
Aug 11, 2017 CS698F Adv Data Mgmt 1

CS698F Advanced Data Management

Instructor: Medha Atre

Aug 11, 2017 CS698F Adv Data Mgmt 2

Recap

● Query optimization components.

● Relational algebra rules.

● How to rewrite queries with relational algebra rules.

● Query plan, plan trees.

● Left-deep plans and why to choose those (will revisit).

Aug 11, 2017 CS698F Adv Data Mgmt 3

Generating left-deep plans

● Consider graph of tables (GoT) –

– each table is a node and there is an edge between two nodes if they
have a join.

● Recursively take out one node and delete all its incident edges
such that the remaining graph is still connected.

– This is the RHS of a join

● LHS is a join operator over the remaining graph

● Continue this recursively until left with just 2 nodes.

Aug 11, 2017 CS698F Adv Data Mgmt 4

Generating left-deep plans

U

R

TS

Aug 11, 2017 CS698F Adv Data Mgmt 5

Generating left-deep plans

U

R

TS

T

⋈

⋈

Aug 11, 2017 CS698F Adv Data Mgmt 6

Generating left-deep plans

U

R

S

T

⋈

⋈

R⋈

Aug 11, 2017 CS698F Adv Data Mgmt 7

Generating left-deep plans

U

S

T

⋈

⋈

R⋈

SU

Aug 11, 2017 CS698F Adv Data Mgmt 8

Generating left-deep plans

R

⋈

⋈

U

R

TS

So on so forth…. How many such unique
plan trees can you generate with this
procedure? Do the math!

Aug 11, 2017 CS698F Adv Data Mgmt 9

Why left-deep plans?

● Help in pipelined execution of joins.

– Because the RHS side is a base-table and not a join table

– Hence always available for full-scan

– If it has indexes they can be exploited for faster lookup

● For bushy plan trees

– RHS is a join table – a temporary table

– Has to wait till both the joins finish completely

– They are recommended only if the query optimizer's cost estimate shows
small result sizes of the intermediate joins.

Aug 11, 2017 CS698F Adv Data Mgmt 10

How to generate bushy plans?

● Recursively remove an edge from the graph of tables (GoT)

● Every time create two connected subgraphs after edge
removal

● Can one edge removal always disconnect the GoT?

– When will it not disconnect?

– What is the property of such a GoT?

– We will visit such interesting properties after Q opt 101!

Aug 11, 2017 CS698F Adv Data Mgmt 11

Query Optimization 101

● Query rewriting a.k.a. considering various query plans for the same
effective results.

– Relational algebraic equivalences help

● Indexes on the tables a.k.a. access methods

– Types of indexes – B+ trees, Hash index, others we will see in the contexts of
different data types.

● Join methods and their costs

– Nested-loop, sort-merge, index-nested-loop join, hash join etc.

● Finally combining the above two together for cost optimization.

Aug 11, 2017 CS698F Adv Data Mgmt 12

Why indexes matter?

Π
E.name, D.dname

σ
did="CSE"

⋈
ssn

⋈
did

W E

D

SELECT E.name,
D.dname
FROM WorksIn2 as
W, Employees as E,
Department as D
WHERE

W.did="CSE" AND
W.did=D.did AND
W.ssn=E.ssn

Π
E.name, D.dname

σ
did="CSE"

⋈
ssn

⋈
did

W

E

D

Aug 11, 2017 CS698F Adv Data Mgmt 13

Abstract types of indexes

● Clustered vs unclustered
– When the on-disk rows are organized according the sort-key of index –

clustered, otherwise unclustered.

● Dense vs sparse
– Every search key appears at least once in the index – dense, otherwise

sparse.

● Primary and secondary
– Index on search keys that contain the primary key column – primary, all

others secondary.

Aug 11, 2017 CS698F Adv Data Mgmt 14

Clustered vs unclustered

Index entries

Data entries

direct search for

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

Aug 11, 2017 CS698F Adv Data Mgmt 15

Dense vs sparse

Aug 11, 2017 CS698F Adv Data Mgmt 16

Tree indexes

● Tree-structured indexes

– B trees – internal nodes have search key and value both

– B+ trees – internal nodes have only search keys

– B+ trees preferable!
● Fits more keys in same page (no values)
● Reduces height of the tree
● For records as large as over 1 million, all the search keys (internal nodes)

can typically fit in memory, avoiding disk I/O for internal nodes search.

Aug 11, 2017 CS698F Adv Data Mgmt 17

B+ tree example

Aug 11, 2017 CS698F Adv Data Mgmt 18

B-tree example

(123) M Atre (345) Subramanium Natarajan

Only 2 records fit in one
page, so more pages
required for one level

Waste of
space(100) H Rowe (115) B Steven

Aug 11, 2017 CS698F Adv Data Mgmt 19

Hash indexes

● Hash indexes

– hash(search-keyi) → Hashi

– Hashi % #buckets → Bucketj

● Skill in choosing the number of buckets and hash function!

● Objectives:

– Uniform distribution of search-keys across all the buckets

– Otherwise it causes heavey skew and overflowing of only some
buckets

Aug 11, 2017 CS698F Adv Data Mgmt 20

Hash indexes

● Static hashing

– Prone to bucket overflow and degradation in performance

● Extendible hashing, Linear hashing

– Handle bucket overflows gracefully by increasing number of buckets
(typically by considering more bits from the hash key)

– Create a hierarchy of hash buckets – kind of like combination of B+ tree and
hash!

● Now can you think of how to maintain fixed search key size in B+
trees?

Aug 11, 2017 CS698F Adv Data Mgmt 21

Static hashing

h(key) mod N

h
key

Primary bucket pages Overflow pages

2
0

N-1

Aug 11, 2017 CS698F Adv Data Mgmt 22

Extendible hashing

13*00

01

10

11

2

2

2

2

2

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5*

Aug 11, 2017 CS698F Adv Data Mgmt 23

Extendible hashing

20*

00
01
10
11

2 2

2

2

LOCAL DEPTH 2

2

DIRECTORY

GLOBAL DEPTH
Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image'
of Bucket A)

1* 5* 21*13*

32*16*

10*

15*7* 19*

4* 12*

19*

2

2

2

000
001
010
011
100
101
110
111

3

3

3
DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image'
of Bucket A)

32*

1* 5* 21*13*

16*

10*

15* 7*

4* 20*12*

LOCAL DEPTH

GLOBAL DEPTH

Aug 11, 2017 CS698F Adv Data Mgmt 24

Linear hashing

● Similar to extendible hashing (dynamically adjusts number of
buckets)

● Uses a family of hash function h0, h1, h2,… with a property that
each function's range (h1) is twice that of the prev one (h0)

– Range of a hash function is 2(bits(hash-key)

● Similar to extendible hashing with minor differences
– Buckets always split in regular manner in a round robin fashin instead of split

triggered by a spill of the bucket in extendible.

Aug 11, 2017 CS698F Adv Data Mgmt 25

Which indexes to choose?

● Depends on the "workload"

– Are the queries point or range?
● Point query – Lookup all values of key 1234
● Range – Get all the values for 345 < keys < 567

– Does the data have skew?
● Would only some buckets get overfilled and others remain empty?

(sensitive to choice of hash function and # buckets).
– E.g., a startup with a lot of young employees between the ages of 20-30.

● B+ trees handle data skew better.

Aug 11, 2017 CS698F Adv Data Mgmt 26

Other types of indexes

● Bitmap indexes

● Bloom filters
– Similar to bitmap indexes but are sparse – not every unique value has a

unique bit in the bitmap – hence save space, can be kept entirely in memory.

– Useful in weeding out non-existent values quickly, can generate false
positives, but never false negatives.

● Many flavors of graph indexes that we will see later for doing queries:

– Reachability, pattern, keywords etc.

Aug 11, 2017 CS698F Adv Data Mgmt 27

Bitmap indexes

Aug 11, 2017 CS698F Adv Data Mgmt 28

Bloom filters

Aug 11, 2017 CS698F Adv Data Mgmt 29

Back to our example

Π
E.name, D.dname

σ
did="CSE"

⋈
ssn

⋈
did

W E

D

Π
E.name, D.dname

σ
did="CSE"

⋈
ssn

⋈
did

W

E

D

5000
tuples

1000
tuples

Apply selection
early using
index on did

Aug 11, 2017 CS698F Adv Data Mgmt 30

The big picture

● Relational algebra gives flexibility to generate different query
plans for the same output results.

● Using indexes selection conditions in WHERE can be applied
early, thereby reducing amount of data to process.

● Which indexes to create and why type of indexes to create

– Depends on the type of data and type of queries.

– One rule never fits all!

