CS698F

M. Atre

Announcemen

Recap

Other Systems

RDF-3X

Advanced Data Management

Medha Atre

Office: KD-219 atrem@cse.iitk.ac.in

Aug 8, 2016

Project Groups

CS698F

M. Atre

Announcement

Recan

Other Systems

DDE 2V

Groups for the course project are due on August 22, 2016 18:00 IST. Instructions on how to submit project groups will be posted soon.

While emailing me always start subject line with [CS698F] (with square brackets), else emails may get ignored.

Recap

CS698F

M. Atre

Announcemer

Recap

Other Systems

RDF-3X

- BitMat structure.
- Fold and Unfold procedures.
- Semi-joins.
- Nice properties of *acyclic* query graphs.
- N-way multi-joins.

Graph data and queries

CS698F

M. Atre

Announcement

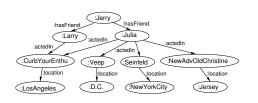
Recap

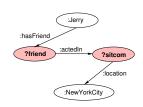
Other Systems

RDF-3X

Data

:Jerry :hasFriend :Larry :Jerry :hasFriend :Julia :Larry actedIn ·CurbYourEnthu ·Seinfeld · Iulia ·actedIn :Julia :actedIn :Veep · Iulia ·actedIn ·CurbYourEnthu · Iulia ·NewAdvOldChristine ·actedIn :Seinfeld :location :NewYorkCity ·D C :Veep ·location :CurbYourEnthu :location :LosAngeles :NewAdvOldChristine :location :Jersey

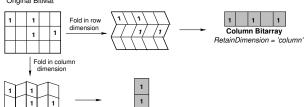

SPARQL


SELECT ?friend ?sitcom WHERE {
:Jerry :hasFriend ?friend .
?friend :actedIn ?sitcom .
?sitcom :location :NewYorkCity .

Eqv. SQL query

SELECT t1.o, t2.o from rdf as t1, rdf as t2, rdf as t3 WHERE t1.s=".Jerry" and t1.p=":hasFriend" and t2.p=":actedln" and t3.p=":location" and t3.o=":NewYorkCity" and t1.o=t2.s and t2.o=t3.s

Graphical Representation


Fold and Unfold

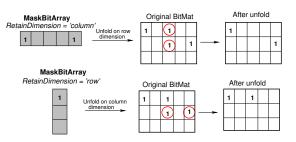
CS698F

M. Atre

Recap

Original BitMat

Fold



fold(BMtp, RetainDimension) procedure is nothing but projection of distinct values from the given dimension of BitMat, e.g., in the triple pattern (?friend :actedIn ?sitcom) if BM_{tp} is an O-S BitMat, then ?sitcom is in the "row" dimension of the BitMat

$$fold(BM_{tp},dim_{?j}) \equiv \pi_{?j}(BM_{tp})$$

RDF-3X

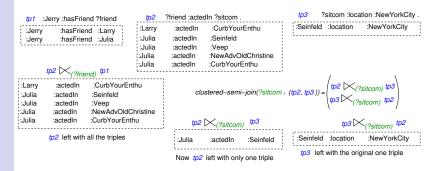
Unfold

For every unset bit in the MaskBitArray, unfold(BM_{tp}, MaskBitArray, RetainDimension) clears all the bits corresponding to that position of the RetainDimension

$$unfold(BM_{tp}, \beta_{?j}, dim_{?j}) \equiv \{t \mid t \in BM_{tp}, t.?j \in \beta_{?j}\}$$

t is a triple in BM_{tp} that matches tp. $\beta_{?j}$ is the MaskBitArray containing bindings of ?j to be retained. $dim_{?j}$ is the dimension of BM_{tp} that represents ?j, and t.?j is a binding of ?j in triple t. In short, unfold keeps only those triples whose respective bindings of ?j are set to 1 in $\beta_{?j}$, and removes all other.

Semi-join and clustered-semi-join


CS698F

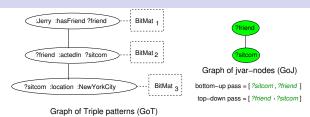
M. Atre

Recap

Other Systems

- $tp_2 \ltimes_{?j} tp_1 = \pi_{attr(tp_2)}(tp_2 \bowtie_{?j} tp_1)$ is a semi-join [Bernstein1981, Ullman1989].
- A *clustered-semi-join* between $(tp_1, tp_2, ...tp_n)$ over ?j is similar to n-way semi-join.
- Semi-joins are achieved through the fold and unfold primitives of BitMat.

Inner-joins background


CS698F

M. Atre

Announceme

Recap

Other System

- If the Graph of Tables (GoT) is acyclic (tree), then the tuples in each table can be reduced to a minimal by traversing the GoT in a bottom-up followed by top-down fashion, performing a semi-join at each table node [Bernstein1981, Ullman1989].
 - A table has minimal tuples for a query, if every tuple contributes to at least one final result, none of the tuples gets eliminated in the final result generation.
- If the *Graph of Triple Patterns* (GoT) is *acyclic*, the *Graph of Join-variables* (GoJ) is acyclic too, and vice versa (Lemma 3.2 in [Atre2015]).

Pattern Query Processing

CS698F

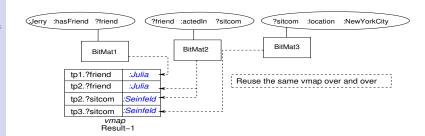
M Atre

Recap

- Choose the *least selective* join variable (jvar) as the root of the GoJ tree, so that more selective juars are leaves¹. and do a bottom-up and top-down pass on GoJ with clustered-semi-joins at each jvar.
 - This leaves a *minimal* set of triples in the BitMat associated with each triple pattern.
- Do n-way multi-join to join all the triple patterns to produce the final results.

Any jvar can be chosen as the root, but this anti-greedy selection favors query performance.

N-way multi-joins


CS698F

M. Atre

Announcemer

Recap

Other Systems

Contemporary Systems

CS698F

M. Atre

Announcemer

Recap

Other Systems

RDF-3X

- RDF-3X [Neumann2010]
- gStore [Zou2011]
- TripleBit [Yuan2013]
- Virtuoso
- MonetDB
- Neo4j

RDF-3X

CS698F

M. Atre

Announcement

Other System

RDF-3X

- Assumes the graph as a 3-column table.
- Creates all 6-way indexes PSO, POS, SPO, SOP, OPS, OSP.
- Index compression using delta-encoding.
- Indexes are created as compressed B+ trees.
- Creates a pipelined left-deep join operator tree.
- Sideways-information-passing during scans and merge-joins.
- Aggressive selectivity estimation for all possible single edge patterns.