
For the DISTINCT Clause of SPARQL Queries

Medha Atre
Dept. of Computer Science and Engineering
Indian Institute of Technology, Kanpur, India

medha.atre@gmail.com

ABSTRACT

Evaluating SPARQL queries with the DISTINCT clause may
become memory intensive due to the requirement of addi-
tional auxiliary data structures, like hash-maps, to discard
the duplicates. DISTINCT queries make up to 16% of all
the queries (e.g., DBPedia), and thus are non-negligible. In
this poster we propose a novel method for such queries, by
just manipulating the compressed bit-vector indexes called
BitMats, for acyclic basic graph pattern (BGP) queries.

1. PRELIMINARIES
SPARQL1, the standard query language for RDF2, pro-

vides various query constructs. The DISTINCT clause elim-
inates duplicates from the results. SPARQL basic graph pat-
tern (BGP) queries with the DISTINCT clause make up to
16% of the DBPedia logs, and hence are non-negligible [4].
Consider the following BGP query over an RDFized version
of a movie database like IMDB, which is asking for all the
distinct pairs of the actors (?a) and their directors (?d).

SELECT DISTINCT ?a ?d WHERE {
?m rdf:type :Movie .

?m :hasActor ?a .

?m :hasDirector ?d .}

:UmaThurman has acted in three movies directed by :Que-
ntinTarantino, they are :PulpFiction, :KillBillVol1, and :Kill-
BillVol2. Without the DISTINCT clause, we would get
three copies of (:UmaThurman, :QuentinTarantino) as the
variable bindings for (?a, ?d) in the results, but the DIS-
TINCT clause ensures that we get only one copy.
SPARQL algebra allows an arbitrary number of variables

in the DISTINCT clause. For multiple variables in the DIS-
TINCT clause (like in our example), the distinct values are
composite of bindings of those variables, e.g., (:UmaThur-
man, :QuentinTarantino) is distinct from (:UmaThurman,
:WoodyAllen), although they both share :UmaThurman. If
the variables in the DISTINCT clause appear in different
triple patterns (TPs), like in our example, we have to gen-
erate intermediate variable bindings of the other variables
not in the DISTINCT clause, and discard them later, thus
creating more memory overhead. E.g., we first have to gen-
erate bindings of all three variables (?m, ?a, ?d), project out

1
http://www.w3.org/TR/rdf-sparql-query/

2
http://www.w3.org/TR/2014/REC-n-triples-20140225/

Copyright is held by the author/owner(s).
WWW’16 Companion, April 11–15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4144-8/16/04.
http://dx.doi.org/10.1145/2872518.2889390.

only bindings of (?a, ?d), and then pass the (?a, ?d) pairs
through the DISTINCT filter to remove duplicates. Hence
for an arbitrary number of variables in the WHERE and
DISTINCT clauses, evaluation of a query becomes memory
intensive as the number of variables grows.

Our technique, proposed for acyclic BGP queries with
an arbitrary number of variables in the WHERE and DIS-
TINCT clauses, avoids the use of any auxiliary data struc-
tures like hash-maps to remove duplicates. It is built on
two main concepts: (1) acyclicity of BGP queries and (2)
minimality of triples, introduced earlier in [1, 3, 5].

?m

?a ?d

SELECT DISTINCT ?a ?d

?m

?a ?d

SELECT DISTINCT ?m ?a

Figure 1: GoV and MCS

Acyclic queries: Bor-
rowing the concepts
introduced in [1], we
first build a graph of
variables (GoV) in a
BGP query as follows.
Every variable is a
node, and two variable
nodes have an undi-

rected edge between them if they appear together in a TP in
the query. The undirected edge, in a way, represents a TP3.
If this GoV is acyclic, the BGP query is said to be acyclic.
This concept of acyclicity is similar to the concept of acyclic
SQL join queries [3, 5].

Minimality: A TP in a BGP query is said to have minimal
triples, if every triple creates one or more variable bindings
in the final results, and no triple gets eliminated as a result
of a join. For an acyclic query, we can prune the initial set
of triples associated with each TP in the query to minimal
using semi-joins. We have described this pruning procedure
for acyclic BGP queries in [1, 2]. It is equivalent to the
process described in [3, 5] for the acyclic SQL inner-joins.

2. OUR TECHNIQUE
Before presenting our technique, we review some impor-

tant properties of Boolean matrix multiplication (BMM) of
a graph’s adjacency matrices. Consider the adjacency ma-
trices of only predicates (edge labels) :hasActor and :has-
Director in IMDB’s RDF graph. If we do a BMM of the
adjacency matrices of transpose of :hasActor with :hasDi-
rector, the resultant matrix gives all the distinct pairs of
nodes that have at least one 2-length undirected path with
edge labels :hasActor–:hasDirector between them.

If we remove the DISTINCT clause from our SPARQL
query in Section 1, we get three copies of (:UmaThurman,

3
For simplicity and space constraints, we defer the discussion of TPs

with three variables for the future work, because such TPs are rare.

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/2014/REC-n-triples-20140225/


:QuentinTarantino) for the (?a, ?d) variables pair. This
means there are three undirected 2-length paths between
:UmaThurman and :QuentinTarantino, with edge labels :has-
Actor–:hasDirector, and they go through :KillBillVol1, :Kill-
BillVol2, and :PulpFiction each, in the RDF graph. How-
ever, the DISTINCT clause selects just one copy because
there is at least one such 2-length path with edge labels
:hasActor–:hasDirector. We observe an important property
from this as follows.

Property 1. For any two non-adjacent variables ?x, ?y,
connected via an undirected path ?x, ?m1, ?m2...?mk, ?y in
a GoV, DISTINCT values of (?x, ?y) are those bindings
of (?x, ?y) which have at least one undirected path between
them in the RDF graph, that goes through the bindings of
the intermediate variables ?mi, 1 6 i 6 k on the path.
We make use of this equivalence between Boolean matrix

multiplication (BMM) and the DISTINCT clause to present
our method. We use BitMats, which are same as the com-
pressed adjacency matrices of each predicate (edge label) of
an RDF graph [2]. Thus each TP in the query has a BitMat
associated with it. Given an acyclic BGP query, we first
run Algorithms 3.1 and 3.2 in [1], which prune the triples in
the BitMats to minimal (ref. Lemma 3.3 in [1]). Next, we
identify a minimal covering subgraph (MCS) of GoV, which
covers all the paths between the variables in the DISTINCT
clause4. For the query in Section 1, MCS is the entire GoV
itself, because ?a and ?d are connected via ?m. But if the
query was “SELECT DISTINCT ?m ?a”, the MCS would
have been just two nodes ?m and ?a (see Figure 1). Note
that an MCS may have nodes that do not appear in the
DISTINCT clause, like ?m in our example. Our aim is to
remove all such non-required ?m variables from MCS with-
out affecting the correctness of the results.
Eliminate non-required variables: We assume an MCS

with an arbitrary number of required variables (those ap-
pearing in the DISTINCT clause), and an arbitrary num-
ber of non-required variables (those not in the DISTINCT
clause). Denoting the BitMat associated with a TP of type
“?x :someEdgeLabel ?y” as BM(?x, ?y), and BM(?y, ?x) =
transpose(BM(?x, ?y)), we remove the non-required vari-
ables methodically using the following algorithm.
(1) Generalizing the variable names, choose any 2-length

path ?x–?y–?z in the MCS, such that ?x or ?z or both ∈

DISTINCT, but ?y /∈DISTINCT. Do a BMM,BM(?x, ?y)×
BM(?y, ?z) = BM(?x, ?z). Add edge (?x, ?z).
(2) If ?y has only ?x and ?z as its neighbors, remove edges

(?x, ?y), (?y, ?z), BitMats BM(?x, ?y), BM(?y, ?z), and
node ?y. Else remove edge (?x, ?y) or (?y, ?z), but not both,
and remove the respective BM(?x, ?y) or BM(?y, ?z), but
not both. If the MCS has >1 non-required variables go to
Step 1. Else terminate.

?y?x

?s

?z
?x

?s

?z?y?x

?s

?z

SELECT DISTINCT ?x ?z ?s

Figure 2: Remove ?y from MCS using the algorithm

In Figure 2, we have shown a sample MCS with three re-
quired variables, ?x, ?z, ?s and a non-required variable ?y.

4
Since GoV is acyclic any two nodes in it have a unique undirected

path between them.

The figure also shows an evolution of this MCS to elimi-
nate ?y using the above algorithm. Intuitively, we elimi-
nate all the intermediate non-required variables, by estab-
lishing direct correlations between the bindings of the re-
quired variables, that were maintained through the non-
required variable bindings in the original MCS. E.g., when
?x and ?z have a path through ?y in MCS, bindings of ?x
and ?z are correlated through ?y. When we do a BMM,
BM(?x, ?y)×BM(?y, ?z) = BM(?x, ?z), we establish a di-
rect correlation between the bindings of the (?x, ?z) pair,
and eliminate the need of having ?y as an intermediary.

This algorithm is monotonic – at the end of one itera-
tion of Steps 1 and 2, the edges, nodes, and BitMats in an
MCS remain the same or become fewer than before. We
gradually reduce the degree of the non-required variables,
and eventually eliminate them when their degree is 2. Thus
this algorithm always converges when all the non-required
variables are eliminated from the MCS. Also note that the
total BitMats at the end of the algorithm are always fewer
than the original BitMats in the query – note that in Step
2, we remove two BitMats while creating a new one when
the degree of the non-required variable is 2, and when the
degree of the non-required variable is >2, we create one new
BitMat and remove one. Hence eventually we are left with
fewer BitMats – thus reducing the memory requirements.

We join these BitMats with each other using themultiway-
pipelined-join procedure (Algorithm 5.4) in [1]. Note that
we can carve out an MCS from the original GoV, because
the query is acyclic, and each TP in the query has minimal
triples after the pruning process (Algorithms 3.1, 3.2 in [1]).

Space and time complexity: The BitMat indices (a.k.a.
adjacency matrices) formed over an RDF graph are typically
sparse and are kept compressed (ref. [2]). Hence in prac-
tice, the space complexity of BitMats is much lesser than
the worst case O(n2) bound. We performed our experiments
presented in [1, 2] over complex BGPs (not with the DIS-
TINCT clause) involving up to 13 BitMats over an RDF
graph of 1.33 billion triples, on commodity machines of 4–
8 GB memory. Also we use methods like fold–unfold (ref.
[2]) to manipulate the compressed BitMats without uncom-
pressing them. Thus we conjecture that in practice, the time
complexity of a BMM would be much lesser than the worst
case bound of O(n3).

Cyclic queries: For the cyclic BGP queries, although
we can use the same pruning procedure (Algorithms 3.1,
3.2 in [1]), the minimality of triples cannot be guaranteed.
Hence for cyclic BGP queries with the DISTINCT clause,
we cannot identify an MCS from GoV, and cannot use this
memory optimization technique. For cyclic queries, we have
to resort to using additional auxiliary data structures, such
as hash-maps, to remove duplicates.

3. REFERENCES
[1] M. Atre. Left Bit Right: For SPARQL Join Queries with

OPTIONAL Patterns (Left-outer-joins). In SIGMOD, 2015.

[2] M. Atre, V. Chaoji, M. J. Zaki, and J. A. Hendler. Matrix
“Bit”loaded: A Scalable Lightweight Join Query Processor for
RDF Data. In WWW, 2010.

[3] P. A. Bernstein and N. Goodman. Power of natural semijoins.
SIAM Journal of Computing, 10(4), 1981.

[4] M. A. Gallego, J. D. Fenández, M. A. Mart́ınez-Prieto, and
P. de la Fuente. An Empirical Study of Real-World SPARQL
Queries. In USEWOD workshop at WWW, 2011.

[5] J. D. Ullman. Principles of Database and Knowledge-Base
Systems, Volume II. Computer Science Press, 1989.


	Preliminaries
	Our technique
	References

