CS779 Competition: Machine Translation System for India

Aryan Srivastava
210204
{aryans21}@iitk.ac.in
Indian Institute of Technology Kanpur (IIT Kanpur)

Abstract

This report is about the Machine Translation Challenge on Codalab. The competition is all about
translating Indian languages (Bengali, Gujarati, Hindi, Kannada, Malayalam, Tamil and Telgu) to
English using a machine learning model that is trained from scratch on training data and validated on
validation data and finally tested on test data. We trained our Sequence to Sequence transformer-based
model which is based on same transformer model explain in [I]

1 Competition Result

Codalab Username: A_210204

Final leaderboard rank on the test set: 22

charF++4 Score wrt to the final rank: 0.131
ROGUE Score wrt to the final rank: 0.072

BLEU Score wrt to the final rank: 0.001

2 Problem Description

The problem may seem simple, but it is not. We need to translate sentences from Indian languages
such as Bengali, Gujarati, Hindi, Kannada, Malayalam, Tamil, and Telgu to English language. The
major challenge is that we do not understand all these languages, making it challenging to analyze
whether our output is correct or not. Secondly, we cannot use any pre-trained model, so we have to
train our model from scratch and set hyper-parameters for our specific task.

3 Data Analysis

Our model is trained on the provided dataset, comprising a cumulative total of 4,01,243 data points for
all seven languages and a validation dataset of 3,15,966 for the same. At the time of training, we have
a random validation split of 80-20 i.e. we use 80% for training and 20% for validation and Validation
data is used as test data in the training phase.

Languages Training data Validation data Test data
English-Bengali 68848 32919 19671
English-Gujarati 47482 39702 13567
English-Hindi 80797 11542 23085
English-Kannada 46794 46387 13370
English-Malayalam 54057 54109 15445
English-Tamil 58361 62446 16675
English-Telgu 44904 68861 12830

Table 1: Dataset distribution of all different languages

Our training data is in JSON format with a label of source for sentences of Indian language and
target for English language, and we need to extract and convert it into CSV format for our task.

In the CSV file we use two labels for our dataset are source sentence and target sentence so it is
easy to process rather than a JSON file.

With the help of Pytorch library, we tokenize our dataset and create a tuple of English words and
Indian language words so that by data loader we can easily generate batches.

At the time of processing data, we have an error when we create tokens for vocabulary the word
nan(not-a-number) in the dataset is treated as a float variable and we can’t be iter so I removed those
tokens.

4 Model Description

4.1 Model I tried but not Successfully implemented
4.1.1 Seq2Seq model

Firstly, T tried a seq2seq model explained in [2], but after training the model, T received output
containing unknown tokens. I attempted to resolve this issue, but I was unsuccessful and I attached
the Kaggle link for accessing that you can click

4.1.2 Transformers

Secondly, I tried transformers explained in [I] but unfortunately not able to match the batch size of
source and target tensor and I attached the Kaggle link for accessing that you can click

4.1.3 LSTM model

Thirdly, I tried to use the LSTM model [3] but was not able to match the timestep of the decoded
target data and decoded input data and the following image of the terminal also explaining the issue.
I also attached the Kaggle link for accessing that you can click

Traceback (most recent call last)
in <module>

decoder_input _datali, t, target token_index| char
t 4]

Figure 1: Transformer based Seq2Seq model architecture from [4]

4.2 Successful Model
Finally, T tried the transformer-based seq2seq model explained in [5] and got the best results.

4.3 Why do we use transformers?

We use transformer because according to [I] :

1. Transformers incorporate a self-attention mechanism that enables the model to weigh the impor-
tance of each input token when generating an output token.

2. Transformers can use multi-head attention mechanisms to focus on different parts of the input
sequence simultaneously so this allows the model to capture different types of information and
relationships within the data that enhance its overall understanding.

3. Transformers incorporate positional encoding to provide information about the position of words
in a sequence and this helps the model to understand the word order and sentence structure.

4.3.1 Architecture of Transformer based seq2seq model

Now, we talk about the architecture of the model as shown in Figure 2:

Hyperparametersfor our model

The size of the souce vocabulary is according to source data set.

The size of the target vocabulary is according to target dataset.

The size of token embeddings is 64.

The number of attention heads in the multi-head attention mechanism is 8.
The dimension of the feedforward neural network hidden layer in the Transformer is 64.
The batch size used during training is 128.

The number of layers in the encoder stack is 6.

The number of layers in the decoder stack is 6.

Number of EPOCHS is 16.

DEVICE is GPU.

© XN T WD

,_.
e

Decoder Block * N
Add & Norm
t
‘Qutput Tokens Mask
I

Selector
00 2. ——]
Structure Index
Encoder __ Cross Decoder Gross Attention
NBlocks Attention NBlocks Fom | =
encoder
Self Attention
A /~ Order
[Embedding

Structure Tokens Input Tokens l

00 1.
Input Tokens ~ Order IDs
(@ (&)

Figure 2: Transformer based Seq2Seq model architecture from [4]

Seq2SeqTransformer model is initialized on the above hyperparameters and this model is based
on the transformer architecture, which is known for its effectiveness in handling sequence-to-sequence
tasks.

We initialize the parameters using Xavier uniform initialization for each parameter that has more
than one dimension. This choice is made to avoid issues such as vanishing and exploding gradients, as
it helps in preserving variance and improving convergence.

We use the cross-entropy loss function while ignoring the padding index to ensure that padding
tokens do not negatively influence the loss calculation.

Adam optimizer with specific hyperparameters, such as a learning rate(0.0001), beta values (0.9
and 0.98), and an epsilon value(eps = 1e-9), is essential for effective and stable training of our model.

In our code, the motivation for using a greedy algorithm in sequence generation lies in its simplicity,
speed, and low computational demands and our test data for any of seven Indian languages is not more
than 23.1k.

5 Experiments

First of all, I made the dataset iterable and we tokenized source and target language sentences and
build vocabularies for both languages based on the training data and handled special tokens and default
indices in the vocabulary such as for padding and unknown special characters.

The hyperparameter for my final model is discussed earlier but we will talk about the epochs For
example, we are talking about translating from Telgu to English in Figure 3.

We are using the same optimizer, which is Adam, and setting the learning rate to 0.0001 for all of
my different models. However, I trained each model for a varying number of epochs: 1, 2, 5, 10, 20, 50

: 100,

Train
Train
Train
Train
Train
Train
Train
Train
Train
Train
Train

loss: 2.998,

Val
Val
Vval
Val

s Val

Val
val
val
Vval
Vval

Val loss:

Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch

3.537,

time
time
time
time
time
time
time
time
time
time

Epoch time

Figure 3: Transformer based Seq2Seq model architecture

Models decoder layer encoder layer number of head
transformer 6 6 8
transformer seq2seq 6 6 8

Table 2: different hyperparameter in different models

and 100. The training time for each epoch depends on the language we are training on and typically
ranges from seconds 15 to 35 seconds, with an average of 25 seconds in each epoch.

Our hyperparameters, such as the device, epochs, and batch size, are consistent across all models.
The variations in hyperparameters are detailed in Table 2.

6 Results

Transformer-based Seq2Seq is my best performing model because in other models i am not able to
resolve the error and my output have major unknown tokens rather than translation.
Table 3 and 4 is describing my rank and score on codalab.

Note: I trained the same model for all seven Indian Languages having some changes in tokeniza-
tions to convert float tokens in other Indian languages to string and the rest of the code is the same.
I uploaded code for Telgu to English translation but we changed it at the time of extracting data from
the JSON file to other languages too.

7 Error Analysis

In the Seq2Seq model, there is an error during training where the output file returns start tokens
instead of translations and in the Transformer and LSTM model, I am unable to resolve a runtime
error, so I am unable to obtain any output.

In the Transformer-based Seq2Seq model, the output is a translation, but it is not grammatically
correct for every language. Additionally, there is a runtime error in the output when a float or integer
value is encountered. To address this issue, we convert the token sentence to a string, but this can
reduce the accuracy because the model treats the entire sentence as a single token, which is unknown
to it. Consequently, the output contains unknown tokens..

For language like Hindi collab crashes for 8 heads and 6 layer of transformer encoding

Data set Based on | Based on | Based on | Leaderboard
chrf score rouge score | bleu score

dev 20 19 14 14

test 21 23 21 22

Table 3: Ranks of Transformer-based seq2seq model

8

Data set chrf score rouge score | bleu score
dev 0.067 0.153 0.021
test 0.131 0.072 0.001

Table 4: Score of Transformer-based seq2seq model

Conclusion

This report focuses on a machine translation competition, where the goal is to develop a translation
model from scratch using provided training data and evaluate its performance on test data. The
evaluation is based on the Blue, CHRF, and Rouge scores.

Our findings indicate that the Transformer-based Seq2Seq model achieved the best results on the

test data. However, we acknowledge the presence of an issue in our model where in output special
tokens are coming. We are actively working to resolve this issue and improve the accuracy of the
model’s translations.

References

(1]
2]
8]

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polo-
sukhin, “Attention is all you need,” CoRR, vol. abs/1706.03762, 2017.

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural networks,”
CoRR, vol. abs/1409.3215, 2014.

G. Tiwari, A. Sharma, A. Sahotra, and R. Kapoor, “English-hindi neural machine translation-lstm

seq2seq and convs2s,” in 2020 International Conference on Communication and Signal Processing
(ICCSP), pp. 871-875, 2020.

C.-P. Tan, A. Su, and Y.-H. Yang, “Melody infilling with user-provided structural context,” 10
2022.

M. I. Azad, R. Rajabi, and A. Estebsari, “Sequence-to-sequence model with transformer-based
attention mechanism and temporal pooling for non-intrusive load monitoring,” 2023.

	Competition Result
	Problem Description
	Data Analysis
	Model Description
	 Model I tried but not Successfully implemented
	Seq2Seq model
	Transformers
	LSTM model

	Successful Model
	Why do we use transformers?
	Architecture of Transformer based seq2seq model

	Experiments
	Results
	Error Analysis
	Conclusion

