
Aug 30, 2017 CS698F Adv Data Mgmt 1

CS698F Advanced Data Management

Instructor: Medha Atre

Aug 30, 2017 CS698F Adv Data Mgmt 2

Reminder and Recap

● Reminder – Assignment-1 papers/topics due tonight
(23:59) by email.

● Graphs can be represented by tables or adjacency
matrices

● Join operator can be abstracted out to make it work with
different underlying data structures.

Aug 30, 2017 CS698F Adv Data Mgmt 3

A graph pattern query

Aug 30, 2017 CS698F Adv Data Mgmt 4

Abstraction of join queries

Π
E.name, D.dname

⋈
T1.O=T2.S

⋈
T2.O=T3.S

T1 T2

T3σ
S=":Jerry" && P=":hasFriend" σ

P=":"actedIn

σ
O=":NewYorkCity" && P=":location"

The access data structure
can be anything, an index,
a table, an adjacency list!

Join methods can be abstracted
out accordingly.

Index, table, adj matrix,
adj list

Index, table, adj matrix,
adj list

Index, table, adj matrix,
adj list

Aug 30, 2017 CS698F Adv Data Mgmt 5

Indexing adjacency matrices

Aug 30, 2017 CS698F Adv Data Mgmt 6

1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

:hasFriend

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

:locatedIn

:actedIn

?friend

?f
rie

nd

?sitcom

?s
itc

o
m

:J
er

ry

:NewYorkCity

Aug 30, 2017 CS698F Adv Data Mgmt 7

1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

Multi-way join

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

:actedIn?friend

?f
rie

nd

?sitcom

?s
itc

o
m

:J
er

ry

:NewYorkCity

Match (11, 1) from first matrix to (1,…) in the second matrix => (11, 1), (nothing) => Because first row in second matrix is empty
So backtrack, match (11, 2) from the first matrix to (2,…) in the second => (11, 2), (2, 3)
Now match (2, 3) from second matrix to (3,…) from the third => (3, 7) => All matrices matched, so we have one result
(11, 2), (2, 3) (3, 7) => (:Jerry, Julia), (:Julia, :Seinfeld), (:Seinfeld, :NewYorkCity)

Aug 30, 2017 CS698F Adv Data Mgmt 8

Multi-way join

● Similar to nested-loop joins

● All of which are executed in pipelined fashion!

● Assumes that all the data is in memory?

– Can you make some exceptions to this requirement?

● 2D matrix is like an index

– Since we do semi-joins, it remains in tact despite semi-joins.

– Does not happen so with joins.

Aug 30, 2017 CS698F Adv Data Mgmt 9

Graph of Tables

:Jerry :hasFriend ?friend

?friend :actedIn ?sitcom ?sitcom :location :NewYorkCity

?friend

?sitcom

If this graph is acyclic construct a rooted spanning tree over it, such that
the tables with smaller number of tuples are leaves.
Then start with the leaves and their neighbors and perform semi-joins

Aug 30, 2017 CS698F Adv Data Mgmt 10

Graph of Tables

:Jerry :hasFriend ?friend

?friend :actedIn ?sitcom ?sitcom :location :NewYorkCity

?friend

?sitcom

This can be a root

Aug 30, 2017 CS698F Adv Data Mgmt 11

Graph of Tables

:Jerry :hasFriend ?friend

?friend :actedIn ?sitcom ?sitcom :location :NewYorkCity

?friend

?sitcom

This can be a root

Aug 30, 2017 CS698F Adv Data Mgmt 12

Graph of Tables

:Jerry :hasFriend ?friend

?friend :actedIn ?sitcom ?sitcom :location :NewYorkCity

?friend

?sitcom

This can be a root

Aug 30, 2017 CS698F Adv Data Mgmt 13

Graph of Tables

:Jerry :hasFriend ?friend

?friend :actedIn ?sitcom ?sitcom :location :NewYorkCity

?friend

?sitcom

Root T1

Leaf T3
Do a first semi-join of T2 T3 =>⋉
Take row-vector of T3 and col-vect of T2
Boolean AND of the two
Unfold the results on T2

Aug 30, 2017 CS698F Adv Data Mgmt 14

Graph of Tables

:Jerry :hasFriend ?friend

?friend :actedIn ?sitcom ?sitcom :location :NewYorkCity

?friend

?sitcom

Do the second semi-join of T1 T2 =>⋉
Take row-vector of T2 and col-vect of T1
Boolean AND of the two
Unfold the results on T1

Aug 30, 2017 CS698F Adv Data Mgmt 15

Graph of Tables

:Jerry :hasFriend ?friend

?friend :actedIn ?sitcom ?sitcom :location :NewYorkCity

?friend

?sitcom

Do the third semi-join of T2 T1 => Take row-vector of T2 and col-vect of T1⋉
Boolean AND of the two, unfold the results on T2, then do the same with T2 and T3

Aug 30, 2017 CS698F Adv Data Mgmt 16

Graph of Tables

:Jerry :hasFriend ?friend

?friend :actedIn ?sitcom ?sitcom :location :NewYorkCity

?friend

?sitcom

Once done with semi-joins, perform multi-way-pipelined join. Starting from any table/matrix,
continue recursively matching the cells from its neighbors, output one result when done
matching across all matrices.
When matched all the cells in all the matrices → you have generated all the results

Matrix

Matrix Matrix

Aug 30, 2017 CS698F Adv Data Mgmt 17

Cyclic graph of tables

?student :hasAdvisor ?prof

?student :takesCourse ?course ?prof :teaches ?course

?student

?course

?prof

Aug 30, 2017 CS698F Adv Data Mgmt 18

Cyclic graph of tables

:Rajesh :hasAdvisor :Atre
:Suresh :hasAdvisor :Ganguly
:Atre :teaches :CS698F
:Ganguly :teaches :CS771
:Rajesh :takesCourse :CS771
:Suresh :takesCourse :CS698F

:Rajesh → 1, :Suresh → 2, :Atre → 3,
:Ganguly → 4, :CS771 → 5, :CS698F → 6

1

1

1

1

?s
tu

de
nt

?prof

?p
ro

f

?course

1

1

?s
tu

de
nt

?course

Aug 30, 2017 CS698F Adv Data Mgmt 19

Cyclic graph of tables

1

1

1

1

?s
tu

de
nt

?prof

?p
ro

f

?course

1

1

?s
tu

de
nt

?course

Root

1 1

1 1

Row vecs for
?student

1 1

1 1
Col vecs for
?course

Nothing changes!

Aug 30, 2017 CS698F Adv Data Mgmt 20

Multi-way-join cyclic queries

1

1

1

1

?s
tu

de
nt

?prof

?p
ro

f

?course

1

1

?s
tu

de
nt

?course

Root

(1, 3) match (3,…) → (1, 3), (3, 6)
Match (3, 6) to (…., 6)
(1, 3), (3, 6), (2, 6)

WAIT!
Mismatch in (1, 3) (2, 6)
Discard the match, and backtrack.

3rd row in mat-2 has only 1 bit, so
again backtrack.

(2, 4) match (4,…) → (2, 4), (4, 5)
Match (4, 5) to (…, 5)
(2, 4) (4, 5) (1, 5) mismatch!

1

2

Aug 30, 2017 CS698F Adv Data Mgmt 21

Redundant cycles

?student :takesCourse ?course

?student :hasAdvisor ?adv ?student :residence ?hostel

?student

?student

?student

Aug 30, 2017 CS698F Adv Data Mgmt 22

Data compression

● Adjacency matrices are very sparse.

● Few 1 bits and lot of 0 bits.

● Compression techniques

– Run-length-encoding

– Byte-aligned Bitmap Code (BBC)

– Word Aligned Hybrid (WAH)

– Patitioned Word-Aligned Hybrid (PWAH)

– Others

Aug 30, 2017 CS698F Adv Data Mgmt 23

Run-length-encoding

1 1 1

[0] 4 1 3 1 3 1

1 1 1 1 1 1

[1] 3 6 1 6 1 2 1

1 1 1

5, 10, 14

Aug 30, 2017 CS698F Adv Data Mgmt 24

Delta-encoding

1234, 1236, 1240, 2000, 2011, 2015…...

1234, 2, 4, 760, 11, 4…...
Only very first integer requires
4 bytes. The following integers
can be stored using 2 bytes.

Used in B+ tree clustered indexes

Can you use it in unclustered indexes?

Can you use it in hash-indexes?

Aug 30, 2017 CS698F Adv Data Mgmt 25

Handling compressed data

● How to do Boolean AND/OR on compressed bitvector?

– Without uncompressing, go on reading run-lengths

– e.g. [0] 3 1 3 AND [1] 1 3 1 => [0] 3… slide the window

– [1] 1 3... AND [0] 1 1 => [0] 1 add to the prev => [0] 4… so on

– For very sparse vs dense vector, go over set bits in sparse vector
and check respective set bits in dense one (AND)

– OR on dense vectors expensive

● How to do a join on delta-encoded index?

