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CS698F Advanced Data Management

Instructor: Medha Atre
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Reminder and Recap

● Reminder – Assignment-1 papers/topics due tonight 
(23:59) by email.

● Graphs can be represented by tables or adjacency 
matrices

● Join operator can be abstracted out to make it work with 
different underlying data structures.
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A graph pattern query
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Abstraction of join queries

Π
E.name, D.dname

⋈
T1.O=T2.S

⋈
T2.O=T3.S

T1 T2

T3σ
S=":Jerry" && P=":hasFriend" σ

P=":"actedIn

σ
O=":NewYorkCity" && P=":location"

The access data structure
can be anything, an index,
a table, an adjacency list!

Join methods can be abstracted
out accordingly.

Index, table, adj matrix,
adj list

Index, table, adj matrix,
adj list

Index, table, adj matrix,
adj list
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Indexing adjacency matrices
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1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

:hasFriend

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

:locatedIn

:actedIn

?friend

?f
rie

nd

?sitcom

?s
itc

o
m

:J
er

ry

:NewYorkCity
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1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

Multi-way join

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

:actedIn?friend

?f
rie

nd

?sitcom

?s
itc

o
m

:J
er

ry

:NewYorkCity

Match (11, 1) from first matrix to (1,…) in the second matrix => (11, 1), (nothing) => Because first row in second matrix is empty
So backtrack, match (11, 2) from the first matrix to (2,…) in the second => (11, 2), (2, 3)
Now match (2, 3) from second matrix to (3,…) from the third => (3, 7) => All matrices matched, so we have one result
(11, 2), (2, 3) (3, 7) => (:Jerry, Julia), (:Julia, :Seinfeld), (:Seinfeld, :NewYorkCity)
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Multi-way join

● Similar to nested-loop joins

● All of which are executed in pipelined fashion!

● Assumes that all the data is in memory?

– Can you make some exceptions to this requirement?

● 2D matrix is like an index

– Since we do semi-joins, it remains in tact despite semi-joins.

– Does not happen so with joins.
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Graph of Tables

:Jerry :hasFriend ?friend

?friend :actedIn ?sitcom ?sitcom :location :NewYorkCity

?friend

?sitcom

If this graph is acyclic construct a rooted spanning tree over it, such that
the tables with smaller number of tuples are leaves.
Then start with the leaves and their neighbors and perform semi-joins
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Graph of Tables

:Jerry :hasFriend ?friend

?friend :actedIn ?sitcom ?sitcom :location :NewYorkCity

?friend

?sitcom

This can be a root
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Graph of Tables

:Jerry :hasFriend ?friend

?friend :actedIn ?sitcom ?sitcom :location :NewYorkCity

?friend

?sitcom

This can be a root
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Graph of Tables

:Jerry :hasFriend ?friend

?friend :actedIn ?sitcom ?sitcom :location :NewYorkCity

?friend

?sitcom

This can be a root
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Graph of Tables

:Jerry :hasFriend ?friend

?friend :actedIn ?sitcom ?sitcom :location :NewYorkCity

?friend

?sitcom

Root T1

Leaf T3
Do a first semi-join of T2  T3 =>⋉
Take row-vector of T3 and col-vect of T2
Boolean AND of the two
Unfold the results on T2
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Graph of Tables

:Jerry :hasFriend ?friend

?friend :actedIn ?sitcom ?sitcom :location :NewYorkCity

?friend

?sitcom

Do the second semi-join of T1  T2 =>⋉
Take row-vector of T2 and col-vect of T1
Boolean AND of the two
Unfold the results on T1
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Graph of Tables

:Jerry :hasFriend ?friend

?friend :actedIn ?sitcom ?sitcom :location :NewYorkCity

?friend

?sitcom

Do the third semi-join of T2  T1 => Take row-vector of T2 and col-vect of T1⋉
Boolean AND of the two, unfold the results on T2, then do the same with T2 and T3



Aug 30, 2017 CS698F Adv Data Mgmt 16

Graph of Tables

:Jerry :hasFriend ?friend

?friend :actedIn ?sitcom ?sitcom :location :NewYorkCity

?friend

?sitcom

Once done with semi-joins, perform multi-way-pipelined join. Starting from any table/matrix,
continue recursively matching the cells from its neighbors, output one result when done
matching across all matrices.
When matched all the cells in all the matrices → you have generated all the results

Matrix

Matrix Matrix



Aug 30, 2017 CS698F Adv Data Mgmt 17

Cyclic graph of tables

?student :hasAdvisor ?prof

?student :takesCourse ?course ?prof :teaches ?course

?student

?course

?prof
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Cyclic graph of tables

:Rajesh :hasAdvisor :Atre
:Suresh :hasAdvisor :Ganguly
:Atre :teaches :CS698F
:Ganguly :teaches :CS771
:Rajesh :takesCourse :CS771
:Suresh :takesCourse :CS698F

:Rajesh → 1, :Suresh → 2, :Atre → 3,
:Ganguly → 4, :CS771 → 5, :CS698F → 6

1

1

1

1

?s
tu

de
nt

?prof

?p
ro

f

?course

1

1

?s
tu

de
nt

?course
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Cyclic graph of tables

1

1

1

1

?s
tu

de
nt

?prof

?p
ro

f

?course

1

1

?s
tu

de
nt

?course

Root

1 1

1 1

Row vecs for
?student

1 1

1 1
Col vecs for
?course

Nothing changes!
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Multi-way-join cyclic queries

1

1

1

1

?s
tu

de
nt

?prof

?p
ro

f

?course

1

1

?s
tu

de
nt

?course

Root

(1, 3) match (3,…) → (1, 3), (3, 6)
Match (3, 6) to (…., 6)
(1, 3), (3, 6), (2, 6)

WAIT!
Mismatch in (1, 3) (2, 6)
Discard the match, and backtrack.

3rd row in mat-2 has only 1 bit, so
again backtrack.

(2, 4) match (4,…) → (2, 4), (4, 5)
Match (4, 5) to (…, 5)
(2, 4) (4, 5) (1, 5) mismatch!

1

2
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Redundant cycles

?student :takesCourse ?course

?student :hasAdvisor ?adv ?student :residence ?hostel

?student

?student

?student
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Data compression

● Adjacency matrices are very sparse.

● Few 1 bits and lot of 0 bits.

● Compression techniques

– Run-length-encoding

– Byte-aligned Bitmap Code (BBC)

– Word Aligned Hybrid (WAH)

– Patitioned Word-Aligned Hybrid (PWAH)

– Others
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Run-length-encoding

1 1 1

[0] 4 1 3 1 3 1

1 1 1 1 1 1

[1] 3 6 1 6 1 2 1

1 1 1

5, 10, 14
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Delta-encoding

1234, 1236, 1240, 2000, 2011, 2015…...

1234, 2, 4, 760, 11, 4…...
Only very first integer requires
4 bytes. The following integers
can be stored using 2 bytes.

Used in B+ tree clustered indexes

Can you use it in unclustered indexes?

Can you use it in hash-indexes?
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Handling compressed data

● How to do Boolean AND/OR on compressed bitvector?

– Without uncompressing, go on reading run-lengths

– e.g. [0] 3 1 3 AND [1] 1 3 1 => [0] 3… slide the window

– [1] 1 3... AND [0] 1 1 => [0] 1 add to the prev => [0] 4… so on

– For very sparse vs dense vector, go over set bits in sparse vector 
and check respective set bits in dense one (AND)

– OR on dense vectors expensive

● How to do a join on delta-encoded index?


