ABSTRACT
Evaluating SPARQL queries with the DISTINCT clause may become memory intensive due to the requirement of additional auxiliary data structures, like hash-maps, to discard the duplicates. DISTINCT queries make up to 16% of all the queries (e.g., DBPedia), and thus are non-negligible. In this paper we propose a novel method for such queries, by just manipulating the compressed bit-vector indexes called BitMats, for acyclic basic graph pattern (BGP) queries.

1. PRELIMINARIES
SPARQL, the standard query language for RDF, provides various query constructs. The DISTINCT clause eliminates duplicates from the results. SPARQL basic graph pattern (BGP) queries with the DISTINCT clause make up to 16% of the DBPedia logs, and hence are non-negligible. Consider the following BGP query over an RDFized version of a movie database like IMDB, which is asking for all the distinct pairs of the actors (?a) and their directors (?d).

```sparql
SELECT DISTINCT ?a ?d WHERE {
    ?m rdf:type :Movie .
    ?m :hasActor ?a .
    ?m :hasDirector ?d .
}
```

:UmaThurman has acted in three movies directed by :QuentinTarantino, they are :PulpFiction, :KillBillVol1, and :KillBillVol2. Without the DISTINCT clause, we would get three copies of (:UmaThurman, :QuentinTarantino) as the variable bindings for (?a, ?d) in the results, but the DISTINCT clause ensures that we get only one copy.

SPARQL algebra allows an arbitrary number of variables in the DISTINCT clause. For multiple variables in the DISTINCT clause (like in our example), the distinct values are composite of bindings of those variables, e.g., (:UmaThurman, :QuentinTarantino) is distinct from (:UmaThurman, :WoodyAllen), although they both share :UmaThurman. If the variables in the DISTINCT clause appear in different triple patterns (TPs), like in our example, we have to generate intermediate variable bindings of the other variables not in the DISTINCT clause, and discard them later, thus creating more memory overhead. E.g., we first have to generate bindings of all three variables (?m, ?a, ?d), project out only bindings of (?a, ?d), and then pass the (?a, ?d) pairs through the DISTINCT filter to remove duplicates. Hence for an arbitrary number of variables in the WHERE and DISTINCT clauses, evaluation of a query becomes memory intensive as the number of variables grows.

Our technique, proposed for acyclic BGP queries with an arbitrary number of variables in the WHERE and DISTINCT clauses, avoids the use of any auxiliary data structures like hash-maps to remove duplicates. It is built on two main concepts: (1) acyclicity of BGP queries and (2) minimality of triples, introduced earlier in [1, 2].

Acyclic queries: Borrowing the concepts introduced in [1], we first build a graph of variables (GoV) in a BGP query as follows. Every variable is a node, and two variable nodes have an undirected edge between them if they appear together in a TP in the query. The undirected edge, in a way, represents a TP. If this GoV is acyclic, the BGP query is said to be acyclic.

This concept of acyclicity is similar to the concept of acyclic SQL join queries [3, 4].

Minimality: A TP in a BGP query is said to have minimal triples, if every triple creates one or more variable bindings in the final results, and no triple gets eliminated as a result of a join. For an acyclic query, we can prune the initial set of triples associated with each TP in the query to minimal using semi-joins. We have described this pruning procedure for acyclic BGP queries in [1, 2]. It is equivalent to the process described in [3, 4] for the acyclic SQL inner-joins.

2. OUR TECHNIQUE
Before presenting our technique, we review some important properties of Boolean matrix multiplication (BMM) of a graph’s adjacency matrices. Consider the adjacency matrices of only predicates (edge labels) :hasActor and :hasDirector in IMDB’s RDF graph. If we do a BMM of the adjacency matrices of transpose of :hasActor with :hasDirector, the resultant matrix gives all the distinct pairs of nodes that have at least one 2-length undirected path with edge labels :hasActor :hasDirector between them.

If we remove the DISTINCT clause from our SPARQL query in Section 1 we get three copies of (:UmaThurman, :BillVol2, :QuentinTarantino) as the variable bindings for (?a, ?d) in the results, but the DISTINCT clause ensures that we get only one copy.

1. For simplicity and space constraints, we defer the discussion of TPs with three variables for the future work, because such TPs are rare.
The figure also shows an evolution of this MCS to eliminate $?y$ using the above algorithm. Intuitively, we eliminate all the intermediate non-required variables, by establishing direct correlations between the bindings of the required variables, that were maintained through the non-required variable bindings in the original MCS. E.g., when $?x$ and $?z$ have a path through $?y$ in MCS, bindings of $?x$ and $?z$ are correlated through $?y$. When we do a BMM, $BM(?x, ?y) \times BM(?y, ?z) = BM(?x, ?z)$, we establish a direct correlation between the bindings of the ($?x$, $?z$) pair, and eliminate the need of having $?y$ as an intermediary.

This algorithm is monotonic – at the end of one iteration of Steps 1 and 2, the edges, nodes, and BitMats in an MCS remain the same or become fewer than before. We gradually reduce the degree of the non-required variables, and eventually eliminate them when their degree is 2. Thus this algorithm always converges when all the non-required variables are eliminated from the MCS. Also note that the total BitMats at the end of the algorithm are always fewer than the original BitMats in the query – note that in Step 2, we remove two BitMats while creating a new one when the degree of the non-required variable is 2, and when the degree of the non-required variable is >2, we create one new BitMat and remove one. Hence eventually we are left with fewer BitMats – thus reducing the memory requirements.

We join these BitMats with each other using the multiway-pipelined-join procedure (Algorithm 5.4) in [1]. Note that we can carve out an MCS from the original GoV, because the query is acyclic, and each TP in the query has minimal triples after the pruning process (Algorithms 3.1, 3.2 in [1]).

Space and time complexity: The BitMat indices (a.k.a. adjacency matrices) formed over an RDF graph are typically sparse and are kept compressed (ref. [2]). Hence in practice, the space complexity of BitMats is much lesser than the worst case $O(n^2)$ bound. We performed our experiments presented in [1][2] over complex BGP (not with the DISTINCT clause) involving up to 13 BitMats over an RDF graph of 1.33 billion triples, on commodity machines of 4–8 GB memory. Also we use methods like fold–unfold (ref. [2]) to manipulate the compressed BitMats without uncompressing them. Thus we conjecture that in practice, the time complexity of a BMM would be much lesser than the worst case bound of $O(n^3)$.

Cyclic queries: For the cyclic BGP queries, although we can use the same pruning procedure (Algorithms 3.1, 3.2 in [1]), the minimality of triples cannot be guaranteed. Hence for cyclic BGP queries with the DISTINCT clause, we cannot identify an MCS from GoV, and cannot use this memory optimization technique. For cyclic queries, we have to resort to using additional auxiliary data structures, such as hash-maps, to remove duplicates.

3. REFERENCES

