
Sept 1, 2017 CS698F Adv Data Mgmt 1

CS698F Advanced Data Management

Instructor: Medha Atre



Sept 1, 2017 CS698F Adv Data Mgmt 2

Reminder

First assignment presentations
On

Sept 6 and 8



Sept 1, 2017 CS698F Adv Data Mgmt 3

Graph of Tables

:Jerry :hasFriend ?friend

?friend :actedIn ?sitcom ?sitcom :location :NewYorkCity

?friend

?sitcom

Root

Leaf

Leaf

We stopped here in our query, hence :hasFriend matrix has
redundent tuple.



Sept 1, 2017 CS698F Adv Data Mgmt 4

Graph of Tables

:Jerry :hasFriend ?friend

?friend :actedIn ?sitcom ?sitcom :location :NewYorkCity

?friend

?sitcom

Once done with semi-joins, perform multi-way-pipelined join. Starting from any table/matrix,
continue recursively matching the cells from its neighbors, output one result when done
matching across all matrices.
When matched all the cells in all the matrices → you have generated all the results

Matrix

Matrix Matrix



Sept 1, 2017 CS698F Adv Data Mgmt 5

Cyclic graph of tables

?student :hasAdvisor ?prof

?student :takesCourse ?course ?prof :teaches ?course

?student

?course

?prof



Sept 1, 2017 CS698F Adv Data Mgmt 6

Cyclic graph of tables

:Rajesh :hasAdvisor :Atre
:Suresh :hasAdvisor :Ganguly
:Atre :teaches :CS698F
:Ganguly :teaches :CS771
:Rajesh :takesCourse :CS771
:Suresh :takesCourse :CS698F

:Rajesh → 1, :Suresh → 2, :Atre → 3,
:Ganguly → 4, :CS771 → 5, :CS698F → 6

1

1

1

1

?s
tu

de
nt

?prof

?p
ro

f

?course

1

1

?s
tu

de
nt

?course



Sept 1, 2017 CS698F Adv Data Mgmt 7

Cyclic graph of tables

1

1

1

1

?s
tu

de
nt

?prof

?p
ro

f

?course

1

1

?s
tu

de
nt

?course

Root

1 1

1 1

Row vecs for
?student

1 1

1 1
Col vecs for
?course

Nothing changes!



Sept 1, 2017 CS698F Adv Data Mgmt 8

Multi-way-join cyclic queries

1

1

1

1

?s
tu

de
nt

?prof

?p
ro

f

?course

1

1

?s
tu

de
nt

?course

Root

(1, 3) match (3,…) → (1, 3), (3, 6)
Match (3, 6) to (…., 6)
(1, 3), (3, 6), (2, 6)

WAIT!
Mismatch in (1, 3) (2, 6)
Discard the match, and backtrack.

3rd row in mat-2 has only 1 bit, so
again backtrack.

(2, 4) match (4,…) → (2, 4), (4, 5)
Match (4, 5) to (…, 5)
(2, 4) (4, 5) (1, 5) mismatch!

1

2



Sept 1, 2017 CS698F Adv Data Mgmt 9

Redundant cycles

?student :takesCourse ?course

?student :hasAdvisor ?adv ?student :residence ?hostel

?student

?student

?student



Sept 1, 2017 CS698F Adv Data Mgmt 10

Data compression

● Adjacency matrices are very sparse.

● Few 1 bits and lot of 0 bits.

● Compression techniques

– Run-length-encoding

– Byte-aligned Bitmap Code (BBC)

– Word Aligned Hybrid (WAH)

– Patitioned Word-Aligned Hybrid (PWAH)

– Others



Sept 1, 2017 CS698F Adv Data Mgmt 11

Run-length-encoding

1 1 1

[0] 4 1 3 1 3 1

1 1 1 1 1 1

[1] 3 6 1 6 1 2 1

1 1 1

5, 10, 14



Sept 1, 2017 CS698F Adv Data Mgmt 12

Handling compressed data

● How to do Boolean AND/OR on compressed bitvector?

– Without uncompressing, go on reading run-lengths

– e.g. [0] 3 1 3 AND [1] 1 3 1 => [0] 3… slide the window

– [1] 1 3... AND [0] 1 1 => [0] 1 add to the prev => [0] 4… so on

– For very sparse vs dense vector, go over set bits in sparse 
vector and check respective set bits in dense one (AND)

– OR on dense vectors expensive



Sept 1, 2017 CS698F Adv Data Mgmt 13

Boolean AND

[0] 3 1 3

[1] 1 3 1

Total 7 bits

Total 5 bits

[0] 3 ….

[1] 1 3

[0] 1 1

First 3 bits consumed

Remainder

[0] 3

[1] 1

[0] 3…..

[0] 7

[0] 0 …. [0] 4 ….

Remainder



Sept 1, 2017 CS698F Adv Data Mgmt 14

Boolean OR

[0] 3 1 3

[1] 1 3 1

Total 7 bits

Total 5 bits

[1] 1 ….

[0] 2 1 3

[0] 3 1

First 3 bits consumed

Remainder

[1] 1 3

[0] 1 1

[1] 1….. [1] 1 2 1

[0] 2 …. [1] 1 2 ….

Remainder

[0] 3

[1] 1
Remainder

[1] 1….. [1] 1 2 2



Sept 1, 2017 CS698F Adv Data Mgmt 15

Delta-encoding

1234, 1236, 1240, 2000, 2011, 2015…...

1234, 2, 4, 760, 11, 4…...
Only very first integer requires
4 bytes. The following integers
can be stored using 2 bytes.

Used in B+ tree clustered indexes

Can you use it in unclustered indexes?

Can you use it in hash-indexes?



Sept 1, 2017 CS698F Adv Data Mgmt 16

Delta-encoding

● Similar to the RLE encoding, keep a sliding window of 4-
byte integer to slide over the sorted list computing the 
original int value on the fly.

● Gives about 50% storage space saving

– To perform lesser I/O

– Save disk space

– Maintain same indexing performance (or better due to lesser 
I/O)



Sept 1, 2017 CS698F Adv Data Mgmt 17

Distributed Storage

● Topologies (architecture):
– Peer-to-peer – no hierarchy, shared nothing

● Pastry, Chord, CAN systems

– Hierarchical – one or more masters, several slaves
● MapReduce based frameworks – Hadoop, SPARK, 

and many others



Sept 1, 2017 CS698F Adv Data Mgmt 18

Peer-to-peer

Source: Google images



Sept 1, 2017 CS698F Adv Data Mgmt 19

Hierarchical



Sept 1, 2017 CS698F Adv Data Mgmt 20

Cloud

Source: Google images



Sept 1, 2017 CS698F Adv Data Mgmt 21

P2P

● Every compute-node knows every other node.

● Every compute-node has a unique ID

● Data gets distributed by some function f(di) applied on 
each data item di

● The output of the f(di) compared with node-id

● Data item sent to node whose ID is closest to f(di)



Sept 1, 2017 CS698F Adv Data Mgmt 22

P2P

● How to decide the function?

– Simplest is "distribted hash table" (DHT)

– Uses a hash function.

● Compute-node IDs generated using the same function, using IP 
address or MAC etc as the data to be hashed.

– It can even be random ID generation and allocation

● Data can be anything, text, graphs, tables.

– Data item to hash on changes as per data type!



Sept 1, 2017 CS698F Adv Data Mgmt 23

P2P (graphs)

● Decide data-unit to hash

– A node? <hash(vertex-label), adj vertices> (incoming or 
outgoing)?

– An edge? <hash(s, p, o), s,p,o>

● How do you decide data-unit to hash?

– Depends on the query types.

– Why?



Sept 1, 2017 CS698F Adv Data Mgmt 24

P2P (graphs)

● What do you join on?

– Vertices or edges?

● So for distributed data what information do you need in 
one place?

– Vertex labels?

– Edge labels?

– Why?


