Medha Atre

Office: KD-219

atrem@cse.iitk.ac.in

Aug 4, 2016

«O>r «Fr <

it
-

nae

First Assignment

CS698F

M. Atre

Assignment

First assignment is posted on the course webpage. Due date is
August 15, 2016 23:59 IST. Submission instructions will be
included within a few days in the assignment description.
Please check the course webpage regularly for any important
announcements, and assignment submission instructions.
www.cse.iitk.ac.in/users/atrem /courses/cs698f2016fall/

www.cse.iitk.ac.in/users/atrem/courses/cs698f2016fall/

Recap

CS698F

M. Atre

Recap . D :
Relational query optimization techniques.

IBM System R optimizer concepts.
Problems unique to the graph shaped data.

BitMat indexing structure for a directed edge-labeled
graph.
Fold and unfold operations on a BitMat.

CS698F

M. Atre

Recap

Graph data and queries

Data
Jerry :hasFriend :Larry
Jerry :hasFriend :Julia
:Larry :actedIn :CurbYourEnthu
Julia :actedIn :Seinfeld
Julia :actedIn ‘Veep
Julia :actedIn :CurbYourEnthu
Julia :actedIn :NewAdvOIdChristine
:Seinfeld :location :NewYorkCity
‘Veep :location :D.C.
:CurbYourEnthu :location :LosAngeles

:NewAdvOlIdChristine :location :Jersey

Graphical Representation

:hasFriend

SPARQL
SELECT ?friend ?sitcom WHERE {
:Jerry :hasFriend ?friend .
?friend :actedIn ?sitcom .
?sitcom :location :NewYorkCity .

Eqv. SQL query

SELECT tl.o, t2.0 from rdf as t1, rdf as
t2, rdf as t3 WHERE t1.s=":Jerry” and
tl.p=":hasFriend” and t2.p=":actedIn”
and t3.p=":location” and
t3.0=":NewYorkCity" and tl.o=t2.s and
t2.0=t3.s

:hasFriend

‘location

BitMat — brief overview

CS698F Data
*hasFriend @ hasFriend

M. Atre
n
w actedin

@ “NewAdvOIdChristine

:actedin

BitMats slocation
BitMat
Subject-dim
Predicate-dim
Jerry " n
o 0 0 Each unique value of subjects,
:NewAdvOldChristine 00 ¢ 09 0 00D predicates, and objects in the data is
:CurbYourEnthu 0 09 00 0p 0 1 mapped to the respective dimension
Veep 00 000000000 00 f 0 of the bitcube.
' 00 00 000
:Seinfeld 09 009 00 00 0 00 0 This bitcube is then sliced along
Julia 09 009 0 0 0 each dimension and the 2D BitMats
’ 09 09 00 00 00p 0 are stored as the index structure.
. L] 1000,°2%000, 000
bitcube 3 009 0 0y . 0 |:locatedIn
AP .5\’.‘\?\91\6 0 | :actedin
o »\\?/\x_(\e *hasFriend
SRS
O \‘Oge\% o
"@?‘6\‘ S Object-dim

Fold and Unfold

CS698F

Fold
M. Atre Original BitMat
; dimension "," _ 9°|qmn B_itarray
““‘ RetainDimension = ‘column
Brbl Fold in column
dimension
1 1
1 1 -

Row Bitarray
RetainDimension = row’

fold(BMyp,, RetainDimension) procedure is nothing but projection of distinct
values from the given dimension of BitMat, e.g., in the triple pattern (?friend

:actedIn ?sitcom) if BMy, is an O-S BitMat, then 7sitcom is in the “row!
dimension of the BitMat.

fold(BMyp, dimyj) = m7;(BMyp)

CS698F

M. Atre

BitMat

Unfold

MaskBitArray Original BitMat After unfold

RetainDimension = ‘column’
© 1

Unfold on row 1
@ | 1

MaskBitArray
RetainDimension = "row’ Original BitMat After unfold

Unfold on column | 1 1 1 1

dimension =
- @ O—
NA

For every unset bit in the MaskBitArray, unfold(BI\/ltp, MaskBitArray,
RetainDimension) clears all the bits corresponding to that position of the
RetainDimension.

unfold(BMtp,,Byj, dlmvj) = {t | te BMtp, t.?j € BU}
t is a triple in BM, that matches tp. 3;; is the MaskBitArray containing
bindings of ?j to be retained. dimy; is the dimension of BMy, that represents ?7j,
and t.?j is a binding of ?j in triple t. In short, unfold keeps only those triples
whose respective bindings of ?j are set to 1 in 37, and removes all other.

Semi-join and clustered-semi-join

CS698F . o
B P2 X7 tP1 = Tartr(1p) (tP2 X2j tP1) is @ semi-join

M. Atre [Bernstein1981, Uliman1989].
m A clustered-semi-join between (tpy, tpa, ...tp,) over ?j is similar
to n-way semi-join.
BitMat m Semi-joins are achieved through the fold and unfold primitives
of BitMat.

tn3 ?sitcom :location :NewYorkCity .

location ‘NewYorkCity

tp1 :Jerry :hasFriend ?friend 02 ?friend :actedin ?sitcom .

:hasFriend :Larry !

:actedin :CurbYourEnthu
:actedin :Seinfeld

:actedIn ‘Veep :
:actedin :NewAdvOldChristine !
:actedin :CurbYourEnthu :

tp2 D<(7sitcom) tp3

i:Larry :actedin :CurbYourEnthu

clustered-semi-join(?sitcom , (tp2, tp3)) =

iduia cactedin :Seinfeld

i Julia :actedin :Veep | tp3 D<(75/tcom) tp2
1:Julia :actedin :NewAdvOldChristine !

E:Julla :actedin :CurbYourEnthu p2 D<(?S/tcom) 03 103 ><(?S/rcom) tp2

p2 left with all the triples !Julia :actedin :Seinfeld : Seinfeld location :NewYorkCity 1

""""""""" T tp3 left with thi iginal tripl
Now tp2 left with only one triple ps feftwi © originalone triple

CS698F

M. Atre

BitMat

Revisit the example of a low selectivity query

[T1.M=T2.M

13 tuples in T1
! 15 tuples in T2
i 28 tuples in all

N M
1 a
2 a
3 a
1 b
2 b
3 b
4 | b
1 c
2 c
3 c
1 d
2 d
IR

M S
a 1
a 2
a 3
a 4
b 1
b 2
b 3
c 1
c 2
c 3
c 4
c 5
c 6
c 7
c 8
T2

If we do a standard join of
these two tables, we get 48
results (tuples) — a
polynomial increase in the
size of the results.

Instead, if we do a
semi-join (T1 xp T2) of
T1 and T2, we are left
with 10 tuples in T1 (3
tuples with M='d" get
eliminated from T1) and
15 in T2, 25 in all, down
from 28 original tuples.

CS698F

M. Atre

BitMat

Inner-joins background

-
o

Graph of jvar-nodes (GoJ)

bottom-up pass = [?sitcom , ?friend |

top—down pass = [?friend ?sitcom]

Graph of Triple patterns (GoT)

m If the Graph of Tables (GoT) is acyclic (tree), then the tuples in
each table can be reduced to a minimal by traversing the GoT
in a bottom-up followed by top-down fashion, performing a
semi-join at each table node [Bernstein1981, Ullman1989].

B A table has minimal tuples for a query, if every tuple contributes to
at least one final result, none of the tuples gets eliminated in the final
result generation.

m If the Graph of Triple Patterns (GoT) is acyclic, the Graph of

Join-variables (GoJ) is acyclic too, and vice versa (Lemma 3.2
in [Atre2015]).

Pattern Query Processing

CS698F

M. Atre

m Choose the /east selective join variable (jvar) as the root
BitMat of the GolJ tree, so that more selective jvars are leaves!,
and do a bottom-up and top-down pass on GoJ with
clustered-semi-joins at each jvar.
m This leaves a minimal set of triples in the BitMat
associated with each triple pattern.

m Do n-way multi-join to join all the triple patterns to
produce the final results.

1
Any jvar can be chosen as the root, but this anti-greedy selection favors query performance.

CS698F

M. Atre

BitMat

N-way multi-joins

Jerry :hasFriend ?friend
BitMat1

?friend

BitMat2

:actedin

tp1.?friend Julia = '

tp2.?friend Julia e .. Ji 3

tp2.?sitcom |:Seinfeld 7~--==--"

tp3.?sitcom |‘Seinfeld 4=------—--------.
vmap

Result—1

?sitcom

?sitcom :location

BitMat3

:NewYorkCity

How to evaluate?

CS698F
M. Atre Development environment: Lenovo T540p laptop with Intel Core i3-4000M
2.40GHz CPU, 8 GB memory, 12 GB swap space, and 1 TB Western Digital
5400RPM SATA hard disk, C/C++ language, compiler g++ v4.8.2, -O3 -m64
flags, 64 bit Linux 3.13.0-34-generic SMP kernel (Ubuntu 14.04 LTS distribution).
Evaluation

Competitive RDF stores: Virtuoso and MonetDB (contemporary research
systems such as RDF-3X or TripleBit cannot process left-outer-join queries).

Datasets:
m LUBM: Synthetic university dataset with = 1.33 billion triples.
m UniProt: A real life protein network with =~ 845 million triples.

m DBPedia: RDF version of the Wikipedia network with ~ 565
million triples.

Metrics

CS698F
M. Atre
End-to-end query processing times for all three systems.
Time required to load initial data through BitMats.
Evaluation

Time required for pruning via semi-joins.

Time required for multi-way pipelined joins.

Initial number of triples required to be accessed by a query.
[@ Triples left after pruning (semi-joins).

Total number of final results.

Metrics 5—7 help in understanding the selectivity of the queries.

Time in seconds (logscale)

Query Processing Times

10?

LUBMQ1 LUBMQ2 LUBMQ3 UniProtQl UniProtQ2 UniProtQ3 UniProtQ4

[WBitMat [Virtwoso | MonetDB |

DA

Next Class

CS698F

M. Atre

In the next class we will go over a some main research and

general purpose graph storage and querying systems — RDF-3X,
Next Class TripleBit, gStore, Neo4j, Openlink Virtuoso, MonetDB

(database), Titan.

A much more comprehensive list on Wikipedia: https://en.

wikipedia.org/wiki/Graph_database#List_of _graph_databases

https://en.wikipedia.org/wiki/Graph_database#List_of_graph_databases
https://en.wikipedia.org/wiki/Graph_database#List_of_graph_databases

Questions?

Q>

	Assignment
	Recap
	BitMat
	Evaluation
	Next Class
	Thanks

