
Efficient RDF Dictionaries with B+ Trees
Gurkirat Singh∗

Computer Science and Engg
Indian Institute of Technology Kanpur

gurkirat@cse.iitk.ac.in

Dhawal Upadhyay∗
Computer Science and Engg

Indian Institute of Technology Kanpur
dhawal@cse.iitk.ac.in

Medha Atre
Computer Science and Engg

Indian Institute of Technology Kanpur
atrem@cse.iitk.ac.in

ABSTRACT
Resource Description Framework (RDF) graphs are widely used for
representing semantically linked data in various domains. Many
modern RDF specific storage, indexing, and query optimization
systems internally represent the node and edge labels of the RDF
graphs as integer IDs. Hence they require dictionaries for converting
the strings in a SPARQL query into their corresponding IDs, and
the SPARQL query results in the ID form into their corresponding
strings. Most of the SPARQL query processing systems have focused
on the techniques for indexing of RDF graphs and the optimization
of the joins in the SPARQL Basic Graph Pattern (BGP) queries, but
the dictionaries that map RDF graph string labels to the IDs and back
have remained a neglected component. Dictionaries are important
for an “end-to-end user experience” of SPARQL query processing
over large RDF graphs.

Hence, in this paper, we have specifically focused on building
efficient RDF dictionaries using B+ trees. Our key contributions are
– (a) building an ensemble of B+ trees, instead of one giant B+ tree,
to maintain a low average height across the ensemble, (b) a hashing
technique for storing the string labels as search-keys to reduce
the space consumption, maintain a higher B+ tree order, and more
uniform search-key distribution across memory pages, (c) using
multi-core parallel processing for fast dictionary construction, and
(d) novel bulk reverse lookup methods. We have also presented an
extensive experimental evaluation of our techniques over a set of
126,444,964 labels of a real-life DBPedia RDF graph.

CCS CONCEPTS
• Information systems→ Data scans;

KEYWORDS
RDF, SPARQL, Dictionaries, B+ tree, Multi-core Processing

ACM Reference Format:
Gurkirat Singh, Dhawal Upadhyay, and Medha Atre. 2017. Efficient RDF
Dictionaries with B+ Trees. In Proceedings of The ACM India Joint Interna-
tional Conference on Data Science &Management of Data (CoDS-COMAD ’18).
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3152494.3152506

∗Equal contribution.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CoDS-COMAD ’18, January 11–13, 2018, Goa, India
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6341-9/18/01. . . $15.00
https://doi.org/10.1145/3152494.3152506

1 INTRODUCTION
Resource Description Framework (RDF)1 is widely being adopted
as the standard for representing semantic relationships, e.g., DBPe-
dia2 is an RDFized version of the Wikipedia network, UniProt3 is
an RDFized protein sequence information network derived from
genome sequencing project. RDF graphs are directed edge-labeled
multi-graphs, where node labels can be Internationalized Resource
Identifiers (IRIs) or literals, and edge-labels are always IRIs. Every
unique edge in the RDF graph is called a triple, and is denoted as
(S P O), where P is the label on the edge from node S to node O.
SPARQL4 is the standard query language for RDF, and SPARQL’s
Basic Graph Pattern (BGP) queries have a close resemblance to the
SQL inner-join queries. In fact, if all the triples in an RDF graph are
stored in a relational database as a 3-column table (S P O being the
three columns), then every SPARQL BGP query can be methodically
translated into an equivalent SQL inner-join query [7].

In Figure 1, we have shown an example of a small RDF graph5,
a SPARQL BGP query over it, and a serialized 3-column tabular
representation of this RDF graph, where each triple is a row in
the table, and S, P, O are the three columns. We have also shown
the SQL query equivalent to the given SPARQL BGP query, which
can be run as three self-joins on the RDF table. This query asks
to find the friends of :Jerry that have :actedIn sitcoms that had
their location in the :NewYorkCity. Note that the SPARQL query
denotes joins by join variables ?friend and ?sitcom, whereas :Jerry,
:hasFriend, :actedIn, :location, :NewYorkCity are the fixed values,
which become the selection predicates in the equivalent SQL query
shown in Figure 1. :Jerry, :NewYorkCity are the node labels, and
:hasFriend, :actedIn, :location are the edge labels in the original RDF
graph. Due to this close resemblance between SPARQL and SQL,
in the recent few years, quite a few systems have been developed
specifically to handle RDF graph storage, indexing, and SPARQL
query optimization using relational database techniques. A popular
optimization technique is to create all six indexes on RDF graphs,
since the tabular representation has just three columns (hence
3! = 6). The popular index types used are B+ trees, e.g., RDF-3X [9]
uses those, and bitmaps/bitvectors used by BitMat [3–6], TripleBit
[12]. Many relational databases have added support for the storage
and indexing of RDF, and SPARQL query processing, e.g., Oracle,
IBM DB2, Virtuoso etc.

Creating all possible six indexes on an RDF graph seems a good
trick for SPARQL query optimization, however, the main challenge
is the variable length node and edge labels in RDF graphs, which
make the search-keys in these indexes. Variable length search keys

1https://www.w3.org/RDF/
2http://wiki.dbpedia.org/
3http://www.uniprot.org/
4https://www.w3.org/TR/rdf-sparql-query/
5Although the shown graph is acyclic, RDF graphs can be cyclic too.

https://doi.org/10.1145/3152494.3152506
https://doi.org/10.1145/3152494.3152506
https://www.w3.org/RDF/
http://wiki.dbpedia.org/
http://www.uniprot.org/
https://www.w3.org/TR/rdf-sparql-query/

CoDS-COMAD ’18, January 11–13, 2018, Goa, India Gurkirat Singh, Dhawal Upadhyay, and Medha Atre

:Jerry

?sitcom

:NewYorkCity

:hasFriend

:actedIn

:location

?friend

:Jerry

:Larry :Julia

:Veep:CurbYourEnthu :Seinfeld :NewAdvOldChristine

:LosAngeles :D.C. :Jersey:NewYorkCity

:hasFriend :hasFriend

:actedIn

:actedIn
:actedIn

:actedIn

:location :location :location :location

SPARQL BGP

SELECT ?friend ?sitcom

WHERE {

:Jerry :hasFriend ?friend .

?friend :actedIn ?sitcom .

}

?sitcom :location :NewYorkCity .

:Julia :actedIn :Seinfeld

:Julia :actedIn :Veep

:Julia :actedIn :NewAdvOldChristine

:Julia :actedIn :CurbYourEnthu

:CurbYourEnthu :location :LosAngeles

:Larry :actedIn :CurbYourEnthu

:Jerry :hasFriend :Julia

:Jerry :hasFriend :Larry

:Seinfeld :location :NewYorkCity

:Veep :location :D.C.

:NewAdvOldChristin :location :Jersey

RDF table

S P O SQL inner−join

SELECT t1.o, t2.o

RDF as t3

WHERE

t1.S=":Jerry" AND

t1.P=":hasFriend" AND

AND t2.P=":actedIn" AND

t3.P=":location" AND

t3.O=":NewYorkCity"

FROM RDF as t1, RDF as t2,

t1.O=t2.S AND t2.O=t3.S

Figure 1: An example of RDF graph, its tabular representation, a SPARQL BGP query, and the equivalent SQL query

can take away the good properties of indexes like B+ trees, and they
also make the index performance unpredictable. Further, in case
of RDF graphs, the variation in these node/edge label lengths can
be really high, e.g., in case of a DBPedia RDF graph, we observed
that the longest label is 377,405 bytes, the average label length is
75 bytes, whereas the smallest one is 1 byte! Hence many of the
RDF and SPARQL query processing systems first map every unique
node/edge label in a given RDF graph to a fixed length unique ID
(either integer or hash), and then create the six indexes on these
IDs. Thus the search-keys in the indexes become fixed length IDs,
and the index lookup performance can be tightly controlled.

However, this also creates a need for maintaining forward label
→ ID and reverse ID→ label dictionaries. The forward dictionary is
required to get the IDs of the fixed positions in the SPARQL queries,
e.g., :Jerry, :hasFriend, :actedIn, :location, and :NewYorkCity in our
example in Figure 1. That is to lookup their respective IDs in the
six-way indexes used in the SPARQL query evaluation.

While the research as well as commercial SPARQL query pro-
cessing systems have paid a lot of attention to the optimization
of joins in the SPARQL BGP query, not much attention has been
paid to the forward and reverse dictionaries and their performance.
For instance, the BitMat system [3, 5], which has been shown to
outperform other systems for the low-selectivity queries6, presently
does not support the forward and reverse dictionaries. It relies on
the end-user to build and maintain these dictionaries. Also, it pro-
duces the SPARQL query results as a list of integer IDs instead of
producing user-legible list of string-labels. While RDF-3X supports
forward and reverse dictionaries, it was pointed out by the authors
of [5] that RDF-3X’s reverse dictionary lookups are much slower
than its join query execution times (join query execution uses the
integer IDs). A good ID-based join query execution performance
certainly highlights the features of the join optimization techniques.
However, performance of forward/reverse dictionaries matter in
real-life scenarios for the “end-to-end user experience”. Relational

6Low selectivity queries are those that need to process a large amount of data, and/or
may generate a large number of results.

database based RDF/SPARQL systems like MonetDB [1, 11] or Vir-
tuoso [2] do not have any special provision for maintaining such
forward/reverse dictionaries, and hence suffer in the join query
performance.

Thus, in this paper, we have focused on building efficient forward
and reverse dictionaries for the RDF graphs. For this purpose we use
the popular B+ tree data structure, and additionally make several
performance optimizations on it. Our main contributions are as
follows.

(1) Instead of string labels, we use hash IDs of these labels as
the keys in the forward dictionary for saving storage space,
and increasing the order of the B+ tree (Section 2.3).

(2) We build an ensemble of many B+ trees than just one B+ tree
for the forward and reverse lookups, to reduce the average
height of each B+ tree in the ensemble, and improve lookup
times (Section 2.5).

(3) We exploit the multi-core architecture for speeding up the
construction time of these dictionaries (Section 2.6).

(4) We use a novel method targeted towards the typical RDF and
SPARQL workloads, for lookups in the reverse dictionaries
(Section 3.4).

(5) Lastly, we also present an extensive set of experiments for
the performance characterization of our optimization tech-
niques, in isolation from any SPARQL BGP query optimiza-
tion techniques (Section 4). We trust that this will enable the
community to use our techniqueswith any other RDF/SPARQL
processing system that needs label→ ID and ID→ label dic-
tionaries.

2 BUILDING THE DICTIONARIES
As mentioned in Section 1, many specialized modern RDF and
SPARQL processing systems create all possible six-way indexes on
the RDF graphs, because these graphs are conceptually 3-dimensional
– (S P O) as a triple – hence SPO, SOP, PSO, POS, OPS, OSP indexes.
Before creating these six-way indexes, each unique node and edge
label in the RDF graph is first mapped to a unique ID, and then

Efficient RDF Dictionaries with B+ Trees CoDS-COMAD ’18, January 11–13, 2018, Goa, India

the system uses this ID based representation of the RDF triples
to create the six-way indexes. Since the IDs are fixed length and
often smaller than their corresponding string-label lengths, this
creates compact six-way indexes. Also the search-key size within
these indexes remains constant – length of the ID. In the context
of our example RDF graph shown in Figure 1, a sample dictionary
mapping to 4-byte integers IDs is shown in Figure 2.

:CurbYourEnthu −> 1

:Julia −> 2

:Larry −> 3

:NewAdvOldChristine −> 4

:Seinfeld −> 5

:Veep −> 6

:Jerry −> 7

:D.C. −> 8

:Jersey −> 9

:LosAngeles −> 10

:NewYorkCity −> 11

:hasFriend −> 12

:actedIn −> 13

:location −> 14

Figure 2: Labels to intID mapping for RDF graph in Fig 1

This idea removes the problem of creating six-way indexes over
variable length labels, but it gives rise to the challenges of maintain-
ing the forward and reverse dictionaries, for mapping the labels to
the respective IDs and back. The forward and reverse dictionaries
are required for the systems that use the ID based internal represen-
tation of RDF graph node and edge labels, because it is convenient
for the user to submit SPARQL queries with string-labels, e.g., :Jerry,
:NewYorkCity, :hasFriend, :actedIn etc in our example in Figure 1, as
opposed to 7, 11, 12, 13 as their respective integer IDs. The systems
that use internal ID based representation also produce the results
of a SPARQL BGP query in the ID format. However, a user expects
the results of a SPARQL query in the string-label (user-legible) form,
and not in the ID form. Hence, reverse mapping of these IDs to their
respective labels becomes imperative, and thus, these dictionaries
make an important part of the RDF/SPARQL systems.

2.1 ID assignment for labels
While deciding the fixed-length IDs for mapping the labels, we
have two choices – integer or hash IDs. We have chosen to use
4-byte integer IDs, as then we can map over 4 billion (232) unique
labels to the 4-byte integer ID space. This provides us sufficiently
large ID space. Also, in the future, if the number of unique labels in
the RDF graphs grow higher than 4 billion, we can choose higher
than 4-byte ID space. Within this 4-byte integer ID space, we can
map labels to the integer IDs in any order. However, we choose
to sort the labels in the alphanumeric order first – alphabetical
and natural number – and then assign IDs incrementally, thus
preserving the relative sorted order between two labels in their
respective integer IDs too. That is, if strinд1 < strinд2 in the sort
order, intID (strinд1) < intID (strinд2). This specifically helps us
in handling the range lookups for the SPARQL FILTER clause. For
instance, consider the following SPARQL query, that asks for all
the ?friends of :Jerry that are aged under 40.

SELECT ?friend
WHERE {

:Jerry :hasFriend ?friend .
?friend :age ?age .
FILTER (?age < 40) .

}

The alphanumeric sorting of the labels, and the sort order pre-
serving mapping to integer IDs, allows us to do range searches by
fetching the corresponding ID of “40”, say intID (40), which will
always be greater than intID (30), and smaller than intID (50). For
this reason, we specifically avoided IDs generated by a hash func-
tion, as the hash functions may not be order preserving. Range
lookup procedure is describing in detail in Section 3.2.

2.2 Disk based B+ Tree
The sizes of the RDF graphs nowadays scale from hundreds of
millions of nodes, e.g., DBPedia, UniProt graphs have about 200
million nodes, to over a billion nodes as well, e.g., Linked Open
Data (LOD) cloud. Thus, for a typical configuration computer, the
entire RDF graph as well as the forward and reverse dictionaries
cannot be held in memory entirely. Hence these dictionaries need
to be disk-based structures that can be dynamically loaded in parts
as required.

These dictionaries are often built using the popular indexing
structures such as B+ trees or hash-tables. In our implementation,
we have used B+ trees. The salient features of a B+ tree are as given
below.

• It is balanced – length of the path from root to any leaf is
the same.
• It supports range lookups, whereas hash-table does not.
• The internal nodes contain only search keys and no values.
Hence the size of the internal nodes remain much smaller
than the leaves (as long as the search keys are not very
long). If the search-keys are small enough, all the internal
nodes can be cached in main-memory, thereby precluding
the requirement of disk I/O to go to the next level.
• A good B+ tree design tries to maintain the size of each
internal node as close to the system page-size as possible,
and adjusts the order (number of children per node) of the
B+ tree accordingly.

A good rule of thumb is (B+ tree order ≈ page-size ÷ (size of
search-keys + size-of-pointer)). Note that here RDF labels of highly
variable lengths create a problem to maintain the internal node
size to one page with a fixed order. E.g., as mentioned in Section
1, DBPedia’s longest label (search-key) is 377,405 bytes, whereas
a typical page-size for disk I/O is 512–4098 bytes. We handle this
problem with our first optimization technique as presented further.

2.3 Forward Dictionary
As noted in the previous section, the order of the B+ tree is a function
of – (a) page-size, that is standard for computer systems, and (b)
the size of the search-keys. Since RDF graphs have widely varying
lengths of labels, using these labels as the search-keys in a B+ tree
forces one to maintain a lower order and thus increases the height
of the B+ tree. Varying length of labels also make it difficult to
contain one internal B+ tree node in one memory page. A higher
order of a B+ tree reduces its height, and in turn reduces the disk
I/Os. We handle the varying length labels by computing a hash
of each unique label in the RDF graph, and using this hash ID as
the search-key in the B+ tree to creating the forward hash(label)→
intID mapping.

CoDS-COMAD ’18, January 11–13, 2018, Goa, India Gurkirat Singh, Dhawal Upadhyay, and Medha Atre

A hash function maps variable length strings to respective fixed
length IDs. The length of these ID depends on the range of the hash
function, e.g., if the hash function generates a fixed length 64-bit
hash ID, the range of the hash function is 264. In our implementation,
we have used a 64-bit hash function. Although a 64-bit hash function
gives a large enough range (264), hash functions can be sensitive to
the skew in the data. If most input strings are very similar to each
other, there is a possibility of two strings being hashed to the same
hash-ID, and hence causing a collision. It has been observed that
RDF graph labels indeed can have a heavy skew. Hence in order
to avoid the possibility of a collision for a very large set of labels,
we use two different 64-bit hash functions to generate two hashes,
hash1 and hash2, of the same label, and insert a composite key
⟨hash1 (label),hash2 (label)⟩ of 128 bits (16 bytes) and associated
intID in the forward mapping B+ tree. Our hash functions are given
below7.

Algorithm 1: two-hash-functions
input : hash-alg, str[] // string arr
output : hash-key
// Init hash key to prime num

1 hash = 5381;
2 if hash-alg == 1 then

// ≪ is left-bit-shift

3 for each char c in str[] do
4 hash = ((hash ≪ 5) + hash) + c;
5 else if hash-alg == 2 then
6 for each char c in str[] do
7 hash = c + (hash ≪ 6) + (hash ≪ 16) - hash;
8 return hash;

Using a 128-bit (16 bytes) search key made of the two different
hash functions gives us the following advantages:

(1) Our search-key size in the B+ tree for the forward dictionary
remains fixed at 16 bytes, thereby giving us an advantage
of choosing a higher order of the B+ tree and reduce its
height. Assuming a standard page size of 4 Kilobytes, and
child pointer of 8 bytes, up to 4 ∗ 1024/(16 + 8) ∼ 170 keys
can be placed in one memory page, which is also the internal
node of the B+ tree. In our experiments we have kept the
order to be 150, although it can be changed to give flexibility
of using another search-key of different length.

(2) Two different 64-bits hash functions in all give us a 128-bit
search key space, which is large enough range to thwart any
collisions for very large RDF graphs (in our experiments on
hashing over 126 million unique labels of real life DBPedia
RDF graph, we did not encounter any collisions).

(3) As noted in Section 1, an average label size in the DBPedia
RDF graph is 75 bytes, and the longest label is 377,405 bytes.
Whereas our two hashes make only 16 byte long search key.
Thus using a composite hash search key of 16 bytes reduces
the size of the search key by more than 75%.

(4) In turn the size of the internal nodes in the B+ tree of the for-
ward dictionary remains small, allowing the system to cache

7Note that we have not focused on hash function optimization, and that will be part
of our future work.

these internal node pages in main memory, and precluding
disk I/O for them8.

(5) The storage space required for the B+ tree, insertion time,
and lookup time no longer depend on the label sizes.

2.4 Reverse Dictionary
For the reverse dictionary, we need to do intID → label mapping.
Since the search-key (4-byte integer ID) in this B+ tree is fixed, we
use the integer IDs as-is to build the reverse dictionary. However,
instead of storing the labels in the leaf nodes, we use a following
simpler way. Recall from Section 2.1, that we first sort all the labels
alphanumerically and then sequentially assign integer IDs to them,
so that the sort order of intIDs is same as their respective labels’
sort order. In practice, for the simplicity of the implementation, we
maintain a flat text-file of all the sorted labels with one label on
each line of the file, and use the line number as the 4-byte intID
of that label. Thus, in the leaf-nodes of the B+ tree for the reverse
dictionary, instead of having labels, we just maintain an offset of
the starting position of the label within this flat-file, and retrieve
that label by reading the line from the flatfile. For the offset we use
8 bytes (on 64-bit OS). This helps us to save the storage space of
the reverse dictionary by removing the need to store the variable
length labels in the leaf nodes. In essence, our B+ tree of reverse
dictionary has mapping as intID → offset.

In summary, the forward and reverse dictionaries are built
as follows.

(1) Sort all the labels in an alphanumeric order – alphabet-
ical and numerical – and store in a flat text-file with
one label on each line.

(2) Allocate the line number of the label in the flat-file
as the 4-byte integer ID, thus making intIDs order
preserving, label1 < label2 implies intID (label1) <
intID (label2).

(3) For each string label, generate hash1 (label),
hash2 (label) (see Algorithm 1).

(4) Insert ⟨hash1 (label),hash2 (label)⟩ → intID (label)
key-value pair in the forward B+ tree.

(5) Simultaneously add the corresponding intID (label) →
offset(label) mapping in the reverse B+ tree.

2.5 Ensemble of B+ trees
The height of the forward and reverse B+ trees is loдBN − 1 where
B is the order of the tree, and N is the total number of unique labels
in the graph. The lookup for a key consists of traversing the height
of the tree from the root to the leaf node, and these are typically the
number of I/O operations, assuming that none of the components
of the B+ tree are cached in the main memory. Thus, for a large
number of labels, the height of the tree is non-negligible. E.g., for
126 million labels used in our experiments (see Section 4) the height
of the tree is 3 for order 170. For a SPARQL query processor with
high frequency of SPARQL queries (e.g., DBPedia SPARQL endpoint
on the web9), these lookups can be a major performance bottleneck.
8For the scope of this paper, we have not focused on cache optimization techniques.
9https://dbpedia.org/sparql

https://dbpedia.org/sparql

Efficient RDF Dictionaries with B+ Trees CoDS-COMAD ’18, January 11–13, 2018, Goa, India

Reducing the height of the B+ tree by even one level can give
us significant benefits. This reduction factor particularly becomes
significant when we have to do several bulk reverse lookups for
the intID format results generated of a SPARQL BGP query. This
is elaborated in Sections 3.4 and 4.4. Hence to reduce the overall
height of one tree, we split it into multiple trees, and create an
“ensemble” of B+ trees. For instance, if we create an ensemble of
1000 B+ trees over 200 million labels, such that each smaller B+
tree consists of 200,000 labels, the overall height of each tree in the
ensemble becomes 2 instead of 3.

Recall from Section 2.1 that for intID assignment to each label, we
first sort all the labels alphanumerically. For creating an ensemble
of B+ trees, we split this sorted list of labels into contiguous chunks
of almost equal number of strings, and number of such chunks is
equal to the ensemble size. E.g., for an ensemble of size 1000 over
200 million labels, each chunk consists of 200,000 labels (200 million
÷ 1000). We build a separate B+ tree of each of these 1000 chunks.
Additionally, we note down the first label in the sorted order of
each chunk. These strings are stored as a metadata of the ensemble
in a flat textfile. The significance of these strings is elaborated when
we discuss the forward lookup procedure in Section 3.1.

2.6 Parallel Construction
Notably each of the ensemble B+ trees can be built independently
and parallelly by running multiple threads and exploiting the multi-
core architecture of the modern computer systems, where each
thread constructs one smaller B+ tree. This further reduces the
construction time for the forward and reverse dictionaries, as shown
in our experiments in Section 4.4.

The size of an ensemble depend on the following factors, and
may change from one dataset to another.

(1) The total number of labels, and in turn the height of the
single B+ tree containing them.

(2) The average length of the labels – as mentioned above, we
keep a log of the first string of each tree in the ensemble,
and we keep them loaded in main memory for aiding fast
lookups in the ensemble. Hence the additional main memory
required to maintain this metadata is (avg-length(labels) *
size-of-ensemble).

In our experiments with over 126 million labels of the real life
DBPedia RDF graph, we have experimented with ensemble sizes
ranging from 1 to 9561. The DBPedia graph’s average label length
is 75 bytes, hence we need just 700 Kilobytes of additional main
memory to keep track of the first strings of each smaller B+ tree
in the ensemble. While this additional memory requirement is
negligible, the height of each B+ tree in the ensemble reduces by
one level compared to one giant B+ tree containing all the labels.
Note however that if we make the size of the ensemble too large,
the whole B+ tree structure essentially collapses down to become
a flat hash-table (since we maintain ⟨hash1,hash2⟩ of the labels
as the search-keys). Also, for very large size of the ensemble, we
require to keep the respective first strings of each smaller B+ tree
in the ensemble loaded in memory for deciding which smaller
tree to lookup. This in turn increases the runtime main-memory
requirement. Doing a binary search within a large number of these

first strings of ensemble takes away the advantage of the ensemble,
and small tree heights in it.

3 LOOKUPS
In this section we discuss the details of the procedures of forward
and reverse dictionary lookups.

3.1 Forward Lookups
Recall from Section 2.5, that instead of one big B+ tree containing
all the ⟨hash1 (label),hash2 (label)⟩ → intID (label) mappings, we
create an ensemble of B+ trees, note the first sorted label from the
list of labels allotted to each smaller B+ tree, and keep it as the
metadata. We keep these list of first-labels loaded in main-memory.
These labels allow us to decide quickly which smaller B+ tree to
lookup for a given lookup query. Let us assume that our ensemble
is of size 1000. Then in main memory we maintain the first label of
the 1000 splits of the original sorted labels. When we need to do
a lookup in the ensemble, first we do a binary search over these
1000 first-labels in main-memory to decide the smaller B+ tree
for the lookup, and then do a search inside the respective smaller
B+ tree. Let us assume that the search label is L. We first find
two labels, labeli and labelj from the list of 1000 first-labels, such
that labeli ⩽ L < labelj , where i, j are the respective smaller B+
trees. Then we lookup into the ith B+ tree by forming a search
key ⟨hash1 (L),hash2 (L)⟩, and follow the standard B+ tree lookup
procedure to retrieve intID (L).

3.2 Range Lookups
Recall that we chose B+ trees over hash-tables to build the dictio-
naries in order to support range-queries. We also ensured that the
intID assignment to the labels is sort-order preserving. A curious
reader maywonder that when labels are converted to two hash-keys
⟨hash1 (label),hash2 (label)⟩, and they are used as the search-keys
in the B+ tree of the forward dictionary, how would the range
queries be answered? We illustrate that with the following example
SPARQL query.

SELECT ?friend

WHERE {

:Jerry :hasFriend ?friend .

?friend :age ?age .

FILTER(?age > 20 && ?age < 40) .

}
This query asks for all the friends of :Jerry that are aged between

20 and 40. For such a query, we first get the corresponding search-
keys of “20” and “40” as ⟨hash1 (20),hash2 (20)⟩, let us call it key (20),
and ⟨hash1 (40),hash2 (40)⟩, let us call it key (40) respectively. We
fetch the corresponding intID (20) and intID (40) using key (20) and
key (40) from the forward dictionary. Since our intID assignment
is sort-order preserving, this means that all the intIDs between
intID (20) and intID (40) are strictly for labels between “20” and
“40”, and thus they are used in the SPARQL query processing for
satisfying the FILTER condition.

CoDS-COMAD ’18, January 11–13, 2018, Goa, India Gurkirat Singh, Dhawal Upadhyay, and Medha Atre

3.3 Reverse Lookups
Recall from Section 2.4 that in the reverse dictionary, we create
a mapping of intID(label) → offset(label), where offset is the off-
set of the label within the flatfile containing all the labels in an
alphanumerically sorted order, a unique label on each line. Lookup
procedure in the reverse ensemble of B+ trees is the same as forward
lookup procedure as elaborated in Section 3.1. In main memory, we
maintain the first intID of each smaller B+ tree in the ensemble to do
quick binary search, and decide the smaller B+ tree to search into.
This additional main memory required for reverse lookups is negli-
gible, e.g., 4 Kilobytes for intIDs of size 4-bytes with an ensemble size
of 1000. Once the offset corresponding to an intID is retrieved from
the B+ tree, we fetch the label from that offset in the flatfile contain-
ing alphanumerically sorted labels. Notice here that as described in
Section 2.1, our intID assignment to the labels is label sort-order
preserving. In turn, the offsets of these strings within the flatfile
are order preserving too, i.e., intID (label1) < intID (label2) ⇒ off-
set (label1) < offset (label2). We make use of this observation, and
propose an optimization to the reverse lookups as given in the
following section.

3.4 Bulk Reverse Lookups
Recall from Section 1 and 2, that a forward ⟨hash1 (label),hash2 (label)⟩
→ intID (label) dictionary is used to convert the fixed labels in a
SPARQL BGP query into their respective intIDs. Even if we assume
a very large complex SPARQL BGP query, the number of labels in
such a query still remains quite small, e.g., 5-10 labels. However,
the reverse intID (label) → offset(label) dictionary is required to
map the results of a SPARQL BGP query in the intID form, back
to their respective labels. These can vary from 10s of results to
even a million results, depending on the selectivity of the query10.
Thus unlike the forward dictionary lookups, the reverse dictionary
lookups can be several hundreds of them, and hence can have a
high impact on the “end-to-end” query execution time. Referring
back to our points mentioned in Section 1, owing to these perfor-
mance intensive reverse dictionary lookups, BitMat [5] system in
its experiments has only reported BGP query execution and result
generation times over intIDs alone, and not in the end user legible
labels form. Also the authors of the BitMat system have reported
that RDF-3X’s reverse dictionary lookups take much longer than
BGP query execution times.

Noting these challenges, we propose a novel way of doing bulk
lookups for each SPARQL query results. Before describing our bulk
lookup method, we make some observations about the characteris-
tics of a SPARQL BGP query results, which make the foundation of
our bulk lookup method.

Each result of a SPARQL BGP query consists of a list of intIDs,
which are the bindings of the join variables in the query. E.g., the
query given in Figure 1, along with the forward dictionary mapping
given in Figure 2, generates one result {2, 5}, where 2 and 5 are
the intIDs assigned to :Julia and :Seinfeld labels. Thus, :Julia and
:Seinfeld are the bindings for the join variables ?friend and ?sitcom
in the BGP query. Hence to answer this query in the user-legible

10Queries that generate small number of results are considered to be more selective
than those which generate a large number of results.

form, we need to do a reverse mapping of 2 → :Julia and 5 →
:Seinfeld.

Whenwe have a complex BGP query that generates many results,
some (or many) of the results share the same variable binding intIDs.
E.g., if a SPARQL BGP query generates three results as {1001, 3456},
{1001, 2345}, {1001, 1234}, then 1001 value is shared among all the
three results, and the total unique intIDs to look up are four instead
of six. While mapping the intIDs to their respective labels, a naïve
way is to lookup the reverse ensemble of B+ tree for each generated
intID, in the same sequence in which they are generated by the BGP
query processor. However, as we can be readily notice, this requires
redundant lookups of the intIDs that are common among multiple
results. E.g., in the above example, intID 1001 is looked up thrice –
once for each set of intIDs. When the query is complex, and over a
very large RDF graph, many results share common intIDs. Thus in
order to avoid redundant lookups of intIDs shared across multiple
results, we propose the following optimization method.

Instead of searching the reverse mapping for every intID, we
first collect all the results of a SPARQL BGP query in the intID form,
and store them in a flatfile, and sort all the intIDs numerically. E.g.,
in case of our example above, we first store the three results {1001,
3456}, {1001, 2345}, {1001, 1234}, and then create a sorted list of intIDs
as [1001, 1234, 2345, 3456]. Then we lookup the reverse ensemble
B+ trees for each of these sorted intIDs. It is important to note that
with this we make use of a beneficial feature of the B+ trees – if the
subsequent search-keys of a B+ tree are all sorted and known ahead
of time, then we can simply do a sequential scan on the leaves of the
B+ trees. As mentioned in Section 3.3, the retrieved corresponding
offsets of the intIDs are all in the sorted order too. Thus essentially
retrieving the labels from the offset positions is nothing but doing a
single sequential scan on this flatfile. This technique avoids random
disk (memory) accesses, and reduces the I/O overheads to a large
extent. The benefits of this technique are clearly visible in our
experimental results shown in Table 4 in Section 4.4.

We cache these retrieved labels in main-memory. Once all the
labels are retrieved, wemake a single pass over the original SPARQL
BGP query results in the intID form, that are stored separately
(either in memory or in a flatfile), and generate the respective BGP
query results in the user-legible label format. SPARQL BGP query
results can range from few hundred to even a few million, which
means we may have to lookup about a million intIDs and cache
their respective labels in memory. In our observation, if labels are
not very long, they can be cached in main-memory even on a
commodity computer. E.g., for the DBPedia RDF graph, average
label length is 75 bytes. Thus a even up to a million labels consume
only about 72 MB memory.

Additionally, when the bulk lookup intIDs are all in a sorted order,
we can exploit the multi-core architecture, by splitting the lookups
across multiple threads, and further reducing the lookup times.
For the scope of this paper, we have only used single-threaded
implementation for the sorted bulk reverse lookups. Multi-core
parallel bulk lookups is part of our future work.

Efficient RDF Dictionaries with B+ Trees CoDS-COMAD ’18, January 11–13, 2018, Goa, India

4 EXPERIMENTS
In this section we present our experiments to test and character-
ize the performance of our forward and reverse dictionaries and
optimization methods.

4.1 Environment
We ran all of our experiments on an Intel Core i7 octa core 2.8 GHz
processor with 32 GB RAM, 32 GB swap space, and a 2 TB Western
Digital SATA HDD. Our code was developed using C/C++ as the
programming language, and compiled using gcc and g++ version
5.4.0 on a 64 bit 4.4.0-91-generic Linux kernel with Ubuntu 16.04.1
LTS distribution.

4.2 Dataset
For the experiments, we used a real-life DBPedia RDF graph11, and
extracted 126,444,964 unique node labels from it, for building our
forward and reverse dictionaries. Recall from Section 2.1 that we
first sort all the labels in an alphanumeric order and maintain a
flatfile of these sorted labels with a unique label on each line. The
on-disk size of this flatfile is 9 GB.

4.3 Performance Metrics
For the evaluation of our optimization techniques, we used the
following metrics:

(1) Construction time for the forward and reverse dictionaries
together, across varying sizes of ensembles, as well as vary-
ing the amount of parallelization in the construction, i.e.,
multi-core construction.

(2) Time taken for the forward and reverse lookup across vary-
ing number of queries, as well as varying sizes of the ensem-
bles.

(3) Time taken for sorted bulk reverse lookups (refer to Section
3.4), as well as the respective unsorted random lookups
across varying number of queries.

Tables 1, 2, 3, and 4 summarize our experiments using the above
evaluation metrics, and in the next section, we discuss them in
detail.

4.4 Discussion
For the forward dictionary we set the order of the B+ trees in the
ensemble to be 150 taking into account the 16 byte key size and 8
byte pointer (to the child node), and similarly set the order to be 220
for the reverse dictionary, with 4 byte intID search key and 8 byte
pointer. The order of the forward or reverse B+ trees can be changed
from one dataset to another depending on the requirements such
as the total number of labels and size of the search key. We vary
the size of the ensemble from just one B+ tree – a single giant B+
tree containing all the search-keys – to 9561 smaller B+ trees. Table
1 shows our total construction time for the forward and reverse
dictionaries, over varying sizes of the ensembles, using a single
core (single thread) implementation.

Recall from Section 2.5 that creating an ensemble aids in reducing
the height of the each smaller B+ tree in the ensemble. Thus, it
is evident from Table 1 that an ensemble of size 9561 reduces the
11http://wiki.dbpedia.org/news/dbpedia-based-rdf-dumps-wikidata

Ensemble size Height Constr time (minutes)
1 3 222
10 3 117
96 2 73
956 2 65
9561 1 53

Table 1: Construction time, B+ tree height, of forward and
reverse dictionaries together (single thread)

height of the tree to just 1 as opposed to an ensemble of size 1. Also
the construction time reduces as the size of the ensemble increases,
because while inserting a new key-value pair in each smaller B+
tree, the height of the tree to be traversed remains small. Hence
it can be noted that the construction time from ensemble of size
1 to size 9561 reduces by about 75% (222 minutes for ensemble
size 1 versus 53 minutes for ensemble size 9561), with just a single-
threaded (single core) implementation12.

#Threads Constr time (minutes)
1 65
2 38
4 22
8 15

Table 2: Parallel construction of an ensemble of size 956

Creating an ensemble also allows us to parallelize the construc-
tion of each smaller B+ tree, using multiple threads and exploiting
the multi-core hardware architecture. Hence we conducted sepa-
rate experiments by keeping the size of the ensemble the same,
and gradually increasing the parallelization factor from using just
a single thread, to eight threads. Table 2 shows that construction
time for an ensemble of size 956 reduces by about 75% when we
use eight threads instead of just one thread.

Next, to test the lookup performance of our dictionaries, we
ran varying number of bulk lookups across varying sizes of the
ensembles of forward and reverse dictionaries (refer to Section 3.4
for our bulk reverse lookup procedure). Table 3 summarizes the
results of our experiments. We setup these experiments as follows.
To run 100,000 bulk reverse lookups, we first randomly generated
100,000 intIDs in the range of 1–126,444,964 (total labels in DBPedia).
Then we sorted them, and performed bulk reverse lookups. For the
scope of this paper, we ran all the bulk reverse lookups using only a
single-threaded (single core) implementation. Through these bulk
reverse lookups, we retrieved the respective offsets of the labels
associated with the intIDs, and fetched those respective 100,000
labels from the flatfile, and stored them separately to be used in our
forward lookup experiments as described further.

To account for the CPU scheduling and system time, we gen-
erated five different sets of 100,000 intIDs, ran each set of lookups
five times, and then took an average over all the five sets of bulk
lookups and their respective five runs. While reporting these times,
12For these experiments we did not use the well-known B+ tree bulk loading method.

 http://wiki.dbpedia.org/news/dbpedia-based-rdf-dumps-wikidata

CoDS-COMAD ’18, January 11–13, 2018, Goa, India Gurkirat Singh, Dhawal Upadhyay, and Medha Atre

Ensemble
Size

Bulk Lookups 100,000 1,000,000 10,000,000

Forward Reverse Forward Reverse Forward Reverse
1 0.79 0.58 7.88 5.39 77.41 53.18
10 0.76 0.73 7.55 6.80 74.97 64.31
96 0.58 0.46 5.78 4.20 56.92 40.50
956 0.57 0.44 5.37 4.08 52.32 40.08
9561 0.44 0.45 3.93 3.91 38.14 31.62

Table 3: Forward and reverse lookup time (seconds) using single-thread across varying sizes of ensembles for varying number
of queries. Times averaged over multiple query sets and multiple runs, please see the text for the details.

we have only considered the B+ tree ensemble lookup times, and
did not count the lookup time into the alphanumerically sorted
flatfile of all the labels. We repeated the same procedure for the
1,000,000 and 10,000,000 lookups. For the 100,000 forward lookups,
we used the 100,000 labels retrieved through bulk reverse lookups
that we stored separately (as described above). Similar to the reverse
lookups, we ran the lookups five times, and then took an average of
these lookup times. We repeated similar experiments for 1,000,000
and 10,000,000 forward lookups.

#Lookups Sorted Bulk Random
100,000 0.44 0.65
1,000,000 4.08 6.50
10,000,000 40.08 64.30

Table 4: Bulk sorted reverse lookup versus corresponding
random reverse lookup times (seconds), ensemble size 956,
single-threaded

The effect of our optimizations of creating an ensemble is clearly
visible by seeing the decrease in the amount of time required to
perform bulk lookups, e.g., lookup time for 100,000 reverse lookups
is 0.58 sec with an ensemble of size 1, whereas with an ensemble of
size 9561, this lookup time has decreased to 0.45 sec. It is important
to also note that for a smaller number of lookups the difference in
the times across varying sizes of ensemble is small. However, as
the number of lookups increase, this difference in the time from a
smaller to larger sized ensemble is significant, e.g., for 10,000,000
lookups, with an ensemble of size 1, the lookups take 53.18 sec,
whereas with an ensemble of 9561, the lookup time is reduced to
31.62 sec. Thus our optimization method of ensemble creation can
fetch significant benefits for low-selectivity queries that generate
a large number of results (and hence a large number of reverse
lookups).

Next, we performed experiments to measure the effectiveness
of our optimization technique of bulk sorted reverse lookups (see
Section 3.4), by varying the number of lookups, and keeping the
size of the ensemble the same. Using the same procedure as de-
scribed before, we generated 100,000 intIDs randomly in the range
of 1–126,444,964. However, for this experiment, instead of sorting
all the intIDs before bulk lookups, we performed lookups using the

same random order in which the intIDs are generated. Table 4 high-
lights the benefits of our bulk reverse lookup methods over random
lookups. It is important to note here as well, that the difference
between the sorted bulk and random lookups for a small number
of lookups, say 100,000, is smaller. For a large number of lookups,
say 10,000,000, the difference is significant, 64.30 sec for random
lookups whereas 40.08 sec for sorted bulk reverse.

Recall from Section 2.3 that we use ⟨hash1 (label),hash2 (label)⟩
as the search-key inside the forward dictionary, instead of using
the very label. We did this optimization, to (1) maintain the same
search-key size and, (2) to reduce the search key size, and in turn the
forward dictionary size. For the DBPedia RDF graph, the average
size of the label is 75 bytes, whereas the hash-based search-key is 16
bytes. In order to evaluate the benefits of this optimization, we do
the simple math for the DBPedia’s 126,444,964 labels. With 16 byte
search-key, 8 byte pointer for the child, the order of this B+ tree
can be set to 150. Absolute storage space required for this B+ tree’s
internal and leaf nodes will be about 2.5 GB. Whereas a forward
dictionary built with labels as the search key will have an order
of 45 (recall our formula of deciding the order from Section 2.2).
With 75 bytes as the average search key size, 8 bytes for pointer,
and order 45, this B+ tree will consume approximately 9.6 GB.

We summarize our experimental results, and observations as
follows.

(1) The experimental results in Table 1 show that our optimiza-
tion technique of creating an ensemble of B+ trees for forward
and reverse dictionaries is beneficial for reducing the overall
height of the ensemble, as well as reducing the single-threaded
construction time.

(2) Results in Table 2 highlight the benefits of our technique of
multi-core construction of the ensemble.

(3) With the results in Table 3, we see that creation of an en-
semble of B+ trees significantly reduces the bulk lookup
times, especially as the number of lookups grow higher.
This is specifically beneficial for low-selectivity SPARQL BGP
queries, that generate a large number of results, and in turn
require a large number of reverse lookups.

(4) Finally, with the results in Table 4, we see that our tech-
nique of sorted bulk reverse lookups, specifically targeted
at SPARQL BGP queries, significantly reduces the reverse
lookup times, over random lookups of the same intIDs. Thus

Efficient RDF Dictionaries with B+ Trees CoDS-COMAD ’18, January 11–13, 2018, Goa, India

sorted bulk reverse lookup technique can improve the end-to-
end user experience, by reducing the overall SPARQL query
processing times (please refer to Section 1).

5 RELATEDWORK
B+ trees have been one of the most popular and widely used data
structures in the research community. B trees are similar to B+
trees where the values are stored along with the search-keys in the
internal nodes of the tree. Among the SPARQL query processing
systems, BitMat [5] does not support dictionaries. RDF-3X [9] and
TripleBit [12] support dictionaries. However, as pointed out in Sec-
tion 1, the performance of their dictionaries has not been optimized,
and that is the focus of our paper, to improve the end-to-end user
experience of RDF and SPARQL query processors.

In [10], Nguyen et al have proposed a combination of B+ trees
and hash-tables for indexing the RDF graphs. The focus of that
work is on the indexing of the RDF graphs, whereas in our work,
we have predominantly focused on optimizations for maintaining
the forward and reverse dictionaries.

Work by Martínez-Prieto et al [8] comes closest to ours. In their
work, they have focused on the compression techniques for the RDF
dictionaries using their Dcomp method. The sizes of the datasets
used in their dictionaries range from 5 million to 67 million labels.
We have performed our experiments on a set of 126 million DBPedia
labels. Also notably, the compressed size of their largest dataset of 67
million labels, is 6.96 GB, and our forward and reverse dictionaries
over 126 million labels are sized at 10 GB (including any metafiles).
Additionally, in our work, we have proposed specific optimization
techniques like ensemble B+ trees, and parallel construction using
the multi-core architecture.

6 FUTUREWORK AND CONCLUSION
In this paper, we presented several optimization techniques to build
efficient dictionaries for the RDF graphs data. Our techniques in-
clude (1) ensemble of B+ trees, (2) converting string labels to hash-
based search keys, (3) parallel construction of the ensemble using
multi-core hardware architecture, and (4) optimized bulk reverse
lookups.

As a part of the future work, we would like to build a robust
hash-function to thwart possible collisions while indexing very
large RDF graph’s labels. In this work, we have not focused on
any proactive page-caching strategies to avoid the disk I/Os. In our
present work, we relied on file system caches, and warm cache
benefits. In the future, we plan to specifically look at the active
caching strategies.

To conclude, in this paper we have presented several new op-
timization strategies focusing on building efficient RDF dictionar-
ies to improve the end-to-end user experience of SPARQL query
processing. Our extensive set of experiments show that our opti-
mization strategies show significant benefits over naïve methods,
especially for the RDF/SPARQL specific workloads. Our proposed
optimization techniques are independent of any underlying RDF
graph indexing methods, and hence can be used by any system that
requires label→ ID and reverse mapping dictionaries.

REFERENCES
[1] [n. d.]. MonetDB. http://www.monetdb.org/. ([n. d.]).
[2] [n. d.]. Virtuoso Opensource Edition. http://virtuoso.openlinksw.com/dataspace/

doc/dav/wiki/Main/. ([n. d.]).
[3] Medha Atre. 2015. Left Bit Right: For SPARQL Join Queries with OPTIONAL

Patterns (Left-outer-joins). In SIGMOD.
[4] Medha Atre. 2016. For the DISTINCT clause of SPARQL queries. InWWW (posters

and demos).
[5] Medha Atre, Vineet Chaoji, Mohammed J. Zaki, and James A. Hendler. 2010.

Matrix “Bit”loaded: A Scalable Lightweight Join Query Processor for RDF Data.
In WWW.

[6] Medha Atre, Jagannathan Srinivasan, and James A. Hendler. 2008. BitMat: A
Main-memory Bit Matrix of RDF Triples for Conjunctive Triple Pattern Querie.
In ISWC (posters and demos).

[7] Richard Cyganiak. 2005. A Relational Algebra for SPARQL. Technical Report, HP
Laboratories Bristol HPL-2005-170 (2005).

[8] Miguel A. Martínez-Prieto, Javier D. Fernández, and Rodrigo Cánovas. 2012.
Querying RDF Dictionaries in Compressed Space. SIGAPP Appl. Comput. Rev. 12,
2 (June 2012).

[9] Thomas Neumann and Gerhard Weikum. 2009. Scalable join processing on very
large RDF graphs. In SIGMOD.

[10] Minh Khoa Nguyen, Cosmin Basca, and Abraham Bernstein. 2010. B+Hash Tree:
Optimizing query execution times for on-Disk Semantic Web data structures. In
SSWS workshop at International Semantic Web Conference.

[11] Lefteris Sidirourgos et al. 2008. Column-store support for RDF data management:
not all swans are white. In PVLDB.

[12] Pingpeng Yuan, Pu Liu, Buwen Wu, Hai Jin, Wenya Zhang, and Ling Liu. 2013.
TripleBit: A Fast and Compact System for Large Scale RDF Data. In PVLDB.

http://www.monetdb.org/
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/

	Abstract
	1 Introduction
	2 Building the Dictionaries
	2.1 ID assignment for labels
	2.2 Disk based B+ Tree
	2.3 Forward Dictionary
	2.4 Reverse Dictionary
	2.5 Ensemble of B+ trees
	2.6 Parallel Construction

	3 Lookups
	3.1 Forward Lookups
	3.2 Range Lookups
	3.3 Reverse Lookups
	3.4 Bulk Reverse Lookups

	4 Experiments
	4.1 Environment
	4.2 Dataset
	4.3 Performance Metrics
	4.4 Discussion

	5 Related Work
	6 Future Work and Conclusion
	References

