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CS698F Advanced Data Management

Instructor: Medha Atre
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Recap

● Query optimization components.

● Relational algebra rules.

● How to  rewrite queries with relational algebra rules.

● Query plan, plan trees.

● Left-deep plans and why to choose those (will revisit).
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Generating left-deep plans

● Consider graph of tables (GoT) –

– each table is a node and there is an edge between two nodes if they 
have a join.

● Recursively take out one node and delete all its incident edges 
such that the remaining graph is still connected.

– This is the RHS of a join

● LHS is a join operator over the remaining graph

● Continue this recursively until left with just 2 nodes.
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Generating left-deep plans
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Generating left-deep plans
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Generating left-deep plans
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Generating left-deep plans
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So on so forth…. How many such unique
plan trees can you generate with this
procedure? Do the math!
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Why left-deep plans?

● Help in pipelined execution of joins.

– Because the RHS side is a base-table and not a join table

– Hence always available for full-scan

– If it has indexes they can be exploited for faster lookup

● For bushy plan trees

– RHS is a join table – a temporary table

– Has to wait till both the joins finish completely

– They are recommended only if the query optimizer's cost estimate shows 
small result sizes of the intermediate joins.
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How to generate bushy plans?

● Recursively remove an edge from the graph of tables (GoT)

● Every time create two connected subgraphs after edge 
removal

● Can one edge removal always disconnect the GoT?

– When will it not disconnect?

– What is the property of such a GoT?

– We will visit such interesting properties after Q opt 101!
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Query Optimization 101

● Query rewriting a.k.a. considering various query plans for the same 
effective results.

– Relational algebraic equivalences help

● Indexes on the tables a.k.a. access methods

– Types of indexes – B+ trees, Hash index, others we will see in the contexts of 
different data types.

● Join methods and their costs

– Nested-loop, sort-merge, index-nested-loop join, hash join etc.

● Finally combining the above two together for cost optimization.
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Why indexes matter?

Π
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SELECT E.name, 
D.dname
FROM WorksIn2 as 
W, Employees as E, 
Department as D
WHERE

W.did="CSE" AND 
W.did=D.did AND 
W.ssn=E.ssn
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Abstract types of indexes

● Clustered vs unclustered
– When the on-disk rows are organized according the sort-key of index – 

clustered, otherwise unclustered.

● Dense vs sparse
– Every search key appears at least once in the index – dense, otherwise 

sparse.

● Primary and secondary
– Index on search keys that contain the primary key column – primary, all 

others secondary.
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Clustered vs unclustered
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Dense vs sparse



Aug 11, 2017 CS698F Adv Data Mgmt 16

Tree indexes

● Tree-structured indexes

– B trees – internal nodes have search key and value both

– B+ trees – internal nodes have only search keys

– B+ trees preferable!
● Fits more keys in same page (no values)
● Reduces height of the tree
● For records as large as over 1 million, all the search keys (internal nodes) 

can typically fit in memory, avoiding disk I/O for internal nodes search.
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B+ tree example
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B-tree example

(123) M Atre (345) Subramanium Natarajan

Only 2 records fit in one 
page, so more pages 
required for one level

Waste of
space(100) H Rowe (115) B Steven
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Hash indexes

● Hash indexes

– hash(search-keyi) → Hashi

– Hashi % #buckets → Bucketj

● Skill in choosing the number of buckets and hash function!

● Objectives:

– Uniform distribution of search-keys across all the buckets

– Otherwise it causes heavey skew and overflowing of only some 
buckets
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Hash indexes

● Static hashing

– Prone to bucket overflow and degradation in performance

● Extendible hashing, Linear hashing

– Handle bucket overflows gracefully by increasing number of buckets 
(typically by considering more bits from the hash key)

– Create a hierarchy of hash buckets – kind of like combination of B+ tree and 
hash!

● Now can you think of how to maintain fixed search key size in B+ 
trees?
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Static hashing
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Extendible hashing
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Extendible hashing

20*

00
01
10
11

2 2

2

2

LOCAL DEPTH 2

2

DIRECTORY

GLOBAL DEPTH
Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image'
of Bucket A)

1* 5* 21*13*

32*16*

10*

15*7* 19*

4* 12*

19*

2

2

2

000
001
010
011
100
101
110
111

3

3

3
DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image'
of Bucket A)

32*

1* 5* 21*13*

16*

10*

15* 7*

4* 20*12*

LOCAL DEPTH

GLOBAL DEPTH



Aug 11, 2017 CS698F Adv Data Mgmt 24

Linear hashing

● Similar to extendible hashing (dynamically adjusts number of 
buckets)

● Uses a family of hash function h0, h1, h2,… with a property that 
each function's range (h1) is twice that of the prev one (h0)

– Range of a hash function is 2(bits(hash-key)

● Similar to extendible hashing with minor differences
– Buckets always split in regular manner in a round robin fashin instead of split 

triggered by a spill of the bucket in extendible.
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Which indexes to choose?

● Depends on the "workload"

– Are the queries point or range?
● Point query – Lookup all values of key 1234
● Range – Get all the values for 345 < keys < 567

– Does the data have skew?
● Would only some buckets get overfilled and others remain empty? 

(sensitive to choice of hash function and # buckets).
– E.g., a startup with a lot of young employees between the ages of 20-30.

● B+ trees handle data skew better.
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Other types of indexes

● Bitmap indexes

● Bloom filters
– Similar to bitmap indexes but are sparse – not every unique value has a 

unique bit in the bitmap – hence save space, can be kept entirely in memory.

– Useful in weeding out non-existent values quickly, can generate false 
positives, but never false negatives.

● Many flavors of graph indexes that we will see later for doing queries:

– Reachability, pattern, keywords etc.
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Bitmap indexes
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Bloom filters
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Back to our example
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5000 
tuples

1000 
tuples

Apply selection
early using
index on did
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The big picture

● Relational algebra gives flexibility to generate different query 
plans for the same output results.

● Using indexes selection conditions in WHERE can be applied 
early, thereby reducing amount of data to process.

● Which indexes to create and why type of indexes to create

– Depends on the type of data and type of queries.

– One rule never fits all!


