
Oct 25, 2017 CS698F Adv Data Mgmt 1

CS698F Advanced Data Management

Instructor: Medha Atre



Oct 25, 2017 CS698F Adv Data Mgmt 2

Reachability indexing methods

● 2-hop cover

● Compressed bit-vectors

● Interval labeling.

– Linear

– Multi-dimensional



Oct 25, 2017 CS698F Adv Data Mgmt 3

2-hop cover [SODA 2002]

● 2-hop reachability labeling graph G(V,E):

– Each vertex v ∈ V L(v) = (Lin(v), Lout(v))

– Lin(v) => all the nodes that can reach v.

– Lout(v) => all the nodes that can be reached from v.

– What does this remind you of?

● u ---> v iff Lout(u) ∩ Lin(v) ≠ φ
● But this is very expensive!



Oct 25, 2017 CS698F Adv Data Mgmt 4

2-hop cover [SODA 2002]

● 2-hop cover for (u,v) pair s.t. u ----> v:

– Puv => set of all the paths between u and v.

– Hop (ℋ, u) => ℋ is a path with an end point as u, u is the handle of ℋ.

– 2-hop cover => for every u,v ∈ V, s.t. v reachable from u, there exist 2 hops, 
(ℋ1, u), (ℋ2, v), where ℋ1.ℋ2 is some path between u, v. (dot is 
concatenation operator).

– Objective: Find an optimal (minimum) cover of ℋ, s.t. it covers all the paths in 
G – NP-hard, by reducing to set-cover problem.

– Greedy suboptimal solutions – similar to greedy solutions for set-cover 
problem.



Oct 25, 2017 CS698F Adv Data Mgmt 5

2-hop cover [SODA 2002]

● Set-cover instance of 2-hop problem:

– Ground set of elements to be covered T = {(u,v) | Puv ≠ φ}.

– For each vertex w ∈V and subsets construct S(Cin, w, Cout) as 
follows

– S(Cin, w, Cout) = {(u,v) ∈T |  u ∈ Cin, v ∈ Cout, w ∈ Buv}, Buv => set 
of vertices on paths from Puv.

– Weight of this set = |Cin| + |Cout|

– Objective: Find an optimal (minimum) cover of all such set S.



Oct 25, 2017 CS698F Adv Data Mgmt 6

Compressed bit-vectors

● Merge SCCs.
● Sort all the vertices in DAG for topological ordering.
● Topological ordering assigns topological order labels to each vertex.

– Label indicates the maximum length of any incoming path to that vertex.

● Reverse DFS walk on this DAG considering topological sort – all the 
neighbors traversed by topological order in a reverse direction.

● Vertices that are adjacent in the topological sort tend to cluster together in 
the adjacency list – can apply bit-vector compression techniques.

● "A memory efficient reachability data structure through bit-vector compr
ession" [SIGMOD2011]

● Index is complete, space O(V2), but compression saves space.

https://dl.acm.org/citation.cfm?id=1989419
https://dl.acm.org/citation.cfm?id=1989419


Oct 25, 2017 CS698F Adv Data Mgmt 7

Interval Labeling

● Each graph node has a an interval [x, y] associated with it.

– This interval is decided after traversing the graph first.

● To decide reachability

– Node "t" is reachable from "s" iff [xt, yt] is completely contained 
in [xs, ys]

● e.g., let t's interval be [3, 5] and s's interval be [1, 10], then node 't' is 
reachable from 's'

● Does NOT work for DAGs! Why?



Oct 25, 2017 CS698F Adv Data Mgmt 8

Interval Labeling



Oct 25, 2017 CS698F Adv Data Mgmt 9

Interval labeling



Oct 25, 2017 CS698F Adv Data Mgmt 10

Interval labeling



Oct 25, 2017 CS698F Adv Data Mgmt 11

Grail [VLDB 2010]

● Consider k different spanning trees over a given DAG.

● For each spanning tree, general 1-dimensional interval labels.

● Combine all k labels => k-dimensional interval label.

● Can generate false positives => (u, v), v not reachable from u, but 
interv(v) ∈ interv(u).

● Never generates false negatives => If interv(v) ∉ interv(u), then definitely 
v not reachable from u.

● Why would you use such a scheme, which does not give a correct 
answer always?


