
Aug 18, 2017 CS698F Adv Data Mgmt 1

CS698F Advanced Data Management

Instructor: Medha Atre



Aug 18, 2017 CS698F Adv Data Mgmt 2

Recap

● Query rewriting a.k.a. considering various query plans for the same 
effective results.

– Relational algebraic equivalences help

● Indexes on the tables a.k.a. access methods

– Types of indexes – B+ trees, Hash index, others we will see in the contexts of 
different data types.

● Join methods and their costs

– Nested-loop, sort-merge, index-nested-loop join, hash join etc.

● Finally combining the above two together for cost optimization.



Aug 18, 2017 CS698F Adv Data Mgmt 3

Types of joins

● Block-nested-loop join
– When none of the tables have indexes and none of them are sorted on the join attributes.

● Index-nested-loop join

– When one relation has an index on the join attribute.

● Merge-join

– When both the relations have respective indexes on the joined attributes.

● Sort-merge-join

– Sort both the relations on the join attribute first and then merge.

● Hash-join

– Partition the attribute values from both the tables into k buckets and then join pairwise bucket.



Aug 18, 2017 CS698F Adv Data Mgmt 4

Cost estimation in detail

Π
E.name, D.dname

σ
did="CSE"

⋈
ssn

⋈
did

W E

D

SELECT E.name, 
D.dname
FROM WorksIn2 as 
W, Employees as E, 
Department as D
WHERE

W.did="CSE" AND 
W.did=D.did AND 
W.ssn=E.ssn

Π
E.name, D.dname

σ
did="CSE"

⋈
ssn

⋈
did

W

E

D



Aug 18, 2017 CS698F Adv Data Mgmt 5

Cost estimation

Π
E.name, D.dname

σ
did="CSE"

⋈
ssn

⋈
did

W E

D

● Consider first join ⋈ssn

– Does W and E have an index on ssn?

– Is ssn the primary key of any of the relations?

● From the above, estimate the number of 
tuples to be processed.

● Using #tuples (in turn #pages), consider 
various join methods

– Estimate the cost of various joins

– Pick the least cost one store this cost in a 
dynamic prog memoization table!



Aug 18, 2017 CS698F Adv Data Mgmt 6

Cost estimation

Π
E.name, D.dname

σ
did="CSE"

⋈
ssn

⋈
did

W E

D

● Move a step higher – selection condition 
σdid="CSE"

– No index, tuplewise scan over temp table 
of prev join

– Cost: No added cost!
● Why?

● #tuple estimates: thumb rule 1/10 * #tuple 
estimates from prev join.

● Move a step higher – join condition

– Similar analysis as previous join



Aug 18, 2017 CS698F Adv Data Mgmt 7

Cost estimation

● Consider σdid="CSE"

– Does W have an index on did?

● #tuple estimates:

– If index: exact # tuples

– If not: 1/10 of all tuples

● Move a step higher – join ⋈ssn

– Take #tuples estimate from prev selection

– Does E have an index on ssn?

– Consider various join plans with #tuples from W after 
selection and from E (depending on if index or not)

● So on…..

Π
E.name, D.dname

σ
did="CSE"

⋈
ssn

⋈
did

W

E

D



Aug 18, 2017 CS698F Adv Data Mgmt 8

Thumbrules!

● Thumbrules WHERE clause:

● Column = value (selection)

– If index: 1/Nkeys(I) * #tuples, no index: 1/10 * #tuples

– Assumes uniform distribution of unique values.

– E.g., if a table as 1000 rows and a column "B" has 10 unique values, 
1000/10 = 100 rows contain the same value in column "B"

● What if distribution is non-uniform?

– Either do estimation with the uniform distribution assumption – error prone

– Maintain histograms, and estimate by searching in the histogram ranges.



Aug 18, 2017 CS698F Adv Data Mgmt 9

Histograms

Age

Freq

10 20 30 40 50 60 70 80 90

10

20

30

40



Aug 18, 2017 CS698F Adv Data Mgmt 10

Thumbrules!

● Column1 = column2 (join)

– If index on both: 1/max(Nkeys(I1), Nkeys(I2)) * #tuples(T1) * 
#tuples(T2)

– Let tuples in T1 be M and in T2 be N and unique values of join 
column "I" in T1 be Nkeys(I1), and in T2 be Nkeys(I2)

– Each unique value repeats M ÷Nkeys(I1) times in T1

– Each unique value repeats N ÷Nkeys(I2) times in T2



Aug 18, 2017 CS698F Adv Data Mgmt 11

Thumbrules!

● Column1 = column2 (join)

– Join is essentially {Nkeys(I1)} ∩ {Nkeys(I2)}. Assume 
{Nkeys(I1)} ⊆ {Nkeys(I2)} => worst case maximum join results!

– Each unique value in I1, generates:
(M ÷ Nkeys(I1)) x (N ÷ Nkeys(I2)) results.

– There are Nkeys(I1) such unique values.

– Hence total results = Nkeys(I1) x
N

Nkeys(I2)

M

Nkeys(I1)

x



Aug 18, 2017 CS698F Adv Data Mgmt 12

Thumbrules!

● Column1 = column2 (join)

– Hence total results = N

Nkeys(I2)

M
x

N x M

Nkeys(I2)

=

N x M

max(Nkeys(I2), Nkeys(I1))

=



Aug 18, 2017 CS698F Adv Data Mgmt 13

Other Improvements

● Join tables:

– If some joins are observed to be frequent, preserve their join 
results.

– Mining into the query logs, and pattern recognition!



Aug 18, 2017 CS698F Adv Data Mgmt 14

Pattern recognition in queries

Π
E.name, D.dname

σ
did="CSE"

⋈
ssn

⋈
did

W E

D

Π
E.name, D.dname

⋈
ssn

⋈
did

W E

D



Aug 18, 2017 CS698F Adv Data Mgmt 15

Pattern recognition in queries

U

R

TS

R

TS

● Techniques like 
approximate
pattern match.

● Subgraph isomorphism
● Since query graphs are 

very small NP 
properties do not 
matter.

● One time activity!



Aug 18, 2017 CS698F Adv Data Mgmt 16

Graphs!



Aug 18, 2017 CS698F Adv Data Mgmt 17

Graph as a table

Why??



Aug 18, 2017 CS698F Adv Data Mgmt 18

A graph pattern query



Aug 18, 2017 CS698F Adv Data Mgmt 19

A graph pattern query



Aug 18, 2017 CS698F Adv Data Mgmt 20

Pattern query as a self-join



Aug 18, 2017 CS698F Adv Data Mgmt 21

Processing pattern queries

● Treat a graph database as a single giant table

– Three columns, S, P, O, s = subject (source node), P = property (edge-
label), O = object (destination node)

● A pattern query makes several self-joins on the table

– Selection conditions are the fixed values on edges or nodes of the pattern

– Treat each edge with its selection conditions as a separate table.

● However, I/O costs will be lower than the actual relational tables.

– Why?



Aug 18, 2017 CS698F Adv Data Mgmt 22

Indexing methods

● Every graph table is a fixed 3-column table

– How many maximum indexes are possible on it?

● Why create all possible indexes?

– Would they be clustered or unclustered?

● What to do if we want multiple clustered indexes?

– Data duplication?

● Does this table have a schema?

● Does it have a primary key, foreign key?


