
Aug 16, 2017 CS698F Adv Data Mgmt 1

CS698F Advanced Data Management

Instructor: Medha Atre

Aug 16, 2017 CS698F Adv Data Mgmt 2

Announcements

● Assignment-1:

– Paper and topics due by Aug 30, 11:59pm.

– Sept 6 – 2 presentations

– Sept 8 – 2 presentations

● Course project topic due: Aug 25, 11:59pm

– Send a short proposal citing paper/s chosen and the broad theme
of your course project.

Aug 16, 2017 CS698F Adv Data Mgmt 3

Recap

● Query plan generation using relational algebra rules.

– Left-deep vs bushy plans.

● Popular types of indexes.

– Tree indexes – B+ trees, B trees

– Hash indexes – static, linear, extendible

Aug 16, 2017 CS698F Adv Data Mgmt 4

Recap

● Special types of indexes.

– Bitmaps – when #unique values in a column are small.

– Bloom filters – when "negative" queries are frequent – queried
value does not exist. May give false positive answer, but never
false negative.

● Choice of indexes

– Depend on "workload" – types of queries plus data characteristics

Aug 16, 2017 CS698F Adv Data Mgmt 5

Query Optimization 101

● Query rewriting a.k.a. considering various query plans for the same
effective results.

– Relational algebraic equivalences help

● Indexes on the tables a.k.a. access methods

– Types of indexes – B+ trees, Hash index, others we will see in the contexts of
different data types.

● Join methods and their costs

– Nested-loop, sort-merge, index-nested-loop join, hash join etc.

● Finally combining the above two together for cost optimization.

Aug 16, 2017 CS698F Adv Data Mgmt 6

Which join methods?

Π
E.name, D.dname

σ
did="CSE"

⋈
ssn

⋈
did

W E

D

SELECT E.name,
D.dname
FROM WorksIn2 as
W, Employees as E,
Department as D
WHERE

W.did="CSE" AND
W.did=D.did AND
W.ssn=E.ssn

Π
E.name, D.dname

σ
did="CSE"

⋈
ssn

⋈
did

W

E

D

Aug 16, 2017 CS698F Adv Data Mgmt 7

Types of joins

● Block-nested-loop join
– When none of the tables have indexes and none of them are sorted on the join attributes.

● Index-nested-loop join

– When one relation has an index on the join attribute.

● Merge-join

– When both the relations have respective indexes on the joined attributes.

● Sort-merge-join

– Sort both the relations on the join attribute first and then merge.

● Hash-join

– Partition the attribute values from both the tables into k buckets and then join pairwise bucket.

Aug 16, 2017 CS698F Adv Data Mgmt 8

Block-nested-loop join

Let there be B buffer pages available.

While (R not done) {
 for each page of B-2 pages of R do {
 for each page of S do {
 match in-memory tuples of B-2
 pages of R with S' one page tuples
 Add 〈r,s〉 to the result page
 }
 }
}

………......

…
…

…
...

..
.

B-2 pages

…
…

…
...

..
.

output

Outer table
smaller

Inner
table
bigger

Cost: M + M*N
M: pages in outer relation
N: pages in inner relation

Aug 16, 2017 CS698F Adv Data Mgmt 9

Index-nested-loop join

● Similar to block-nested-loop join

● Difference – the relation that has index is always the inner relation!

– Why?

● Cost analysis: outer relation scanning – M pages

● Inner relation scanning – depends on the index

– B+ tree – height of the tree, typically 2–4 for about 1 million entries.

– Hash-index – 1 or 2 I/Os – depending on the hash-levels and type.

● For each page of outer relation and each tuple in it, do an index lookup

● Cost: B+ tree -- M + M*(#tuples-per-page) * (2 to 4)

● Cost: Hash-index – M + M*(#tuples-per-page) * (1.2)

Why would you
Choose index-nested
loop join over
block nested one?

Aug 16, 2017 CS698F Adv Data Mgmt 10

Merge-join

● When both the
relations have
respective indexes
on the join columns

● Cost: 2 (M+N)

…
…

…
...

..
.

…
…

…
...

..
.

Index pages
of R linear
scan

Index pages
of S linear
scan

…... output

Aug 16, 2017 CS698F Adv Data Mgmt 11

Sort-Merge-Join

● Sort the two relations first and then do a merge-join

● I/O cost of sorting

– 2 * M (logB-1M + 1)

– 2 * N (logB-1N + 1)

● Cost of merging: 2 * (M + N)

● Total cost: 2 * (M (logB-1M + 1) + N (logB-1N + 1) + M + N)

Aug 16, 2017 CS698F Adv Data Mgmt 12

Hash-Join

● Hash and partition the two relations in k buckets each

– Cost: 2 * (M + N)

● Scan each partition pairwise (corresponding ith partition of R
and S) and join

– Cost: 2 * (M + N) – once for reading the partition and once for
writing out the join results.

● This looks very good, then why not just do a hash-join
always?

Aug 16, 2017 CS698F Adv Data Mgmt 13

Cost estimation in detail

Π
E.name, D.dname

σ
did="CSE"

⋈
ssn

⋈
did

W E

D

SELECT E.name,
D.dname
FROM WorksIn2 as
W, Employees as E,
Department as D
WHERE

W.did="CSE" AND
W.did=D.did AND
W.ssn=E.ssn

Π
E.name, D.dname

σ
did="CSE"

⋈
ssn

⋈
did

W

E

D

Aug 16, 2017 CS698F Adv Data Mgmt 14

Cost estimation

Π
E.name, D.dname

σ
did="CSE"

⋈
ssn

⋈
did

W E

D

● Consider first join ⋈ssn

– Does W and E have an index on ssn?

– Is ssn the primary key of any of the relations?

● From the above, estimate the number of
tuples to be processed.

● Using #tuples (in turn #pages), consider
various join methods

– Estimate the cost of various joins

– Pick the least cost one store this cost in a
dynamic prog memoization table!

Aug 16, 2017 CS698F Adv Data Mgmt 15

Cost estimation

Π
E.name, D.dname

σ
did="CSE"

⋈
ssn

⋈
did

W E

D

● Move a step higher – selection condition
σdid="CSE"

– No index, tuplewise scan over temp table
of prev join

– Cost: No added cost!
● Why?

● #tuple estimates: thumb rule 1/10 * #tuple
estimates from prev join.

● Move a step higher – join condition

– Similar analysis as previous join

Aug 16, 2017 CS698F Adv Data Mgmt 16

Cost estimation

● Consider σdid="CSE"

– Does W have an index on did?

● #tuple estimates:

– If index: exact # tuples

– If not: 1/10 of all tuples

● Move a step higher – join ⋈ssn

– Take #tuples estimate from prev selection

– Does E have an index on ssn?

– Consider various join plans with #tuples from W after
selection and from E (depending on if index or not)

● So on…..

Π
E.name, D.dname

σ
did="CSE"

⋈
ssn

⋈
did

W

E

D

Aug 16, 2017 CS698F Adv Data Mgmt 17

Thumbrules!

● Not possible to do exact result cardinality estimate

– Hence DB query optimization has been researched for a long time.

● Thumbrules WHERE clause:

– Column = value (selection)
● If index: 1/Nkeys(I) * #tuples, no index: 1/10 * #tuples

– Why?

– Column1 = column2 (join)
● If index on both: 1/max(Nkeys(I1), Nkeys(I2)) * #tuples(T1) * #tuples(T2)

– Why?

● If no index: 1/10 * #tuples(T1) * #tuples(T2)

Aug 16, 2017 CS698F Adv Data Mgmt 18

Improvements

● Improved statistics

– Histograms: maintain cardinalities for each unique value, if not
uniform distribution

– Useful when small # of unique values distributed over a large
number of rows

● Join tables:

– If some joins are observed to be frequent, preserve their join
results.

– Mining into the query logs, and pattern recognition!

Aug 16, 2017 CS698F Adv Data Mgmt 19

Pattern recognition in queries

Π
E.name, D.dname

σ
did="CSE"

⋈
ssn

⋈
did

W E

D

Π
E.name, D.dname

⋈
ssn

⋈
did

W E

D

Aug 16, 2017 CS698F Adv Data Mgmt 20

Pattern recognition in queries

U

R

TS

R

TS

● Techniques like
approximate
pattern match.

● Subgraph isomorphism
● Since query graphs are

very small NP
properties do not
matter.

● One time activity!

