
Sept 8, 2017 CS698F Adv Data Mgmt 1

CS698F Advanced Data Management

Instructor: Medha Atre

Sept 8, 2017 CS698F Adv Data Mgmt 2

Options to distribute

● Consider graph as a list of edges 〈S,P,O〉
● Various options of distribution

– S as the key, P as the key, O as the key

– 〈S,O〉 as the key, 〈S,P〉 as the key… so on

– What does this remind you of?

● Distributed join method changes slightly for each type of
distribution.

Sept 8, 2017 CS698F Adv Data Mgmt 3

Options to distribute

● S as the key

– All patterns that have join on S alone can be done without any
"shipping" of tuples/edges.

?person

?edu:Kanpur ?home

:location
:homeTown

:hasDegree

Sept 8, 2017 CS698F Adv Data Mgmt 4

Options to distribute

?person

?edu:Kanpur ?home

:location
:homeTown

:hasDegree

Explanation shown on the board

Sept 8, 2017 CS698F Adv Data Mgmt 5

Options to distribute

● S as the key

– Any combination of S-O join or a join on P requires "shipping".

?person

?friend :Kanpur

:hasFriend

:location

Sept 8, 2017 CS698F Adv Data Mgmt 6

Options to distribute

?person

?friend :Kanpur

:hasFriend

:location

Explanation shown on the board

Sept 8, 2017 CS698F Adv Data Mgmt 7

Options to distribute

● Then how to decide distribution "key"?

– S, O, P?

– Or 〈S,O〉, 〈O,P〉, 〈S,P〉?
● What do you join on always?

– Vertices of the graph

● Do all joins happen only on S, or only on O, or S-O?

– Most joins happen on S, O, and S-O too.

Sept 8, 2017 CS698F Adv Data Mgmt 8

Options to distribute

● A join on S means you need "outgoing" edges of vertices.

● A join on O means you need "incoming" edges of vertices.

● A join on S-O means you need "incoming" AND "outgoing" edges of
vertices.

● Then how to distribute?

– For every edge of the graph, distribute 〈hash(S), out-edge-list〉, and 〈hash(O),
inc-edge-list〉

● This ensures that first level join in any pattern can always be
performed locally.

Sept 8, 2017 CS698F Adv Data Mgmt 9

Back to our example

:Jerry

?friend ?sitcom

:NYC

:hasFriend

:actedIn

:location

Sept 8, 2017 CS698F Adv Data Mgmt 10

Join plans (std natural join)

:Jerry :hasFriend ?friend

?friend :actedIn ?sitcom ?sitcom :location :NewYorkCity

?friend

?sitcom

1

Sept 8, 2017 CS698F Adv Data Mgmt 11

Join plans

● Can we perform this join without "shipping" of
tuples/edges?

– If we have used only 〈hash(S), out-edges〉 as the distribution
policy?

– If we have used only 〈hash(O), inc-edges〉 as the distribution
policy?

– If we have used both of the above?

Sept 8, 2017 CS698F Adv Data Mgmt 12

Alternate way (bushy)

T1 T2

σ(P=:hasFriend
 &&S=:Jerry)

⋈(friend)

σ(P=:actedIn)

Sept 8, 2017 CS698F Adv Data Mgmt 13

Join plans (std natural join)

:Jerry :hasFriend ?friend

?friend :actedIn ?sitcom ?sitcom :location :NewYorkCity

?friend

?sitcom

2

Sept 8, 2017 CS698F Adv Data Mgmt 14

Join plans (std natural join)

● AFTER the first join, we have generated following partial results.

– 〈:Jerry, :hasFriend, var-bind(?friend), :actedIn var-bind(?sitcom)〉

– We need to join this partial result with the bindings for (?sitcom :location
:NYC).

– Which join is this?
● S-S, O-O, or S-O?

– Can we perform this join without "shipping"?
● If yes, how?
● If not, why not?

Sept 8, 2017 CS698F Adv Data Mgmt 15

Join plans (std natural join)

● At the first join

– What was the join variable – ?friend

– So all the graph edges will be distributed according to the
variable bindings (values) of ?friend

– All the same bindings/values of ?friend will be on the same
compute-node.

– That will not help while joining on ?sitcom
● Why not?

Sept 8, 2017 CS698F Adv Data Mgmt 16

Join plans (std natural join)

● The values/bindings of ?sitcom in 〈:Jerry, :hasFriend, var-
bind(?friend), :actedIn var-bind(?sitcom)〉 are located on
the compute-node according to hash(var-bind(?friend))

● For a join on ?sitcom, we need to have graph edges
located on compute node according to hash(var-bind(?
sitcom))

– This needs to be taken care of by shipping!

– How do you decide what to ship, and where to ship?

Sept 8, 2017 CS698F Adv Data Mgmt 17

Options to ship

● Two options:

– Ship 〈:Jerry, :hasFriend, var-bind(?friend), :actedIn var-bind(?sitcom)〉
by hash(var-bind(?sitcom)) from each result.

– Ship each graph edge matching (?sitcom :location :NYC) to ALL the
compute-nodes?

● Why? Why not hash(var-bind(?sitcom)) from each edge matching (?sitcom
:location :NYC)?

● Which of these would be cheaper?

– Any intuition?

Sept 8, 2017 CS698F Adv Data Mgmt 18

Alternate way (bushy)

T1 T2

σ(P=:hasFriend
 &&S=:Jerry)

⋈(friend)

σ(P=:actedIn)

⋈(?sitcom)

ship(hash(var-bind(?sitcom)))

T3

σ(P=:location
 &&O=:NYC)

Sept 8, 2017 CS698F Adv Data Mgmt 19

Alternate way (bushy)

T1 T2

σ(P=:hasFriend
 &&S=:Jerry)

⋈(friend)

σ(P=:actedIn)

⋈(?sitcom)

T3

σ(P=:location
 &&O=:NYC)

ship-all(var-bind(?friend))

Sept 8, 2017 CS698F Adv Data Mgmt 20

Alternate way (bushy)

:Jerry :hasFriend ?friend

?friend :actedIn ?sitcom ?sitcom :location :NewYorkCity

?friend

?sitcom

1

Simultaneouly!

Sept 8, 2017 CS698F Adv Data Mgmt 21

Alternate way (bushy)

● When can we do these joins simultaneously?
– If we distribute using only S as the key?

– If we distribute using only O as the key?

– If we distribute using both?

● How do we combine the independent join
results?

Sept 8, 2017 CS698F Adv Data Mgmt 22

Alternate way (bushy)

● After the first two simultaneous joins partial results of

– <:Jerry, :hasFriend, var-bind(?friend), :actedIn, var-bind(?sitcom)>
● Each result located as per hash(var-bind(?friend))

– <var-bind(?friend), :actedIn, var-bind(?sitcom), :location, :NYC>
● Each result located as per hash(var-bind(?sitcom))

● Now what to ship where?

– Hint: what would you join these patial results on?

Sept 8, 2017 CS698F Adv Data Mgmt 23

Two options to ship

● Two options:
– Ship <:Jerry, :hasFriend, var-bind(?friend), :actedIn var-bind(?sitcom)>

by hash(var-bind(?sitcom)) from each result, leaving other results at
their location.

– Ship <var-bind(?friend), :actedIn, var-bind(?sitcom), :location, :NYC>
by hash(var-bind(?friend)) from each result, leaving other results at
their location.

● Which of these would be cheaper?
– How do you decide?

● Hint: recall our join result size estimation!

Sept 8, 2017 CS698F Adv Data Mgmt 24

Alternate way (bushy)

⋈(?sitcom)

T1 T2 T2 T3

σ(P=:hasFriend
 &&S=:Jerry)

⋈(friend)

σ(P=:actedIn) σ(P=:actedIn)
σ(P=:location
 &&O=:NYC)

⋈(?friend && ?sitcom)

ship(hash(var-bind(?sitcom)))

Sept 8, 2017 CS698F Adv Data Mgmt 25

Alternate way (bushy)

⋈(?sitcom)

T1 T2 T2 T3

σ(P=:hasFriend
 &&S=:Jerry)

⋈(friend)

σ(P=:actedIn) σ(P=:actedIn)
σ(P=:location
 &&O=:NYC)

⋈(?friend && ?sitcom)

ship(hash(var-bind(?friend)))

