connections in patients with ASD.

3.2. Excitation/inhibition imbalance

An excitation/inhibition (E/I) imbalance is among the most
commonly referenced biological evidence for SZ as well as for
ASD (Canitano & Pallagrosi, 2017; Rubenstein & Merzenich, 2003;
Snijders, Milivojevic, & Kemner, 2013; Sun et al., 2012). E/I im-
balance was found in many neurobiological studies on SZ and
ASD. Although it is not clear how exactly E/I imbalance translates
to changes in cognition and behavior (Canitano & Pallagrosi,
2017), it seems to be linked to core symptoms of both disorders
such as hallucinations (Jardri et al., 2016) and social interaction
deficits (Yizhar et al., 2011).

An unanswered question is also of which quality this imbal-
ance is. A recent review of studies regarding ASD found evidence
for increased inhibition as well as for increased excitation (Dick-
inson, Jones, & Milne, 2016). Conflicting results in various brain
regions might arise by differences in measurements and their
reliability. The most commonly used mechanisms are magnetic
resonance spectroscopy which allows to measure the cortical
levels of glutamate or GABA, measurements of gamma-band ac-
tivity (which is hypothesized to be connected to inhibition) or
the analysis of the number of glutamate or GABA receptors in
post-mortem studies (Dickinson et al., 2016). Another possible
interpretation of these conflicting results is that both, increases
and decreases, in inhibition and excitation are present in ASD.
This hypothesis was put forward by Nagai, Moriwaki, and Asada
(2015), suggesting that both impairments share a common un-
derlying mechanism. Their model could show that increased in-
hibition and increased excitation can simulate the local or global
processing bias of ASD, respectively.

Furthermore, Gustafsson (1997) also connected E/I imbalance
to the local processing style of ASD. He implemented increased
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inhibition in a self-organizing map, in particular, stronger inhi-
bition in the surrounding of receptive fields which led to over-
discrimination.

For SZ, although E/I imbalance is commonly associated to
SZ in the literature, only the approach from Jardri and Den-
eve (2013) explored E/I imbalance as a modeling mechanism.
In their model, a stronger excitation or insufficient inhibition
caused circular belief propagation: bottom-up and top-down in-
formation are confused with each other which might cause hal-
lucinations and delusions. This model was recently supported
by some experimental evidence (Jardri, Duverne, Litvinova, &
Denève, 2017).

3.3. Hypo-prior theory and aberrant precision account

The increasing popularity of the Bayesian view on the brain
in recent years resulted in a trend of explaining psychiatric dis-
orders as a cause of the failure of correctly integrating per-
ceived low-level sensory information (bottom-up information)
with high-level prior expectations (top-down information). These
approaches are inspired by diminished susceptibility of subjects
with psychiatric disorders to visual illusions (Notredame et al.,
2014) and the well-known symptom of hypersensitivity to certain
stimuli (e.g., Lucker, 2013).

Problems in the integration of top-down and bottom-up infor-
mation can be explained by an inadequate estimation of the pre-
cision of these signals. A decreased precision of the prior causes
a weaker reliance on predictions and, hence, a relatively stronger
reliance on sensory input. This so-called hypo-prior theory was
first suggested by Pellicano and Burr for ASD in 2012 (Pellicano
& Burr, 2012). Similarly, an increased precision of the bottom-up
signal can account for the same consequences (Lawson, Rees, &
Friston, 2014). Despite some initial evidence in favor of an over-
rating of sensory information (Karvelis, Seitz, Lawrie, & Seriès,
2018), it cannot be decided to date which of these theories is
more compelling than the other. Possibly, both contribute to the
observed phenomena.

For both, ASD and SZ, typically a weaker influence of pre-
dictions and a higher influence of sensory information is sug-
gested (Karvelis et al., 2018; Lawson et al., 2014; Pellicano &
Burr, 2012). Lawson and colleagues substantiated aberrant pre-
cision for ASD by basing it on hierarchical predictive coding.
They argued that both hypo-priors and increased sensory noise
might influence the perception on different levels of the cortical
hierarchy, leaving open both hypotheses. In an endeavor to clarify
how such theories differ for ASD and SZ, Karvelis et al. (2018)
recently investigated how healthy individuals, scored for traits of
ASD and SZ, use prior information in a visual motion perception
task. ASD traits were associated with increased sensory precision,
whereas SZ traits did not correlate.

However, it might be intuitively plausible that also an over-
rating of top-down information can account for the occurrence
of hallucinations (Powers III, Kelley, & Corlett, 2016). In a recent
review, Sterzer et al. (2018) noticed that too strong as well
as too weak priors explain psychosis. They suggested that the
way that priors are processed might differ depending on the
sensory modality or the hierarchical level of processing, yielding
inconsistent theories and findings.

In line with this idea, computational models for ASD often sug-
gest that an impairment might be present in both extremes (Idei
et al., 2017; Philippsen & Nagai, 2018). In Idei et al. (2017), repet-
itive movement could be replicated by an aberrant estimation
of sensory precision, leading to inflexible behavior, either due
to sameness of intentional states (increased sensory variance) or
due to high error signals and misrecognition (decreased sensory
variance). Similarly, Philippsen and Nagai (2018) suggest that too

strong as well as too weak reliance on the sensory signal may
impair the internal representation of recurrent neural networks.
Thus, for SZ as well as for ASD, too strong as well as too weak re-
liance on priors or sensory information seem to be valid modeling
approaches.

3.4. Alternative modeling approaches

There are alternative theories used in the discussed compu-
tational models. Synaptic gain, for instance, has been evaluated
for SZ (Cohen & Servan-Schreiber, 1992) as well as for ASD (Dov-
gopoly & Mercado, 2013). In fact, a reduction of synaptic gain
might be related to reduced precision of prior beliefs as discussed
in Adams (2018).

Less biologically inspired approaches can also be found in the
literature and focus more on replicating behavioral data using
known engineering techniques in ANN. For instance, deficits in
generalization capabilities are modeled in neural networks by
modifying the number of neurons (Cohen, 1994), changing the
training time (Dovgopoly & Mercado, 2013) or introducing reg-
ularization factors (Ahmadi & Tani, 2017; Dovgopoly & Mercado,
2013).

4. ANN models of schizophrenia

In the following section, we present a comprehensive descrip-
tion of the most important ANN models of SZ. The majority of
approaches focuses on positive symptoms of SZ, such as hallu-
cinations and delusional behavior, e.g., Hoffman and McGlashan
(1997) and Horn and Ruppin (1995). Nevertheless, there have
been also approaches targeting other symptoms, for instance
attention characteristics (Cohen & Servan-Schreiber, 1992) and
movement disorders (Yamashita & Tani, 2012). An overview of
the most important models is presented in Table 1.

4.1. Hopfield networks: memory

4.1.1. Memory overload
In 1987, Ralph E. Hoffman, professor of psychiatry from Yale,

presented the earliest neural network model of SZ (Hoffman,
1987), inspired by the suggestions of Crick et al. (1983), who
explored the function of dreams using a neural network model.
Hoffman tried to explain the causes of schizophrenic and maniac
disorders with simulations using a Hopfield Network, an asso-
ciative memory ANN that is usually employed to simulate the
inner functioning of human memory (Hopfield, 1982) and to store
binary memory patterns. It is a recurrent neural network that
converges to fixed-point attractors. As a learning mechanism, the
famous Hebbian rule, ‘‘cells that fire together wire together’’, is
applied. In other words, connections between neurons that get
activated with temporal causality are increased (Hebb, 1949).
In order to model SZ, the author inspected the behavior of the
network attractors after storing an increasing number of binary
memories.

Results showed that by increasing the number of binary memory
patterns stored, the network reaches ‘‘parasitic’’ states that do not
correspond to previously stored memories. With higher num-
bers of memories or decreased storage capacity, the network’s
internal energy minima, that correspond to the stored memories,
might influence each other and create additional deep minima
(attractors) that do not correspond to any previously learned pat-
tern. These minima might influence either only the information
processing course (mind being controlled by outside force) or
lead to convergence to ‘‘parasitic states’’, which are compared
to hallucinations and delusional thoughts. This study did not
use biological evidence to support its main thesis that SZ might
be caused by memory overload and only compared behavioral
observations. However, this model served as a stepping stone for
a successor model (see Section 4.1.2).
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Table 1
Overview of neural network models of schizophrenia.
Model type Paper Disorder characteristic Biological evidence Approach

Hopfield networks Hoffman (1987) Delusions, sense of mind being
controlled by outside force

– Storing of an excessive number of
memories (memory overload)

Hoffman and Dobscha
(1989)

Hallucinations, delusions, sense of
mind being controlled by outside
force

Reduced connectivity in prefrontal
cortex and other regions

Excessive connection pruning

Horn and Ruppin
(1995)

Delusions and hallucinations Reactive synaptic regeneration in
frontal cortex

Weakening of external input
projections, increase of internal
projections and noise levels,
additional Hebbian component

Feed-forward NNs Cohen and
Servan-Schreiber
(1992)

Disturbances of attention,
representation of context

Abnormal dopamine activity in
prefrontal cortex

Reduction of activation function
gain in context-neurons

Hoffman and
McGlashan (1997)

Auditory hallucinations Reduced connectivity in prefrontal
cortex and other regions

Excessive connection pruning

Hoffman et al. (2011) Delusionary story reconstruction Abnormal dopamine activity,
cortical disconnections

Increased BP learning rates,
excessive connection pruning in
working memory

Predictive
processing

Adams, Stephan,
Brown, Frith, and
Friston (2013)

Delusions and hallucinations,
abnormal smooth pursuit eye
movement

Abnormal neuromodulation of
superficial pyramidal cells in high
hierarchical levels

Abnormal precision computation
in the free energy minimization
scheme

Circular inference Jardri and Deneve
(2013)

Hallucinations and delusions Disruption in the neural excitatory
to inhibitory balance

Increased excitation/reduced
inhibition in belief propagation

Recurrent NNs Yamashita and Tani
(2012)

Disturbance of self, feeling of
being controlled by outside force,
disorganized movements

Disconnectivities in hierarchical
networks of prefrontal and
posterior brain regions

Noise between context neuron
hierarchies in MTRNN

4.1.2. Memory model with disconnections
Observations that show diminished metabolism in the pre-

frontal cortex (hypofrontality) of individuals with SZ led to the
theory that excessive synaptic pruning might be the reason for
the appearance of SZ between adolescence and early adulthood
(Feinberg, 1982; Keshavan, Anderson, & Pettergrew, 1994). A de-
cline in synaptic density is a normal developmental process (Hut-
tenlocher, de Courten, Garey, & Van der Loos, 1982; Huttenlocher
et al., 1979) which might have gone too far in the case of SZ. In
1989, Hoffman and Dobscha used a Hopfield network, arranged as
a 2D grid, as a content-addressable memory to retrieve previously
stored memories giving a similar input (Hoffman & Dobscha,
1989). A ‘‘neural Darwinism’’ principle was applied, which is a
pruning rule that erases connections depending on their weights and
length (proximity of neurons in the grid). The concrete pruning
rule is shown in Eq. (1), with |Txy| being the weight of the
connection between neurons in coordinates (x, y) and (i, j), and
p̂ the pruning coefficient. The pruning coefficient determines the
number of connections which are discarded. Fig. 2 illustrates a
possible scenario for this pruning process.

|Txy| = p̂ · [(i − x)2 + (j − y)2]0.5 (1)

For a moderate level of pruning, the network is still able
to perform the memory-retrieval task, but for connection re-
ductions of 80% the network shows fragmented retrieval. This
fragmentation was compared to thought disorders observed in
SZ, which lead to incoherence, attention deficits or the feeling
that one’s mind is being controlled by an outside force. Further-
more, sometimes over-pruned areas converged to patterns not
included in any of the stored memories. These were denominated
as ‘‘parasitic foci’’. The authors compared these to hallucinations
in SZ because they contained decodable information that does
not belong to any stored memory. Occasionally, these parasitic
regions extended on a larger area and persisted independently of
the input, which was compared to delusional thoughts observed
in patients.

Fig. 2. Pruning rule used for the Hopfield Network in Hoffman and Dobscha
(1989). The connections are pruned depending on the connection weight and
the distance between the connected neurons. A: Connections before pruning. B:
Connections after pruning.
Source: Reprinted from Hoffman and Dobscha (1989).

4.1.3. Memory model hippocampal region
In 1995, Horn and Ruppin (1995) and Ruppin, Reggia, and

Horn (1996) also introduced a Hopfield-based network to repli-
cate the positive symptoms of SZ. This model was based on
the hypothesis by Stevens (1992) that schizophrenic symptoms
might be caused by ‘‘reactive anomalous sprouting and synaptic
reorganization taking place at the frontal lobes, subsequent to
the degeneration of temporal neurons projecting at these ar-
eas’’. The hypothesis takes into account observations that showed
atrophic changes in the temporal lobe, and at the same time
increased dendritic branching in the frontal lobe of a significant
number of schizophrenic patients. Essentially, the idea is that
degenerations in temporal lobe regions that are connected to the
frontal lobe regions might produce a compensatory reaction in
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that area, namely increased receptor bindings (frontal lobe con-
nections) and anomalous dendritic sprouting (increased influence
from other cortical areas).

The work by Hoffman explained in the previous section sug-
gested that hallucinations should always appear in combination
with memory problems in patients because pruning clearly af-
fects the network’s memory retrieval performance. However, this
is not always the case in patients. Following the hypothesis from
Stevens, the model described in Horn and Ruppin (1995) would
make hallucinations and intact memory capabilities compatible.

The model used in this paper was a Hopfield network taken
from Tsodyks (1988) and Tsodyks and Feigel’man (1988), which
is more appropriate for the storage of correlated patterns. This
network is used for a pattern retrieval and recovery task, which
means that in its original functionality, it receives an external
input pattern and outputs the previously learned pattern that
corresponds to it, given that a similar one was learned before.

Defining the connection strength (weight) between neuron i
and j as Wij, the learning rule is:

Wij new = c Wij old , (c > 1) (2)

Wij =
c0
N

M∑
µ=1

(ξµ

i − p)(ξµ

j − p) (3)

where c is the internal projection parameter with value always
> 1. Eq. (3) describes the initial configuration of the network
weights, with c0 = 1, p being the probability that a memory
pattern is chosen to be 1, and ξ

µ

i one of the M = αN memory
patterns.

The input of each neuron i at time step t is expressed as:

hi(t) =

∑
j

WijSj(t − 1) + e · ξ 1
i (4)

where e is the network input parameter with value 1 in normal
conditions, which weights the incoming memory pattern, and Sj
is the neuron output defined by a sigmoid function with noise
level T and a fixed uniform threshold of all N neurons θ :

Si(t) =

{
1, with probability 1

1+exp(−(hi(t)−θ )/T )
0, otherwise

(5)

In order to simulate degenerated temporal lobe projections to
the frontal lobe, the input is scaled down by decreasing parameter
e < 1 in Eq. (4). In order to model increased receptor bindings and
dendritic sprouting the parameter c in Eq. (3) and noise level T in
Eq. (5) are increased. The parameter c scales the internal weights
of the network and T influences the neuron activation. After
performing these modifications, the network is still able to re-
trieve previously stored memories, but spontaneously converges
to certain memories without a specific input stimulus.

An additional Hebbian learning rule during pattern retrieval
on a lower time scale is used to account for increased dopamine
levels observed in patients with SZ:

Wij(t) = Wij(t − 1) +
γ

N
(S̄i − p)(S̄j − p) (6)

where S̄i is a variable that only becomes 1 if the neuron in
question has been active during the last τ iterations. There are
studies that have observed that dopamine activity increases may
enhance Hebbian-like activity-dependent synaptic changes in the
brain, and a high synaptic modification rate γ is used to replicate
this effect, as this parameter influences how much the network’s
weights are changed during learning. This modification is used to
imitate high dopamine levels observed in schizophrenia.

In total, four network modifications were tested on the pre-
sented architecture (Fig. 3): (1) weakening of the network input

parameter e, (2) increase of internal projections c , (3) increase of
noise levels T , and (4) additional Hebbian learning rule (Eq. (6)).

Combining the reactive modifications to a decrease of e (inter-
nal connections and external noise) with the described Hebbian
rule (even with a small γ of 0.0025), the spontaneous retrievals
are enhanced and get continuously triggered without a concrete
retrieval input. This behavior is compared to long-term hallucina-
tions or delusional beliefs characteristic of schizophrenic patients.
This result would also fit with the effect of dopaminergic blocking
agents (equivalent to reducing the effect of the Hebbian learning
rule), which are used to reduce hallucinations in patients.

4.2. Feed-forward networks: context and language

4.2.1. Attention and context representation
In 1992 the first model based on feed-forward neural net-

works was introduced. The psychology professor Jonathan D.
Cohen and neuroscientist David Servan-Schreiber (Cohen &
Servan-Schreiber, 1992) presented an extensive analysis of a pos-
sible explanation for negative symptoms in SZ. More concretely,
they focused on disturbances of attention and contextualization
problems in schizophrenics, which were for instance reported
in Garmezy (1977) and Lang and Buss (1965). Their main hypoth-
esis was that schizophrenics fail to make an internal representa-
tion of context and that an abnormal amount of dopamine in the
prefrontal cortex is the main cause (cf. Section 4.1.3 as a compar-
ison). The authors refer to previous studies suggesting that the
prefrontal cortex is the brain region responsible for maintaining
an internal representations of context, and that patients with SZ
show dysfunctions and abnormal dopamine levels in this area.
In order to test the dopamine-theory of SZ, three experimental
tasks were compared to three neural network models, obtaining
similar results to empirical observations. They simulated reduced
dopamine activity by decreasing the gain of the activation func-
tion (the activation function’s slope), described by Eq. (7), in the
neurons responsible for context representations. In this equation,
we used the same nomenclature as in the original paper, where
net is the added activation of all incoming connections, bias the
neuron bias and gain the parameter that is modified. The men-
tioned idea of modifying the activation function’s gain was based
on studies that suggest that high dopamine levels potentiate the
neurons’ activation (inhibitory and excitatory) in the prefrontal
cortex. The modification of the gain has a similar effect because
higher gain values increase the activation function’s slope, which
means that even small neuron input values produce either very
low neuron activations (equivalent to inhibitory signals) or high
activations (equivalent to excitatory signals).

f (net) =
1

1 + exp(gain · net + bias)
(7)

The first experiment, depicted in Fig. 4, was the Stroop task
(Stroop, 1935), which consists of color words printed in different
color inks that are presented to the participants. These words
have either congruent stimuli (color and word are the same),
conflicting stimuli (color and word contradict each other) or
control stimuli (color words printed in black ink or the letters
‘‘XXX’’ printed in a certain color). The subjects must then either
always name the letter’s ink color or the written word. This
exercise is used to test the participant’s attention capacities, and
schizophrenic subjects show overall slower reaction times and
perform even worse when conflicting stimuli are shown (Henik &
Salo, 2004). In order to feed the information in the network, the
printed word’s ink color and meaning were numerically coded.
By reducing the gain on the color naming and word reading
units from 1.0 (normal gain) to 0.6 they observed a delay in the
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Fig. 3. Schematic illustration of the proposed model: An ANN models the frontal module, receiving input from internal connections c, external connections from the
medial temporal lobe e and connections T from distant cortical modules modeled as external noise. Highlighted in red are the modifications made on the Hopfield
network to imitate schizophrenic behavior: Decrease of external input projections, and increase of internal projections and external noise.
Source: Adapted from Horn and Ruppin (1995).

Fig. 4. Attention and context. (a) Stroop card test used for SZ, reprinted from Henik and Salo (2004) (b) Neural network model used for the Stroop task in Cohen
and Servan-Schreiber (1992). Highlighted in red are the neurons with modified gain.

response time of the network to properly produce a correct an-
swer, similar to what it was observed in schizophrenic diagnosed
individuals.

The second experiment, shown in Fig. 5, implemented the Con-
tinuous Performance Test (CPT) (Rosvold, Mirsky, Sarason, Bran-
some Jr, & Beck, 1956) identical pair version (Cornblatt, Lenzen-
weger, & Erlenmeyer-Kimling, 1989). It measures participant’s
ability to detect repeated pattern of symbols in a longer se-
quence. Symbols are presented sequentially and the volunteers
must detect when the pattern appears consecutively, words or
numbers, e.g., ‘‘9903’’. In this experiment, schizophrenics usually
struggle with the detection of longer patterns where previous
symbols need to be taken into account. Prior stimulus module neu-
rons were used to save the information about previous sequence
symbols. To simulate schizophrenic behavior, the authors reduced
the gain of the activation-function of the task context yielding to
a higher miss-rate in concordance with schizophrenic empirical
observations.

Finally, a lexical disambiguation task depending on context
was modeled based on the original work from Chapman, Chap-
man, and Miller (1964) (see Fig. 6). Participants had to solve
homonym conflicts (words with more than one meaning), taking

into account the context of the sentence. In this case, schizophren-
ics show worse performances when the needed context to resolve
ambiguity comes before the word in question. A similar approach
than in the CPT experiment was taken: context neurons gain
was manually reduced to 0.6 like in the previous experiments.
It resulted in low performance for the schizophrenic model when
the sentence context that was needed to interpret the ambiguous
word was located at the beginning of the sentence.

4.2.2. Auditory processing
During a person’s life, the number of neurons in the brain

peaks during childhood and then decreases by a 30% to 40%
in adolescence, which is also the period of time where SZ ap-
pears most frequently (adolescence/early adulthood) (Hutten-
locher et al., 1979). Based on this observation and post-mortem
findings which suggest neural deficits in the schizophrenic’s cere-
bral cortex (Keshavan et al., 1994; Margolis, Chuang, & Post,
1994), Hoffman and McGlashan designed a feed-forward neural
network capable of translating phonetic inputs into words (Hoff-
man & McGlashan, 1997). This model was inspired by Elman’s
(1990) model (Elman, 1990). As illustrated in Fig. 7(a) it consists
of one hidden layer and a temporal storage layer that saves a copy
of the hidden layer from the previous processing step.
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Fig. 5. Continuous performance test. (a) Simplified CPT Identical Pair test used (b) Neural network model for the CPT adapted from Cohen and Servan-Schreiber
(1992). Highlighted in red are the neurons whose gain was decreased to model disturbed processing in the prior stimulus module.

Fig. 6. Lexical disambiguation. (a) Task with context dependent meaning word. (b) Neural network model reprinted from Cohen and Servan-Schreiber (1992).
Highlighted in red are the (context) neurons whose gain was reduced to 0.6. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

A pruning rulewas used to set the value of all connections below
a certain threshold to zero. After pruning approximately 30% of
the connections, the word detection capabilities of the used net-
work improved.4 However, with excessive pruning the network
starts to struggle with detection tasks and shows spontaneous
responses during periods without input (shown in Fig. 7(b)).
This last observation was associated to auditory hallucinations
reported in patients with severe SZ. Furthermore, it supported the
common theory that auditory hallucinations might be caused by
false identification of own inner speech as externally generated.

In posterior tests with healthy patients, schizophrenics with
auditory hallucinations showed reduced word detection capa-
bilities compared to schizophrenics without such hallucinations,
which fits with the previous simulations. Furthermore, a later re-
view of this paper (Hoffman & McGlashan, 2001) highlighted that
by applying active repetitive transcranial magnetic simulation
(active rTMS) on the left temporoparietal cortex, a brain region
usually associated to speech perception, hallucinations seem to
be reduced. This further supports the hypothesis of a possible
correlation between speech-processing disorders and auditory
hallucinations.

4 Pruning is a bioinspired standard technique for improving generalization of
the network. However, nowadays, dropout approaches have gained popularity
over pruning.

4.2.3. Language processing
Another feed-forward model of SZ introduced by R. E. Hoffman

and collaborators (Hoffman et al., 2011) uses a network called
DISCERN (Grasemann, Miikulainen, & Hoffman, 2007; Miikku-
lainen, 1993; Miikkulainen & Dyer, 1991) that is able to learn
narrative language and reproduce learned content, e.g., learn a
story and reproduce it after feeding it with a fraction of the story.

Based on previous studies about SZ, eight different network
modifications were tested: (1) Working Memory (WM) disconnec-
tions by pruning of connections with a weight below a certain
threshold, (2) Noise addition in working memory by adding of
Gaussian noise to WM neuron outputs, (3) WM network gain
reduction by reducing the activation function’s gain, (4) WM neu-
ron bias shifts by increasing neuron bias and inducing an in-
creased overall activation, (5) Semantic network distortions by
adding noise to word representations in semantic memory, (6) Ex-
cessive activation semantic networks by increasing neuron outputs
in semantic network, (7) Increased semantic priming by blurring
semantic network outputs, (8) Exaggerated prediction-error sig-
naling (hyperlearning) by increasing back-propagation learning
rates.

The resulting network behaviors were compared to empirical
results using a goodness-of-fit measure (GOF), which compared
factors such as story recall success (successfully retelling story),
agent confusions (switching of certain story characters), lexi-
cal errors and derailed clauses (false interpretation of certain
sentences). The authors concluded that (1) WM disconnections
with pruning and (8) hyperlearning best explain real-world data.
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Fig. 7. Auditory hallucinations (a) Neural network model used in Hoffman and McGlashan (2001). Input of the network are simulated phonetic codes, output are
semantic features of the input word. Highlighted in red are the connections where the pruning rule was applied on to imitate schizophrenic symptoms. (b) Word
detection results depending on connection pruning. Spontaneous detections are observed for excessive pruning.
Source: Reprinted from Hoffman and McGlashan (2001) with permission.

Fig. 8. Visual illusions where the brain infers different interpretations depending on the prior information or context. (a) Ortaggi in una ciotola o l’Ortolano. G.
c⃝Arcimboldo 1590. (b) Tacher illusion (Thompson, 1980). (c) Forever Always, c⃝Octavio Ocampo 1976. (d) Dallenbach’s illusion 1952 (Dallenbach, 1951).

These results for WM disconnections further reinforce the previ-
ously presented theory by Hoffman and McGlashan in Hoffman
and McGlashan (1997) that excessive connection pruning during
human’s adolescence might be one of the causes for this dis-
order. Moreover, the authors also suggested that over-learning
in schizophrenic brains might cause modifications in previously
stored memories, which might lead to delusional or erroneous
convictions.

4.3. Bayesian approaches

Several important models of psychiatric disorders are based
on the idea that the brain uses Bayesian inference as a basic
principle. The Bayesian brain hypothesis describes the human
brain as a generative model of the world that makes predictions
about its environment and adapts its internal model depending
on the observation provided by the senses. For SZ as well as for
ASD it is suggested that patients might differ in the way they
combine sensory inputs with prior information. The idea was
highly influenced by Hermann Helmholtz’s work in experimental
psychology (Von Helmholtz, 1867) that dealt with the brain’s
capacity to process ambiguous sensory information. In his words:
‘‘Visual perception is mediated by unconscious inferences’’.

Fig. 8 shows puzzle images that stress that perception depends
on prior knowledge as well as sensory input. For instance, if we
rotate Arcimboldo’s painting by 180 degree instead of vegetables
we will see a human face with a hat. Tacher’s illusion can be
broken by also rotating the upside down images, and we will see
that both faces are different. In particular, mouth and eyes are
inverted. In Ocampo’s painting, we can see two old people from a
larger distance but two mariachis when viewing the picture from
close range. Finally, Dallenbach’s illusion shows that even if you
know that there is an animal looking at you in the picture, it is
impossible to see it until the shape of the cow is highlighted. Af-
terwards you cannot stop seeing it. In essence, what we perceive

not only depends on the raw sensory information, but also on our
prior knowledge and predictions we have about the world.

The classical concept of Bayesian inference presents percep-
tion as computing the posterior belief from the sensory input
(likelihood) and from the model prediction (prior belief) depend-
ing on their relevance. For instance, in the case of a very imprecise
(highly variable) prior, the perception would shift more strongly
to the direction of the sensory input. Fig. 9 illustrates these
concepts assuming that the world is one-dimensional and can be
described via Gaussian distributions.

4.3.1. Free-energy model of schizophrenia
Friston’s free-energy model (Friston, 2010) describes the brain

functionality as a dynamical inference network. It combined the
Helmholtz machine ideas (Dayan, Hinton, Neal, & Zemel, 1995)
with the hierarchical prediction error message passing (Rao &
Ballard, 1999) and the Bayesian mathematical framework. Despite
not being implemented as an ANN model, we included it in this
review because it is considered one of the most relevant models
in the computational neuroscience community. Furthermore, it
serves for comparative purposes with predictive coding neural
network implementations of psychiatric disorders (Philippsen &
Nagai, 2018; Yamashita & Tani, 2008, 2012).

Under the free-energy principle, the brain is seen as a predic-
tion machine that progressively constructs an internal model of
the world which is constantly improved, based on the received
sensory feedback and the resulting prediction error. Perception
(posterior belief) then results from combining the brain’s predic-
tions (prior) with the sensory evidence (likelihood) as shown in
Fig. 9. If the prior’s precision is relatively higher than the precision
of sensory evidence, the posterior will be more similar to the
prior. In the opposite case, the posterior will be more close to
sensory input. Therefore, precision weights the influence of prior
and sensory evidence on the posterior belief.
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Fig. 9. Illustration of Bayesian inference: The posterior belief is generated by inference of prior belief and sensory evidence. Depending on the variance (precision)
of prior and sensory evidence, the posterior belief will be influenced more by one of the previous.
Source: Adapted from Adams et al. (2013).

Mathematically, the internal model is updated by minimizing
the negative free energy F a lower bound on the KL-divergence
that quantifies the difference between the internal belief about
the world and reality.

Assuming that µ⃗ are the dynamical internal states of the
brain, perception is then described as the adaption of µ⃗ given
the sensory observations by minimizing the free energy using the
gradient descent method described in Eq. (8):

˙⃗µ(t) = Dµ⃗(t) −
∂F (s⃗, µ⃗)

∂µ⃗
= Dµ⃗(t) −

∂ϵ

∂µ⃗
Πϵ (8)

where D is a differential matrix operator that computes the
currently expected hidden state, ϵ is the error between the pre-
dicted (sensory) input from the higher layer and the real input
(observation) and Π is the inverse variance (precision) of the
information. For instance, in humans, visual information would
typically have higher precision than proprioceptive sensing for
body localization (Hinz, Lanillos, Mueller, & Cheng, 2018).

Based on these concepts, Adams et al. (2013) built a computa-
tional model of SZ and analyzed in three different experiments:
auditory pattern recognition (using the example of a bird recog-
nizing its own song), an object eye-tracking task and a simulation
of force-matching illusion. One of the core ideas was that a
reduction of the precision at higher levels of the cortical hierarchy
(i.e., reduced precision of prior beliefs) influenced the responses
of the model. More concretely, decreases in prior precision (or,
for the force-matching illusion, failure to reduce sensory preci-
sion) led to struggles in auditory pattern recognition, problems
with eye-tracking with occlusion and attribution of agency. Fur-
thermore, with an additional compensatory decrease of sensory
precision (for the force-matching illusion, increase of prior pre-
cision), the model showed hallucination-like behavior during the
auditory pattern recognition task and difficulties to distinguish
self-touch and touch from others in the force-matching illusion.

Fig. 10 shows the experiment of auditory pattern recognition
of a birdsong, showing how the precision in different cortical
levels changes the response to surprising events. The first row
describes a normal behavior to surprising events (the belief pre-
cision is high). In this case, when a chirp of the bird is omitted, the
posterior perception contains an illusory (weakened) response at
the point in the signal where sensory input is missing (white
arrow at left plot). This effect might correspond to omission-
related responses found in electrophysiological recordings of the
brain (Nordby, Hammerborg, Roth, & Hugdahl, 1994). The middle
and bottom rows correspond to abnormal behaviors in line with
SZ findings, such as attenuation of omission-related responses
and auditory hallucinations respectively.

4.3.2. Circular inference in Bayesian graphical models
In Jardri and Deneve (2013), Jardri and Denéve investigated

how excitatory to inhibitory imbalance may relate to psychotic

symptoms in schizophrenia, using belief propagation in a hi-
erarchical Bayesian graphical model. In particular, it is shown
that a dominance of excitation causes circular belief propagation:
bottom-up sensory information and top-down predictions are
reverberated, and therefore, may be confused with each other or
taken into account multiple times. The model can account for the
occurrence of erroneous percepts (hallucinations) and fixed false
beliefs (delusions) in SZ.

In the graphical model, low hierarchical levels correspond to
sensory experience and high levels to top-down predictions. Mes-
sages are passed between nodes in different hierarchical levels
from lower to higher levels (bottom-up processing) and from
higher to lower levels (top-down processing). The fact that con-
nections exist in both directions raises an important challenge: to
differentiate between real sensory information and sensory infor-
mation which were simply inferred from top-down expectations.
The authors suggest that such circular belief propagation in the
Bayesian network is avoided if a careful balance between excita-
tion and inhibition is maintained. A disruption of this balance can
account for the appearance of schizophrenic symptoms.

Concretely, information between higher and lower levels are
exchanged in the form of messages. For belief propagation, mes-
sages are passed recursively until convergence:

Mn+1
ji =

{
Wij(Bn

i − αdMn
ij ) if i is above j

Wij(Bn
i − αcMn

ij ) if j is above i,
(9)

where the term above means that the node i is in a higher hierar-
chical level than j. Mn

ij is the message sent from i to j at step n. Wij
is the connection strength, and αd and αc are the parameters that
scale the inhibitory loops in upward and downward directions,
respectively. Bn

i is the computed belief expressed as a log-odd
ratio5 and updated as:

Bn+1
i =

∑
i

Mn+1
ji . (10)

The authors experimented with the two α parameters in this
framework, adjusting them between 1 (normal level of inhibition)
and 0 (no inhibition). Simulated results show that equally im-
paired loops (same α below 1) are still able to arrive at a proper
inference. Conversely, with unbalanced impaired upward loops
(αu < 1) ‘‘over-estimation of the strength of sensory evidence and
an underweighting of the prior’’ is produced. This is compatible
with over-interpretation of sensory evidence and the reduced
influence to illusions observed in schizophrenic patients.

The authors recently demonstrated in Jardri et al. (2017) that
the circular inference model nicely fits decisions of SZ diagnosed

5 Log-odd ratio: computed as the log of the ratio between the probability that
a cause is present and that the cause is absent, thus, values around 0 describe
uncertain states, positive values correspond to belief in presence, negative values
to belief in absence.
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Fig. 10. Prediction sonograms of the auditory signal of a birdsong (left), prediction error with respect to stimulus (middle) and used model (right), when last three
chirps are omitted. Top row: Unmodified model generated prediction error increases with the first missing chirp, which corresponds to normal behavior. Middle
row: With reduced precision at second level the model is unable to predict the third chirp, and the prediction error for missing chirps is reduced. Bottom row: With
compensatory sensory precision reduction in first level, there is a complete failure of perceptual inference. Despite the wrong predictions, almost no prediction error
is generated due to missing precise sensory information. This behavior is compared to auditory hallucinations.
Source: Reprinted from Adams et al. (2013) with kind permission.

patients using the Fisher task as the experimental paradigm. The
Fisher task permits the manipulation of the prior and the likeli-
hood allowing comparisons with the Bayesian model predictions.
Participants have to decide whether the fish captured comes from
the left or the right lake. First, two boxes (left, right) with fish and
different sizes are presented (prior): bigger box expresses higher
probability. Secondly, the two lakes (left, right) are presented
with fishes inside with two colors (red and black). The proportion
of red fishes represent the likelihood of the observation. Finally,
participants have to decide if the red fish comes from the left or
the right. According to the participant’s data and their proposed
model, descending and ascending loops correlated with negative
and positive SZ symptoms respectively.

4.4. Recurrent neural networks

In 2012, Yamashita and Tani presented a model of SZ using a
recurrent neural network (RNN) (Yamashita & Tani, 2008) such
as they are commonly used for the recognition and generation
of time series. Specifically, in this study, the RNN is applied to
the task of sensorimotor sequence learning in a humanoid robot:
the robot learns to predict visual information and own motor
movements in a scenario where it moves a cube on a surface.

The type of RNN they used is the Multiple Timescale Recurrent
Neural Network (MTRNN), a special type of RNN that mimics the

hierarchical structure of biological motor control systems. Human
and animal motor movements are commonly suggested to be seg-
mented into so-called ‘‘primitives’’ (Schaal, Kotosaka, & Sternad,
2000). These primitives can then be reused and combined to more
complex motor sequences. The MTRNN contains neurons working
at different timescales: fast context neurons (corresponding to
the lower level of the hierarchy) learn the motion primitives and
slow context units (corresponding to higher, more abstract levels)
control the sequence of the primitives (see Fig. 11). This network
is trained to perform prediction error minimization, i.e., to build
an internal model of the world following the Bayesian brain idea.
Training the network using the Backpropagation Through Time
algorithm (BPTT), the robot learns multiple motions (grasping and
moving an object) adapting to different object positions. It is also
able to combine these actions into new action sequences by only
training the slow context units. The trained network works as a
predictor where the sensory input modulates the changes on the
slow context units (goals) depending on the error.6

Eq. (11) describes the dynamics of each neuron at each layer:

τ u̇i,t = −ui,j +
∑

j

wi,j · xj,t . (11)

6 There is a strong parallelism between Multiple Timescale RNNs and the
hierarchical model proposed by Friston.
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Fig. 11. (A) Tasks to be performed by the robot: when the object is on the Right
move the object backward and forward, when the object is on the Left move
the object up and down. (B) MTRNN network architecture. Highlighted with a
red ellipse are the connections between fast and slow context units that are
degraded with noise to imitate schizophrenic behavior.
Source: Adapted from Yamashita and Tani (2012).

In this formula, the membrane potential ui,t of neuron i at time
step t is updated with the neural state xj,t of neuron j scaled
with the (learnable) connection weights wi,j. The time constant
τ determines the update frequency of the neuron. A small time
constant is used for fast context units, and a large time constant
for slow context units.

Schizophrenics can have trouble to distinguish self-generated
actions from others’ actions and, in severe cases of SZ, patients
can even have problems performing movements, and show repet-
itive or stereotypical behavior (van der Weiden et al., 2015).
Based on observations that suggest that SZ may be caused by
disconnections in hierarchical brain regions, mainly between pre-
frontal and posterior regions (Bányai, Diwadkar, & Érdi, 2011;
Friston & Frith, 1995), uniformly distributed random noise was
added in the connections between fast and slow context units high-
lighted with the red circle in Fig. 11. For the evaluation of the
model a humanoid robot was used. It had the task of locating an
object on a table in front of it and performed different actions
depending on the object’s position: if the object was located to
the right, the robot was supposed to grab the object and move it
back and forth three times. Otherwise, if the object was located
to the left, the robot had to grab the object and move it up and
down three times.

They showed that for a small degree of disconnection (small
noise addition) the robot had no problems to perform the men-
tioned task. Nevertheless, increases of spontaneous prediction
error were observed and abnormal state switching appeared in
the intention-network (slow units). The authors compared these
prediction errors to patient’s problems in attribution of agency
(when own movements are perceived as being executed by some-
one else). Schizophrenics might want to perform an action and
have an internal prediction of the upcoming proprioceptive and
external states. The increases of prediction error could be seen
as incongruences between the intended actions and the results,
which can give a person the feeling of not being able to control
the consequences of its own actions or it may have problems
to perceive these actions as self-generated. For more severe dis-
connections, the humanoid robot clearly struggled to perform
the given task and showed disorganized sequences of move-
ments. These observations were compared to more severe cases
of SZ, where cataleptic (stopping) and stereotypical (repetitive)
behaviors have been observed.

5. ANN models of autistic spectrum disorder

This section describes the most important ANN models of
ASD. They focused on the atypical processing style suggested
by the weak central coherence theory which could be summa-
rized as excessive attention to detail. They replicated deficits in
perception (Cohen, 1994; Dovgopoly & Mercado, 2013; Gustafs-
son, 1997; Nagai et al., 2015). Some also addressed atypicalities
in memory structure and internal representations (McClelland,
2000; Philippsen & Nagai, 2018) and inflexibility in motor behav-
ior (Idei et al., 2017). Although most studies suggested connec-
tions to social deficits in an indirect way, only one of the models
made a direct connection to theory of mind, by modeling weak
central coherence on the level of logical reasoning (OLaughlin &
Thagard, 2000). An overview of the reviewed approaches is given
in Table 2.

5.1. Feed-forward and simple recurrent neural networks

First, we describe approaches using simple connectionist mod-
els, typically feed-forward networks for classification tasks. Re-
current connections might be included at a structural level, but
networks are not supposed to learn temporal sequences, which is
why we refer to them as simple recurrent NN. These approaches
mainly explored parameters of the network such as number of
neurons or learning rate.

5.1.1. Generalization deficits through overfitting
The first neural network model of ASD to our knowledge

was proposed by Ira L. Cohen in 1994 (Cohen, 1994). It was a
feed-forward neural network trained with back-propagation and
investigated basic properties of neural networks. Based on studies
that suggested that individuals with autism have either too few or
too many neurons and neuronal connections (e.g., Bauman, 1991),
the influence of increased or reduced number of hidden neurons
was analyzed. The evaluated task was to classify children with
ASD and children with mental retardation into two groups, using
features obtained via a diagnostic interview (Cohen, Sudhalter,
Landon-Jimenez, & Keogh, 1993). Note that although the consid-
ered task was related to ASD, the chosen task is just taken as an
example and is not crucial for the findings of this paper.

A training and a test set were used to analyze the network’s
accuracy and generalization abilities. The results were compared
for an increasing number of hidden units and through different
number of trials. The results showed that a small number of
hidden neurons translates into low accuracy (high training error)
and bad generalization (high testing error) and an increased
number of hidden neurons improved the network’s learning accu-
racy and generalization. When the number of hidden neurons was
largely increased, its generalization ability decreased: the network
learned too much details of the input data and was not able to
adapt to new input data. An increased number of training trials
(longer training duration) had a similar effect. For the training set,
the network accuracy increased with longer training duration.
However, with the test set, the network again showed signs of
overfitting, as the accuracy decreased significantly.

Cohen compared these results qualitatively to the learning
and behavioral characteristics of children with ASD. In particular,
many individuals with ASD show great discrimination capabil-
ities and have no problems with already learned routines, but
have problems when trying to abstract information or when
confronted with new situations.

Cohen extended this approach in 1998 (Cohen, 1998) to the
generalization capability in the presence of extraneous inputs to
the network (set to random values). In the task of classifying
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Table 2
Overview of neural network models of ASD.
Model type Paper Disorder characteristic Biological evidence Approach

Feed-forward and
simple recurrent
NNs

Cohen (1994, 1998) Generalization deficits due to
excessive attention to detail

Abnormal neural density in
various brain regions

Excessive or reduced number of
neurons, increased training
duration

McClelland (2000) Hyperspecificity of memory
concepts

– Excessive conjunctive coding

Dovgopoly and
Mercado (2013)

Deficits in visual categorization
and generalization

Abnormalities in synaptic
plasticity

Reduced learning rate, negative
weight decay (anti-regularization)

Self-organizing
maps

Gustafsson (1997) Excessive attention to detail Lateral inhibition enhances
sensory perception

Excessive inhibitory lateral
feedback

Gustafsson and
Papliński (2004)

Avoidance of novelty – Familiarity preference, higher
weighting of close data points

Noriega (2007) Domain-based hypersensitivity Early brain overgrowth in children
with ASD

Variable (increasing) number of
neurons, stronger/weaker
attention to stimuli

Noriega (2008) Domain-based hypersensitivity Early brain overgrowth in children
with ASD

Propagation delays in neural
weight updates

Convolutional NN Nagai et al. (2015) Local/global processing bias Excitation/inhibition imbalance Excitation/inhibition imbalance in
visual processing

Spiking NNs Park et al. (2019) Atypical neural activity: High
power in higher frequency bands
and decreased signal complexity

Increased short-range connectivity
in frontal cortex and atypicalities
in resting-state EEG

Local over-connectivity

Predictive coding Pellicano and Burr
(2012)

Excessive attention to detail – Hypo-prior: lower precision of
prior, stronger focus on sensory
input

Lawson et al. (2014) Excessive attention to detail Stronger activation in visual
cortex than in prefrontal cortex in
ASD

Hypo-prior or hyper sensory
input: Precision imbalance that
leads to excessive reliance on
input

Recurrent NNs Idei et al. (2017) Stereotypical behaviors – Modification of variance
estimation (sensory precision)

Philippsen and Nagai
(2018)

Reduced generalization capability,
heterogeneity among subjects

– Modification of reliance on
external signal and of variance
estimation (sensory precision)

Ahmadi and Tani
(2017)

Generalization deficits – Regularization

Other approaches OLaughlin and
Thagard (2000)

Weak coherence, Theory of Mind
impairment

– Impairment of coherence
optimization in logical reasoning
due to strong inhibition

happy and sad expressions of a simplified cartoon face, gener-
alization was strongly impaired in the presence of extraneous
inputs. This might suggest that networks trained for too long
tend to attend more to non-relevant input information, instead
of focusing on the more informative input neurons.

Note that although increased number of hidden neurons may
replicate autistic traits as shown in Cohen (1994), this parameter
did not cause generalization deficits neither in Cohen’s follow-up
work (Cohen, 1998) nor in a similar modeling study (Dovgopoly
& Mercado, 2013).

5.1.2. Precision of memory representations
In McClelland (2000), James L. McClelland addressed the ten-

dency of children with ASD to represent concepts in a too spe-
cific way, which results in difficulties to recognize two different
instances of an object as the same category.

He suggested that in neural networks, this could be explained
with the concept of excessive conjunctive coding. Typically, sim-
ilar inputs to a neural network lead to similar neuron activa-
tion patterns. Such pattern overlaps can be useful for sharing
existing knowledge and establishing associations. However, too
strong associations can also cause interference. Conjunctive cod-
ing describes the reduction of such overlap by recoding the input
patterns with neurons which only become active for particu-
lar combinations of elements. Assuming that what characterizes
healthy human learning is a balance between generalization and

discrimination, the representation of concepts in subjects with
ASD could be characterized by excessive conjunctive coding. This
would make a neural network loose the ability to generalize, as
activation pattern overlaps cannot be exploited.

This idea was not tested experimentally, but the author used
the neural network shown in Fig. 12 to explain his reasoning.
McClelland presented the example of a semantic network used
in McClelland, McNaughton, and O’reilly (1995), as a model of
organization of knowledge in memory (see Fig. 12). This model
was used to associate words with their meaning, e.g., ‘‘robin’’ and
‘‘can’’ trigger the outputs ‘‘grow’’, ‘‘move’’ and ‘‘fly’’ because these
are the actions a ‘‘robin’’ can perform. The internal layer of the
network (highlighted in red in Fig. 12) progressively learns to
code the meaning of input words during learning. This means
that ‘‘robin’’ and ‘‘canary’’ should cause a very similar activa-
tion pattern because a robin has much more in common with
a canary than, for instance, a tree. The author suggests that
hyperspecificity in perception and memory representations of
ASD children might be caused by an abnormality during this
process. Namely, excessive conjunctive coding in the internal
layer is proposed as a mechanism: an excessive reduction of over-
lap between representations of similar concept might cause the
reported hyperspecificity which would result in generalization
deficits. No concrete network parameters are proposed, but it can
be imagined that such an effect might be achieved by increasing
the number of neurons in the internal layer. In this regard, the
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Fig. 12. Semantic network used to explain the conjunctive coding hypothesis. In the hidden layers, the feed-forward neural network generates internal representations
of the inputs (highlighted in red). Words describing similar concepts should produce similar internal representations that overlap with each other. The author suggests
that excessive conjunctive coding to avoid these overlaps could produce excessive discrimination, such as in autistic perception.
Source: Adapted from McClelland (2000).

approach is similar to Cohen’s suggestion (Cohen, 1994), but
extended to learning of representations.

5.1.3. Generalization and categorization abilities in visual perception
Dovgopoly and Mercado (2013) used an existing model of

visual object perception (Henderson & McClelland, 2011) to repli-
cate deficits in classification and generalization in ASD. The neural
network was a feed-forward network, which modeled visual in-
put processing via two pathways: the ventral cortical pathway
(for object identification, including recurrent connections), and
the dorsal cortical pathway (for processing of location-relevant
information).

The authors replicated behavioral data from Church et al.
(2010) and Vladusich, Olu-Lafe, Kim, Tager-Flusberg, and Gross-
berg (2010), separately on both visual pathways, which show
deficits in generalization and prototype formation in children
with high-functioning ASD. The experiment was the classifica-
tion of random dot patterns as category or non-category stimuli
(Church et al., 2010), or as category A or category B stimuli
(Vladusich et al., 2010). After adjusting the parameters for repli-
cating typical behavior, four different parameter modifications
were tested individually to replicate the data from ASD children.
Following evidence for abnormalities in synaptic plasticity in
individuals with ASD (e.g., Auerbach, Osterweil, & Bear, 2011;
Bourgeron, 2009), the first two parameters modified how weights
in the network were updated.

First, the learning rate was decreased, which corresponds to
reduced synaptic plasticity in biological neurons. As a result,
network training takes longer and is more prone to lead to exhibit
overfitting. Second, generalization of the network was impaired by
suppressing regularization using negative weight decay. Weight
decay is a method for regularizing neural networks and im-
proving their generalization abilities by keeping the connection
weights small (Krogh & Hertz, 1992). Typically, weight decay
punishes large weights by adding a term λw⃗′w⃗ to the error
function. With a negative weight decay factor λ instead, anti-
regularization is performed, encouraging the increase of weight
magnitudes, and thus, over-complex classification rules. Third,
they tested the influence of increasing and decreasing the number
of hidden neurons similar to Cohen (1994, 1998), based on neuro-
logical evidence of an increased number of cortical minicolumns

in the brain of individuals with ASD (Casanova et al., 2006).
Finally, the authors adjusted the gain of the neuron’s activation
function, to model the increased level of noise that is hypothesized
to underlie the relative increase in cortical excitation observed in
ASD subjects (Rubenstein & Merzenich, 2003; Yizhar et al., 2011).

The gain G of the activation function, as displayed in Eq. (12),
manipulates the slope of the activation function. A smaller gain
reduces the slope, and makes the network more prone to pass
noise instead of signal information to the next processing layers:

s(x) =
1

1 + exp(−(G · x + b))
(12)

where x represents the input to the activation function and b is
a bias term.

Good replications of the behavioral data were achieved with a
decrease of learning rate and a negative weight decay. A negative
weight decay also caused a high variability of generalization
abilities, depending on the initial network weights, providing a
potential explanation for the heterogeneity of findings between
different studies. The gain of the activation function could not
fully account for the generalization deficit. Also an increased
number of neurons did not replicate the generalization deficit
in ASD children, which contradicts previous findings from Cohen
(1994). In fact, an increased number of hidden units seems to lead
to generalization problems only under certain training circum-
stances (Caruana, Lawrence, & Giles, 2001), indicating that it is
not a good candidate for explaining generalization difficulties in
general.

5.2. Self-organizing maps

Self-organizing maps (SOMs) are ANNs that are usually used
for unsupervised learning and clustering tasks. They model the
functionality of cortical feature maps, which are spatially orga-
nized neurons that respond to stimuli and self-organize according
to the features in stimuli. They are able to learn the relation of
different input data such as different sensory inputs. Approaches
for modeling ASD with SOMs typically investigate the formation
of higher-level representations from sensory input.
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Fig. 13. Mexican-hat function of the SOM. It defines the strength of lateral
connections depending on distance to current neuron. The red arrows point
to the part that is modified to simulate autistic perception (excessive lateral
feedback inhibition).
Source: Adapted from Gustafsson (1997).

5.2.1. Increased lateral feedback inhibition
Lennart Gustafsson presented two models of ASD using SOMs

in Gustafsson (1997) and Gustafsson and Papliński (2004). In-
spired by findings on weak central coherence in subjects with
ASD and an enhanced ability to discriminate sensory stimuli (Frith
& Happé, 1994), he suggested that alterations in the lateral
feedback weights between the SOM neurons could result in
atypicalities in perception (Mountcastle, 1957).

In a SOM, each neuron typically has excitatory connections
to close neighbors and inhibitory connections to more distant
neighbors. They tuned the Mexican-hat curve (Fig. 13) to induce
stronger lateral feedback inhibition. Such activation patterns are
similar to receptive fields in biological cortices and have been
used to model center–surround operators in the visual cortex.
Manipulating the lateral connections to achieve a stronger inhi-
bition (such that the integral of the function in Fig. 13 becomes
negative), the sensory discrimination ability of the network is
increased. Neural columns focus on more narrow features dur-
ing learning which slows down convergence and might lead to
a fragmented feature map. However, excessive lateral inhibi-
tion will degrade discriminatory power and cause instabilities
in information processing. This behavior is compared to autistic
over-discrimination and may also explain fascination or fright of
moving objects, due to the instability of its cortical feature maps.

5.2.2. Familiarity preference
In Gustafsson and Papliński (2004), Gustafsson and Papliński

evaluated the effect of attention-shift impairment and avoid-
ance of novelty on the formation of cortical feature maps. The
used SOM received input stimuli from two sources (compared
to two ‘‘dialects of a language’’), each of which produces 30
different stimuli (‘‘speech sounds’’) grouped in three clusters
(‘‘phonemes’’).

The computational model was run in four different modes.
In the first mode, attention was always shifted to the source
producing novel input (considered as normal learning). In the
second mode, an attention-shift impairment was modeled by
shifting attention to novel sources with a very low probability.
The third mode implements familiarity preference: attention is
shifted to novel sources only if the map is familiar with that
source (measured as mean distance of the current stimulus to
the map nodes). This map develops a preference over learning to
the more familiar source. Finally, a model with both familiarity
preference and attention-shift impairment was applied.

The simulation results showed that familiarity preference leads
to precise learning of the stimuli from one of the sources (the
source with lower variability) in expense of the other source.

This might remind of ASD individuals’ characteristic of learning
in great detail a narrow field, which leads to increased discrimi-
nation and poor generalization. The authors also showed that this
impairment can be counteracted by modifying the probabilities
of stimuli presentation in response to the system, similar to
early intervention in children’s learning process. Maps learned
with attention-shift were not impaired, whereas a combination
of both mechanisms only sometimes led to an impairment. The
authors concluded that, in contrast to speculations in previous
work (Courchesne et al., 1994), familiarity preference, rather than
attention-shift is a more likely cause for ASD.

5.2.3. Unfolding of feature maps and stimuli coverage
In 2007, Noriega (2007) modeled abnormalities in the feature

coverage and the unfolding of feature maps in SOMs. Neurological
evidence suggests abnormal brain development in children with
ASD (Bauman & Kemper, 2005), typically reporting larger growth
in young children, which gets reduced later in life (Aylward,
Minshew, Field, Sparks, & Singh, 2002; Courchesne et al., 2001).
These abnormalities were modeled by manipulating the number
of network nodes during the training of the SOM where the
structure emerges. Thus, the network dimension is temporarily
increased.

Results showed that such disturbance in the physical struc-
ture of a SOM does not affect stimuli coverage, but impairs the
unfolding of feature maps which might result in sub-optimal
representations. Furthermore, the author models hyper- and hy-
posensitivity to stimuli in a similar way like (Gustafsson, 1997)
using lateral interactions between neurons. Hyper- or hyposen-
sitivity was modeled by adjusting the neuron weights toward
the winner neuron, either with a positive factor (attraction, or
hypersensitivity) or with a negative factor (repulsion, or hyposen-
sitivity). This factor converges exponentially toward zero (normal
sensitivity) during map formation. The authors showed that hy-
persensitivity to one of the input domains (stronger attention
to this domain, i.e., restricted interests), improves the coverage
of stimuli in this domain, but too strong hypersensitivity or a
hyposensitivity to stimuli reduces coverage.7

One year later, Noriega extended his approach in Noriega
(2008), investigating propagation delays between neurons. Unlike
in normal SOMs where all neurons propagate the information
instantaneously to all neighboring neurons, Noriega presented
a biologically more realistic approach by introducing delays in
the update. He shows that decreased propagation speed has a
negative effect on stimuli coverage. As the delayed propagation
causes the arrival of competing stimuli at the same time at a
neuron, he also altered the way in which these competing stimuli
are handled. In his experiments, a high dilution factor, meaning
that incoming stimuli are averaged instead of being handled
separately, decreased the stimuli coverage and also impaired the
topological structure of the map.

5.3. Convolutional neural networks and inhibition imbalance

In 2015, Y. Nagai and colleagues presented an ANN network
based on Fukushima’s neocognitron (Fukushima, 1988, 2003;
Fukushima & Miyake, 1982), seen as the basis for convolutional
neural networks, to model visual processing in ASD (Nagai et al.,
2015). The hypothesis considered was that there is an excita-
tion/inhibition imbalance in ASD (Snijders et al., 2013; Sun et al.,
2012; Yizhar et al., 2011).

7 Hypersensitivity in Gustafsson (1997) was implemented as increased inhi-
bition in the neighborhood of neurons (higher specificity of perception), whereas
this approach interprets hypersensitivity as a stronger attraction of neighboring
signals to signals from a specific domain.
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Fig. 14. Left: Overview of the neocognitron’s structure. Right: Detailed view of the connections between C-cell layers UC and S-cell layers US . Highlighted in red
are the inhibitory connections that are modified to influence the ratio between inhibition and excitation. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
Source: Adapted from Nagai et al. (2015).

The structure of the neocognitron for visual processing is
illustrated in Fig. 14. The network is trained to recognize patterns
by adjusting the weights between UC and US layers. The S-cells in
the US layers perform feature extraction. They receive excitatory
input from the C-cells in the preceding layer, and inhibitory
connections from the V-cells in the same layer. During training,
the excitatory connections aSl are updated and the inhibitory
connections bSl are calculated accordingly.

The network was trained for the recognition of numbers ‘‘0’’
to ‘‘9’’ in large or small size at different positions. After training,
the model was tested with compound numbers (cf. Fig. 15 left)
where a larger number is created from multiple smaller num-
bers. The trained network is able to detect both global (large
number, here ‘‘2’’) and local (small numbers, here ‘‘3’’) patterns
for α = 1 and 0.9, but shows a preference for the global pat-
tern, characteristics that correspond to observations with healthy
individuals (Behrmann et al., 2006).

It is known that people with ASD perform differently in such
a task, primarily focusing their attention on the details (i.e., the
smaller number instead of the larger one). In order to simu-
late this local processing bias, an imbalance of excitatory and
inhibitory connections was simulated by scaling the inhibitory
weight bSl with a factor α.

The results show that a moderate increase of α, which cor-
responds to increasing inhibition, causes the network to rather
detect local patterns, replicating the local processing bias in ASD.
When reducing α (increasing excitation), the network does not
show any processing bias, rather it looses its ability to differen-
tiate patterns. These results fit with ASD symptoms of hyperes-
thesia (increased focus on detail) and hypoesthesia (no bias and
general difficulty in pattern recognition) and suggest that excita-
tion/inhibition imbalance could account for these symptoms.

5.4. Spiking neural networks and local over-connectivity

In Ichinose et al. (2017) and a follow-up study in Park et al.
(2019), it was proposed to use spiking neural network as com-
putational models to investigate the consequences of local over-
connectivity, which was found in the prefrontal cortex of ASD
brains (Courchesne & Pierce, 2005). The hypothesis considered
was that local over-connectivity affects frequency patterns of
neural activations.

A spiking neural network is more closely inspired by natural
neural networks (Izhikevich, 2003). Whereas in standard artificial
neural networks each neuron fires at every time step, neurons in
a spiking network only fire if their potential (similar to the mem-
brane potential of biological neurons) exceeds a certain threshold.

Fig. 15. The neocognitron is fed with a visual stimulus consisting of local
patterns (here 3) and global patterns (here 2), which are incongruent. In normal
conditions the network should be able to detect both local and global patterns.

Therefore, more complex firing patterns can occur ranging over
various frequency bands, comparable to patterns visible in EEG.8

A number of studies found evidence that EEG signals of ASD
brains tend to exhibit higher power in low-frequency and high-
frequency bands of EEG (Wang et al., 2013) and that EEG resting-
state activity has lower complexity (Bosl, Tierney, Tager-Flusberg,
& Nelson, 2011). The authors suggest that these atypical EEG
data might be explained by differences in how ASD brains, as
opposed to TD brains, are connected. In particular, it has been
found that the brains of people with ASD have an increased local
connectivity, especially in the frontal cortex (Courchesne & Pierce,
2005).

The authors investigated this hypothesis with a spiking neural
network by modifying the network’s connection patterns and
observing how the connectivity affected the emerged activation
patterns. To manipulate the degree of local over-connectivity in
the network, a parameter based on the small-world paradigm
from Watts and Strogatz (1998) was used. By default, neurons are
connected to six neighboring neurons in a ring lattice as displayed
in Fig. 16 (left). A parameter pWS expresses the probability for
each of the connections to rewire to other neurons. Thus, pWS
determines the randomness of the network (Fig. 16), ranging from
regular lattice structure (pWS = 0) to random wiring (pWS = 1).
Medium values of pWS around 0.2 describe ‘‘typically developed
networks’’ with local clusters and some short-range connections
between the clusters. Notably, the parameter from Watts and
Strogatz (1998) keeps the overall number of connections in the
network intact, such that differences emerge only due to dif-
ferences in the network structure, not by the total number of
neurons or neural connections.

8 EEG: Electroencephalography.
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Fig. 16. Three different networks with different degrees of randomness. (a) is
a locally over-connected network (corresponding to ASD individuals), (b) is a
small-world network with many local clusters and a few longer connections
(corresponding to typically developed individuals), (c) is a random network
including many wide-range connections. (d) shows the structure of each single
neuron group with excitatory (red) and inhibitory (blue) connections. Note that
the number of nodes and edges in (a), (b) and (c) remains the same. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
Source: Reprinted with permission from Park et al. (2019), originally based
on Watts and Strogatz (1998).

Networks are formed by generating 100 groups of neurons,
corresponding to the black nodes in Fig. 16. Each group contains
1000 spiking neurons: 800 excitatory and 200 inhibitory neurons,
which have an increasing or decreasing effect on the firing prob-
ability of postsynaptic neurons, respectively. Neurons are mainly
connected to neurons of the same neuron group (intra-group
connections), and have connections to six neighboring groups
according to Fig. 16 (inter-group connections). Different rewiring
probabilities pWS between 0 and 1 are used to determine the
initial inter-group connectivity of the network.

After initialization, the network updates its connections ac-
cording to the rules of spike-time-dependent plasticity (Izhike-
vich & Desai, 2003): the update of connection weights occurs
depending on the timing of firing of the pre- and postsynaptic
neurons. If the postsynaptic neuron fires within a certain time
window after the presynaptic neuron, the weight of the connec-
tion is increased (corresponding to the biological process of long
term potentiation). If the presynaptic neuron fires within a time
window after the postsynaptic neuron, the connection weight is
weakened (long term depression). During this learning period the
connection weights self-organize. Tonic random input is pre-
sented to the network. After learning, the spontaneous activ-
ity of the neurons was recorded (in the absence of input), and
compared to the graph-theoretical properties of the network.

The activation patterns were evaluated according to their
frequency spectrum and the complexity of the time series, as
measured by the multiscale entropy (Costa, Goldberger, & Peng,
2005). This measure rates the informative content of time series
at different temporal scales. High complexity corresponds to
the presence of long-range correlations on multiple scales in
space and time, low complexity is computed for time-series with
perfect regularity or randomness. The evaluation suggested that
networks exhibiting local over-connectivity generate more os-
cillations in high-frequency bands and exhibit lower complexity
in the signals than small-world networks. Findings of atypical
resting-state EEG for people with ASD, thus, might be explained
by local over-connectivity in their brains.

5.5. Bayesian approaches

There are promising models in the literature interpreting ASD
on the basis of the Bayesian framework (for an introduction see
Schizophrenia section). However, most of these approaches are
only conceptual and still lack an implementation. Nevertheless,
these approaches are able to explain a wide range of different
symptoms which might be caused by an atypical integration of

prediction and sensory information (Lawson et al., 2014; Pellicano
& Burr, 2012).

The first approach utilizing the Bayesian brain hypothesis for
explaining the non-social symptoms of ASD was proposed by
Pellicano and Burr in 2012 (Pellicano & Burr, 2012). Their hypo-
prior hypothesis9 suggests that broader or less precise priors cause
people with ASD to rely less on their predictions and stronger on
sensory input which could explain the hypersensitivity of people
with ASD. J. Brock broadened this idea (Brock, 2012) by proposing
that hypersensitivity cannot only be caused by a reduced preci-
sion of the prior, but also by an increased precision of sensory
input. Lawson et al. (2014) summarized these ideas, arguing that
both modifications reduced prior precision or increased sensory pre-
cision, can cause the same functional consequences. They suggest
that the cause could be aberrant precision in general: Expected
precision of a signal is an important source of information that
helps us to decide whether to rely on this signal or not. Aberrant
precision of sensory input or prior predictions, thus, would alter
the way in which we integrate these signals. The precision of
the signals also can be considered as a weighting term of the
prediction error: For a signal that is expected to be imprecise, a
prediction error does not need to be corrected while a prediction
error arising between signals that are expected to be very precise
would need correction. People with ASD might have problems to
accurately estimate this precision. Thus, they might, at the one
extreme, try to minimize the prediction error too strongly, or, at
the other extreme, fail to minimize the prediction error.

Finally, in Lawson, Mathys, and Rees (2017), Lawson and
colleagues suggested that subjects with ASD overestimate the
volatility of the environment. They conducted a behavioral exper-
iment which demonstrated that ASD subjects are less surprised
when encountering environmental changes. Using Hierarchical
Gaussian Filters, they modeled the experimental findings com-
putationally. The model parameter that best accounts for the
differences found in ASD and neurotypical subjects was a meta-
parameter which controlled learning about volatility of the en-
vironment. These results suggest that ASD subjects overestimate
the probability of a change in the environmental conditions, and
build less stable expectations. As a result, they might misinterpret
an event with low probability which occurred by chance as an
event that signifies a change in environmental conditions. There-
fore, instead of being surprised in the case of an extraordinary
event, they would be mildly surprised at all times.

5.6. Recurrent neural networks

The studies presented here follow the idea of predictive cod-
ing which can be seen as an implementation of the Bayesian
brain idea: an RNN is used as an internal model of the world
and its learning corresponds to the process of adapting net-
work weights in order to perform prediction error minimization.
The role of the network is to learn to predict sensory conse-
quences, and integrates these predictions with the perceived
sensory information.

5.6.1. Freezing and repetitive behavior in a robotics experiment
Idei and colleagues (Idei et al., 2017, 2018) used the stochastic

continuous-time recurrent neural network (S-CTRNN) (Murata,
Namikawa, Arie, Sugano, & Tani, 2013) model with parametric
bias (PB) (Tani, 2003) to teach a robot to interact with a human

9 In this article, we stick to the original definition of hypo-priors as a belief
in low precision of priors and hyper-priors as a belief in high precision of priors.
Note, however, that due to the hierarchical structure of the brain and the role
of precision as a hyperparameter for the inference process it might be more
appropriate to talk of hypo-priors as attenuated hyperpriors as argued in Friston,
Lawson, and Frith (2013).
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Fig. 17. Left: Overview of the interactive tasks the robot must perform. Right: Overview of the ANN model used for the experiments. Highlighted in red are the
variance units where a constant K is added to increase or decrease the sensory precision in order to imitate autistic behavior. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
Source: Adapted from Idei et al. (2017).

in a ball-playing game (similar to the schizophrenia model Ya-
mashita & Tani, 2012). The S-CTRNN with PB learns to predict a
time series of proprioceptive (joint angles) and vision features.
From the current input, the network estimates the next time step
(output) and its predicted precision (variance) as shown in Fig. 17.
The state of the PB units reflects the intention of the network,
i.e., the ball-playing pattern that the robot believes that they are
currently engaged in.

The S-CTRNN was trained offline to perform certain tasks
depending on a yellow ball’s position, as depicted in Fig. 17
(left). Synaptic weights and biases of the network, as well as the
internal states of the PB units are updated via the backpropa-
gation through time (BPTT) algorithm in order to maximize the
likelihood in Eq. (13). This equation describes that at time step
t of training sequence s, the network output of the ith neuron
(a normal distribution defined by the estimated mean (output) y
and estimated variance v) properly reflects the desired input data
ŷ.

L(s)t,i = −
ln (2πv

(s)
t,i )

2
−

(ŷ(s)t,i − y(s)t,i)
2

2v(s)
t,i

(13)

After training, a recognition mechanism (via adaptation of the PB
units, while keeping weights and biases fixed) enables the net-
work to switch its behavior depending on the current situation.

To model ASD behavior, the estimated variance (sensory preci-
sion) is modified in the activation function of the variance units
with the constant K in Eq. (14), where ϵ is the minimum value
and u(s)

t,i is the output of the ith context unit time step t for
movement sequence s.

v
(s)
t,i = exp(u(s)

t,i + K ) + ϵ (14)

Experimental results with a humanoid NAO robot showed
that for K = 0 the robot behaved normally. For increased
variance (reduced precision), the robot seemed to ignore pre-
diction error and performed stopping and stereotypic move-
ments. For decreased variance (increased precision), the robot
performed incorrect movement changes or concentrated on cer-
tain movements, which also led to sudden freezing and repetitive
movements. These results fit with the disordered motor system
reported in ASD (Gowen & Hamilton, 2013), but add the surpris-
ing insight that increased and decreased sensory precision may
cause the same consequences.

5.6.2. Impairment in internal network representations
Another study using the S-CTRNN to model ASD characteristics

is Philippsen and Nagai (2018). Using an S-CTRNN (Murata et al.,

2013), the authors modify two parameters which control how
the network makes predictions. In contrast to the other RNN
model which concentrates on replicating behavioral patterns,
this study investigates ‘‘invisible’’ features characterizing the net-
work’s learning process. More specifically, the authors evaluate
how attention to sensory input and deficits in the prediction of
trajectory noise influence the internal representation that a network
acquires during learning. Internal representations are informative
as they reflect the network’s generalization capabilities (Boden,
2002; Yamashita & Tani, 2008): similar input pattern should
cause an overlap in the corresponding context neuron activations
(attractors in the RNN), whereas different patterns should be
differentiated.

The network as displayed in Fig. 18 is trained to recognize
and draw ellipses and ‘‘eight’’ shapes, located at four different
(overlapping) positions of the input space (cf. Fig. 19(b)). Inputs
and outputs are two-dimensional trajectories and the recurrent
context layer comprises 70 neurons. Learning is modified in two
ways: The parameter χ determines how much the network relies
on external input, as opposed to its own prediction, i.e., χ grad-
ually switches between open-loop (χ = 1) and near-closed-loop
(χ ≈ 0) control. The second parameter K is defined analogous
to Idei et al. (2017) (see Eq. (14)) and manipulates the estimated
variance such that networks with K ̸= 0 over- or underestimate
noisy variations in the signal. Unlike its usage in Idei et al. (2017),
this manipulation is not performed after training, but already
during the training process, to account for the developmental
nature of ASD.

After training, the network’s behavior is evaluated as the net-
work’s ability to reproduce the trained trajectories. The internal
representations are evaluated by collecting the time course of
activations of the context layer neurons while generating the
trajectories.

A visualization of how the high-dimensional space (time steps
× number of context neurons) is structured can be achieved
by principal component analysis (PCA). The results indicated
that networks tend to reuse internal representation structure for
patterns located at the same position in the input space. Such
an overlap is advantageous as similarities between patterns are
coded. However, too strong overlap of the context activations
indicates missing differentiation between the patterns which
might lead to worse differentiation in a recognition task. Thus,
the authors define ‘‘good’’ internal network representations as
representations which strongly reflect the characteristics of the
input data. Fig. 19(b) shows an example of how task performance
(top) and internal representation quality (bottom) change de-
pending on the external contribution parameter. The best internal
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Fig. 18. The S-CTRNN used in Philippsen and Nagai (2018) with two parameter modifications.
Source: Adapted from Philippsen and Nagai (2018).

Fig. 19. Effect of changing the external contribution parameter of the S-CTRNN
from Fig. 18 on behavioral output (top) and on internal representation quality,
evaluated in the two-dimensional principal components (PC) space (bottom).
Source: Adapted from Philippsen and Nagai (2018).

representation quality is achieved with χ = 0.5 (moderately
integrating input and predictions), as the internal representa-
tion reuses activations but clearly differentiates trajectories at
different input space positions. However, the performance in
reproducing the trained behavior is comparable between χ = 0.5

and χ = 1 (relying stronger on input). These qualitative obser-
vations were also quantitatively verified in the high-dimensional
space of neurons. How well the network is able to reproduce
the learned patterns, thus, is not always reflected in the internal
representation quality.

Interestingly, for the parameter χ , both extremes lead to an
ASD-like impairment, as schematically depicted in Fig. 19(a). Typ-
ical development could correspond to the middle. Whereas the
right-hand side would express high-functioning ASD where the
performance in specific tasks might be intact, but representations
might be too specific (overfitting). The left-hand side describes
ASD with severe impairments also at a behavioral level. It can
be, thus, imagined that heterogeneity in the ASD population,
comprising opposite symptoms such as hyper- and hyposensi-
tivity, does not necessarily be caused by different underlying
mechanisms, but that a continuous modification of parameters
could account for the variability.

5.6.3. Generalization ability in a variational Bayes recurrent neural
network

In Ahmadi and Tani (2017), a novel recurrent network type
is introduced, the variational Bayes predictive coding RNN (VBP-
RNN). It differs from the S-CTRNN in that variance is not only
coded on the output level, but also in the network’s context
neurons to enhance the network’s ability to represent uncertainty
in the data.

We do not discuss it in detail here, as this study is not focusing
on modeling ASD, but on representing deterministic as well as
probabilistic behavior in an RNN in a coherent way. The analogy
to ASD is made in terms of the meta-parameter W that performs a
trade-off between reconstruction and regularization in the optimiza-
tion (loss) function. W switches between the typically minimized
reconstruction error term (W = 0) and a regularization term that
keeps the posterior distribution of the latent variables (i.e., the
context units) similar to its prior. If the network is trained with
W = 0, it develops deterministic dynamics and exhibits poor
generalization capabilities. Values of W > 0 lead to more ran-
domness in the network and improve generalization, but too high
values result in a performance drop.

W could therefore model the spectrum of ASD: W = 0 is one
extreme where the network solely relies on its top-down inten-
tionality and fails to generalize, whereas too high values of W
reflect performance impairment due to excessive randomness in
the network. As this parameter controls how much regularization
is performed, the approach is similar to Dovgopoly and Mercado
(2013) where regularization was intentionally impaired.
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5.7. Other approaches

In 2000, OLaughlin and Thagard (2000) used a connectionist
model to simulate weak coherence, and to demonstrate how
a failure of maximizing global coherence can cause deficits in
theory of mind (Baron-Cohen, 1997). Their network model, a
so-called constraint network, is hand-designed according to the
task and does not strictly fit into an existing network category.
The network performs logical reasoning and consists of a set of
neurons, each of which corresponds to a logical element such as
a belief (expressed as a sentence). Connections between them
are set as excitatory and inhibitory, depending on whether two
arguments support each other or are contradicting. Weights re-
main fixed, but the activations of neurons get updated depending
on the connections to neighboring cells which can be excitatory
(positive) on inhibitory (negative). A decaying factor lets the
network’s activation converge to a state after a certain amount of
time. Positive activations are then interpreted as an acceptance
of this belief, negative activations as a denial.

The authors showed that a high level of inhibition, compared
to excitation, causes early activated association nodes in the net-
work to suppress concurring hypotheses. The network, there-
fore, prefers more direct solutions, and makes wrong predictions.
The overall coherence of the network, defined as the satisfaction
of most constraints in the complete network, is not optimized,
which can be considered as weak coherence.

6. Discussion and future directions

Artificial neural network models of SZ and ASD have been
presented as a useful tool to fill the gap between theoretical
models and biological evidence. Early works were biased by tech-
nical restrictions, but recent models are able to capture the same
complexity as conceptual models, such as hierarchical Bayesian
models. However, designing ANN architectures that are able to
predict novel findings and through computational simulations
contribute to clinical applications (e.g., diagnosis or therapy) re-
mains a challenging task. In this sense, the model should (i)
reproduce empirical behavioral findings, preferably in more than
one domain, (ii) be supported by a process theory in which the
abnormality used to reproduce empirical findings is realistic from
the point of view of known neuropathology, and (iii) predict
novel findings. Furthermore, addressing heterogeneity and non-
specificity is still one of the most important challenges of these
two psychiatric disorders.

Due to the large overlap in SZ and ASD regarding biological
evidence (e.g., E/I imbalance), similar hypotheses were discussed
as a potential cause for both disorders. Computational models,
however, still tend to focus on specific impairments of a specific
disorder. To help the community, it is crucial that overarching
neural network models are developed which connect ideas and
results across different contexts (ASD, SZ or even other mental
disorders).

In this section, we first discuss the quality of the discussed
models in terms of how well they fit and predict empirical find-
ings (Section 6.1). Secondly, we discuss the approaches from
the point of view of multifinality and equifinality (Section 6.2).
Thirdly, we emphasize the importance of testing the models
in an embodied system (Section 6.3). Finally, we describe new
promising directions to address with ANN models: developmen-
tal factors (Section 6.4.1); disorders of the self (Section 6.4.2);
and state-of-the-art ANN architectures for future models of psy-
chopathologies (Section 6.4.3).

6.1. Models quality: Empirical findings and predictability

Early SZ modeling works from Hoffman and Dobscha (1989)
and Ruppin, Reggia, and Horn (1995) on Hopfield networks as
well as the feed-forward approaches from Cohen and Servan-
Schreiber (1992) and Hoffman and McGlashan (1997) lack the
capabilities to generalize to a broader context: every experi-
ment required a different ANN architecture. Hence, in terms
of predictability of other symptoms, these approaches are not
powerful enough. In particular, the work on auditory hallucina-
tions (Hoffman & McGlashan, 1997) is far from replicating the
brain mechanism and does not account for deficits in distin-
guishing self-produced sounds observed in SZ patients. However,
the underlying discussion presented in those papers still pro-
vides valuable insights. They highlighted the connectivity factor
between different cortical areas of the brain (either by gain re-
duction or pruning) specially in the context ones. Later works on
RNN, such as Yamashita and Tani (2012), revisited this idea with
hierarchical networks, with the same capability to generate par-
asitic states due to dynamic attractors. Pruning was substituted
by noise injection. Interestingly, there are conceptual similarities
between noise injection and precision reduction used in Bayesian
approaches. Due to the more general architecture regarding sen-
sorimotor integration, this RNN might be able to replicate other
findings in earlier works such as hallucinations or performance
in the Stroop task, however, this has not been experimentally
demonstrated yet.

Bayesian approaches, such as predictive processing (Adams
et al., 2013) and circular inference (Jardri & Deneve, 2013) have
shown better quality in terms of predictability of new empir-
ical findings. Their mathematical abstraction is more powerful
and may be applicable to different types of experiments. For
instance, within the free-energy optimization framework, eye-
tracking deficits with occlusion and agency attribution disorders
were investigated. The circular inference model with E/I imbal-
ance predicted findings in decision-making tasks involving likeli-
hoods (e.g., Fisher task). However, due to the conceptual design,
their scalability is really poor for handling real sensory infor-
mation. Here we find that ANNs, such as convolutional network
approaches (Nagai et al., 2015) or Variational-Bayes RNN (Ahmadi
& Tani, 2017) could better account for real sensory data input.

Just as Hopfield networks were applied for modeling SZ, some
early models of ASD focused on SOM approaches. These mod-
els (Gustafsson, 1997; Gustafsson & Papliński, 2004; Noriega,
2007, 2008) could account for strong specificity in cortical rep-
resentations or novelty avoidance. Despite that, they were highly
linked to the specific network architecture, and thus, it is difficult
to use these mechanisms to predict performance in other types
of tasks. More general approaches were suggested using simple
parameter modifications of feed-forward neural networks (Co-
hen, 1994, 1998; Dovgopoly & Mercado, 2013). These param-
eters rather utilize general engineering mechanisms of neural
networks and, thus, are also applicable to different architec-
tures (e.g., regularization was also used in a recent approach
using RNNs Ahmadi & Tani, 2017). These studies mostly focused
on replicating the specific symptom of generalization deficits,
but may not be applicable to explaining a broader range of
symptoms.

The reviewed models of SZ only addressed positive symp-
toms mainly hallucinations, delusions and abnormal movements.
Self-other disturbances have been only discussed in the free-
energy models and negative symptoms have been set aside.
Within the ASD models only repetitive motor movements and
hyper/hyporeactivity to sensory input were properly discussed.
Furthermore, social communication and interaction deficits have
been minimally addressed.
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Interestingly, for ASD (Ahmadi & Tani, 2017; Idei et al., 2017;
Pellicano & Burr, 2012; Philippsen & Nagai, 2018) as well as
for SZ (Adams et al., 2013; Jardri & Deneve, 2013; Yamashita
& Tani, 2012), the majority of recent approaches incorporate
the idea of predictive coding (Rao & Ballard, 1999). In partic-
ular, Pellicano and Burr’s paper (Pellicano & Burr, 2012) and
novel hypotheses based on their theory (Lawson et al., 2017,
2014) significantly influence the recent developments. In terms
of finding a general account for cognition, predictive coding and
related approaches are the most promising candidates right now.
Therefore, predictive coding based approaches can be considered
a useful abstraction in developing a broader model that is able to
integrate typical and atypical development in a coherent whole.

6.2. Multifinality, equifinality and heterogeneity

A challenge in modeling psychopathologies is the non-
specificity of these disorders. Different biological bases may lead
to the same symptom (equifinality). Therefore, many modeling
mechanisms might be valid for modeling a single symptom.
Accordingly, the studies reviewed here cover a wide range of ap-
proaches, using various pieces of biological evidence. This variety
has its drawback: even if a model can explain some symptoms,
we cannot judge whether this mechanism actually is comparable
to what happens in the human brain or not.

The non-specificity of psychopathologies also means that a
single biological basis can cause different symptoms (multifinal-
ity). Thus, instead of targeting single symptoms, it is important to
develop models which explain several symptoms of a disorder. A
good starting point is to first model typical behavior. One possible
basis could be ANN models of sensorimotor integration. Accord-
ing to the majority of the computational models discussed in this
manuscript, SZ and ASD are presented as disorders of sensory
information fusion or interpretation. Thus, general ANN senso-
rimotor integration models that are able to fit human-like data
(control and patient data) in different experimental paradigms
such as body perceptual tests or decision making task could be
extended to model psychopathologies.

Additionally, modeling mechanisms should not only cover var-
ious symptoms of a single disorder, but they may also be used for
modeling similar symptoms in different disorders. For instance,
hallucinations are present in several disorders but researchers
used different ANN approaches to model them. Hallucinations
produced by a loss of sensory input, like in the Charles Bonnet
syndrome, were studied by modeling homeostasis in a Deep
Boltzmann machine (DBM) for visual (Series, Reichert, & Storkey,
2010) and tactile inputs (Deistler, Yener, Bergner, Lanillos, &
Cheng, 2019). However, homeostasis or DBMs were never studied
for hallucinations in SZ, or discussed within circular inference or
free-energy approaches (Adams et al., 2013).

Regarding heterogeneity, recent studies modeling ASD already
acknowledge the nature of ASD as a spectrum. Instead of dis-
tinguishing between impaired and intact behavior as two cate-
gories, a continuous change in symptoms is suggested, leading
to impairments of different severeness (Idei et al., 2017; Nagai,
2019) or even opposite types of impairments (Philippsen & Na-
gai, 2018). This offers a potentially more sophisticated view on
heterogeneity in ASD.

6.3. Models validation on real robotic systems

We presented some works that employ robotics systems’
validation as a useful servant for the behavior unit/level of anal-
ysis (Yamashita & Tani, 2012). The relevant aspect of these ap-
proaches is that the internal mechanism of the behavior is visi-
ble (Cheng et al., 2007). Furthermore, a connection can be made

from rather perceptual or mechanistic impairments inside the
system to difficulties in real interaction scenarios. For instance, Mu-
rata et al. (2013) replicated freezing and repetitive behaviors on
a robot. Most of the discussed models, however, are solely data
models. Closing the gap to real world embodied models could,
therefore, help to validate how these models extend to other
tasks.

ANN approaches can also focus on solving scalability to raw
stimuli in other brain-inspired mathematical abstractions. For
instance, Lanillos and Cheng (2018) and Oliver, Lanillos, and
Cheng (2019) presented free-energy-based perception and action
algorithms working on humanoid robots. They can be used to
evaluate atypical behaviors related to body perception in SZ and
ASD.

6.4. New directions

We identified the following three research directions that are
still underrepresented in the discussed studies.

6.4.1. Developmental factors
Developmental factors are especially relevant for ASD as a

developmental disorder, but also for SZ. Specially, to explain why
many cases of SZ emerge during adolescence and early adult-
hood (Feinberg, 1982; Huttenlocher et al., 1979; Keshavan et al.,
1994) and to investigate developmental factors which might con-
tribute to the onset of SZ (Cannon, 2015). Current models only
partially take the developmental process into account and fo-
cus more on modeling existing deficits in adult subjects with
ASD. For instance, existing models assume an aberrant num-
ber of neurons (Cohen, 1994; Noriega, 2007) or differences in
the neural connections (Ichinose et al., 2017; Park et al., 2019)
during the development, or they change the way that learn-
ing proceeds by altering network regularization (Ahmadi & Tani,
2017; Dovgopoly & Mercado, 2013) or how information are in-
tegrated during learning (Philippsen & Nagai, 2018). However,
these studies still cannot answer the question of which initial
causes promote the appearance of ASD during the development.
It might be beneficial to take even one step more back in develop-
ment, back to the development of the human fetus. For instance,
a recent study (Yamada et al., 2016) suggests that disordered
intrauterine embodied interaction during fetal period is a possible
factor for neuro-developmental disorders like ASD.

6.4.2. SZ and ASD as disorders of the self
One of the aspects not properly addressed in ANN computa-

tional modeling, neither for SZ nor for ASD, is how diagnosed
individuals experience their body and self in comparison with
control subjects. For instance, SZ patients have troubles differen-
tiating self-produced actions. In fact, modeling the spectrum of
differences in body experience could make several psychopatho-
logies comparable. In addition to already described visual illu-
sions, also body illusions can be investigated. Recently, Noel,
Cascio, Wallace, and Park (2017) discussed how body perception
differs between ASD and SZ individuals, suggesting a sharper
boundary between self and other in ASD and a weaker boundary
in SZ. This suggestion is based on experimental findings, for
example, on peripersonal space in body illusions where ‘‘op-
posite’’ results were found: whereas individuals with SZ were
more prone to have body illusions (Thakkar, Nichols, McIntosh,
& Park, 2011), individuals with ASD showed a reduced illusion-
ary effect (Cascio, Foss-Feig, Burnette, Heacock, & Cosby, 2012).
Hence, the causes of these psychopathologies have a direct im-
pact on the perception of our body and the self. In the case of
patients diagnosed with SZ, this relation has been more inten-
sively studied (Stanghellini, 2009) and some treatments include
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embodiment therapies. Hence, models of the bodily or sensori-
motor self (Hinz et al., 2018; Lanillos, Dean-Leon, & Cheng, 2017)
that are able to explain body illusions would help to validate
the hypothesis in a common framework. Behavioral measures
like the proprioceptive drift or peripersonal space should be also
predicted by the model. For instance, in Hinz et al. (2018), they
used the perceptual drift as a measure to evaluate the validity
of a predictive coding model (Lanillos & Cheng, 2018) for typical
individuals.

6.4.3. ANN novel architectures for psychopathologies
In terms of neural network architectures, there is a further

need of transferring the knowledge from state-of-the-art recur-
rent neural networks and deep learning to neurological disorders
as it was performed, for instance, with the Neocognitron model
of ASD (Nagai et al., 2015) or the MTRNN model of SZ (Yamashita
& Tani, 2012). Theoretical ANN studies, computational psychiatry
and neuroscience should be always be in contact to boost the
feedback of those disciplines.

In opposition to Bayesian models that are implemented on
a high abstraction level of the task, modern ANN approaches
(Schmidhuber, 2015) are able to cope with real sensor data such
as visual information. For instance, cross-modal learning architec-
tures combined with hierarchical representation learning provide
an interesting follow-up to early ANN studies on SZ and ASD.
Furthermore, ANN models of Bayesian brain such as predictive
coding (Yamashita & Tani, 2008) and circular inference are a basis
for uniting both communities. In fact, recent advances in prob-
abilistic NNs like Variational Autoencoders (Kingma & Welling,
2013) and Variational-RNN (Ahmadi & Tani, 2017; Fabius & van
Amersfoort, 2014), provide the mathematical framework to de-
ploy ANN versions of prominent plausible models of the brain
such as the free-energy principle (Friston, 2010).

In this review, we showed the power of ANNs for modeling
symptoms of neurological disorders. However, these techniques
need to be further developed and refined in the future to play a
key role in computational psychiatry and to contribute in clinical
applications.
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