
Oct 11, 2017 CS698F Adv Data Mgmt 1

CS698F Advanced Data Management

Instructor: Medha Atre



Oct 11, 2017 CS698F Adv Data Mgmt 2

Recap of P2P distribution

● Decide the key-value pair depending on what you "join" on.

– Nodes in case of graph pattern queries.

– Table columns in case of SQL queries.

● Whenever the join is on the position of distribution, it can be done 
locally

– If all the joins are on S position with data distributed as 〈hash(S), 
list((P,O))〉, 〈hash(O), list((P,S))〉

● Shipping of intermediate results required whenever two consecutive 
joins are not on the same key!



Oct 11, 2017 CS698F Adv Data Mgmt 3

Recap of P2P distribution

● Shipping decision:

– If the successive join variable exists in the current partial results, 
reship the partial result by hashing on the binding value of the 
successive join variable

– E.g., 〈:Jerry, :hasFriend, var-bind(?friend), :actedIn var-bind(?sitcom)〉

– If the successive join variable does not exist in the current partial 
results, ship-all intermediate results to all the compute nodes.

– E.g., Ship each graph edge matching (?sitcom :location :NYC) to 
ALL the compute-nodes



Oct 11, 2017 CS698F Adv Data Mgmt 4

Alternate way (bushy)

T1 T2

σ(P=:hasFriend
     &&S=:Jerry)

⋈(friend)

σ(P=:actedIn)

⋈(?sitcom)

ship(hash(var-bind(?sitcom)))

T3

σ(P=:location
     &&O=:NYC)



Oct 11, 2017 CS698F Adv Data Mgmt 5

Alternate way (bushy)

T1 T2

σ(P=:hasFriend
     &&S=:Jerry)

⋈(friend)

σ(P=:actedIn)

⋈(?sitcom)

T3

σ(P=:location
     &&O=:NYC)

ship-all(var-bind(?friend))



Oct 11, 2017 CS698F Adv Data Mgmt 6

Map-Reduce 101

● Two fundamental functions

– Map (key1, value1) => (key2, value2)

– Reduce (key2, list(values2)) => list(key3, values3)

● Mapper takes a list of key-value pairs (depending on what job you 
define)

● Does some actions, and emits a different set of key-value pairs (you 
can have an identity mapper, where key1-value1 = key2-value2

● Sorting/shuffling in between, that combines all the key2-value2 pairs 
and sends to reducer



Oct 11, 2017 CS698F Adv Data Mgmt 7

Map-Reduce 101

● Reducer takes key-list(value), does some operations and emits 
values.

● This is a hierarchical distributed topology

– One master, which does sorting/shuffling

– Several slaves, which do map and reduce jobs.

● Map and Reduce "key" and "values" depend on the "input 
data" class (Java class) and objects defined in it.

– Simplest class is "text file".



Oct 11, 2017 CS698F Adv Data Mgmt 8

Word-count example

Reduce (Key word, list(counts)) 
{

total = 0;
for (each count in counts) {

total += count;
}
emit(word, total);

}

Map (Key dname, Value dcontent)
{

docfile = open(doc-name)
for (each line in doc-file) {

parse words
create local count

}
for (each local word count) {

emit (word, count);
}

}



Oct 11, 2017 CS698F Adv Data Mgmt 9

Word-to-doc index

Reduce (Key word, list(dname)) 
{

//identify reducer
emit(word, list(dname));

}

Map (Key dname, Value dcontent)
{

docfile = open(doc-name)
for (each line in doc-file) {

parse words
emit(word, dname);

}
}



Oct 11, 2017 CS698F Adv Data Mgmt 10

Distributed grep

Reduce (Key line, list(dname)) {
//identify reducer
emit(line, list(dname));

}

Map (Key dname, Value dcontent)
{

docfile = open(doc-name)
for (each line in doc-file) {

bool match = grep(regex, line);
if (match)

emit(line, dname);
}

}



Oct 11, 2017 CS698F Adv Data Mgmt 11

Data Distribution

● Simplest way is using standard HDFS commands

– fs -put <path/to/file>

– fs -get filename

● Before calling mapper

– Setup input format – that lets the mapper get correct key-value 
pairs

– Setup output format – that lets the reducer write to the correct 
location



Oct 11, 2017 CS698F Adv Data Mgmt 12

Data Distribution

● Setup sophisticated data distribution using custom data-
classes (in Java or other lang).

● Immitate P2P like distribution strategies

● Mapper will get the key-value pairs based on underlying 
data distribution strategies.

– Simplest is text files

– Need additional mapper-reducer jobs for data redistribution.



Oct 11, 2017 CS698F Adv Data Mgmt 13

Some examples/tutorials

● https://www.tutorialspoint.com/hadoop/hadoop_mapreduce
.htm

● https://dzone.com/articles/word-count-hello-word-program
-in-mapreduce

● https://research.google.com/archive/mapreduce.html

https://www.tutorialspoint.com/hadoop/hadoop_mapreduce.htm
https://www.tutorialspoint.com/hadoop/hadoop_mapreduce.htm
https://dzone.com/articles/word-count-hello-word-program-in-mapreduce
https://dzone.com/articles/word-count-hello-word-program-in-mapreduce
https://research.google.com/archive/mapreduce.html


Oct 11, 2017 CS698F Adv Data Mgmt 14

Joins with Map-Reduce

● Mapper acts as a data distributor

● Reducer acts as a join

● For multiple joins in the same query, iteratively run 
mapreduce jobs

– Output of a previous map-reduce batch serves as an input to 
the next map-reduce batch.

– # of map-reduce batches = # of joins in the query.


