C	S	6	9	8	F

M. Atre

Assignmen

Recap

BitMat

Evaluation

Next Class

Thanks

Advanced Data Management

Medha Atre

Office: KD-219 atrem@cse.iitk.ac.in

Aug 4, 2016

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

First Assignment

CS698F

M. Atre

Assignment

Recap

BitMat

Evaluation

Next Clas

Thanks

First assignment is posted on the course webpage. Due date is August 15, 2016 23:59 IST. Submission instructions will be included within a few days in the assignment description. Please check the course webpage regularly for any important announcements, and assignment submission instructions. www.cse.iitk.ac.in/users/atrem/courses/cs698f2016fall/

Recap

CS698F

M. Atre

Assignment

Recap

BitMat

Evaluation

Next Class

Thanks

- Relational query optimization techniques.
- IBM System R optimizer concepts.
- Problems unique to the graph shaped data.
- BitMat indexing structure for a directed edge-labeled graph.

Fold and unfold operations on a BitMat.

Graph data and gueries

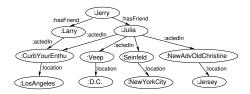
CS698F

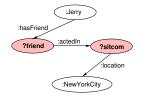
M Atre

Recap

Data

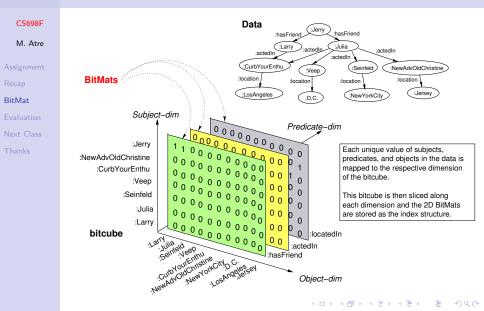
:Jerry	:hasFriend	:Larry
:Jerry	:hasFriend	:Julia
:Larry	:actedIn	:CurbYourEnthu
:Julia	:actedIn	:Seinfeld
:Julia	:actedIn	:Veep
:Julia	:actedIn	:CurbYourEnthu
:Julia	:actedIn	:NewAdvOldChristine
:Seinfeld	:location	:NewYorkCity
:Veep	:location	:D.C.
:CurbYourEnthu	:location	:LosAngeles
: NewAdvOldChristine	:Jersey	

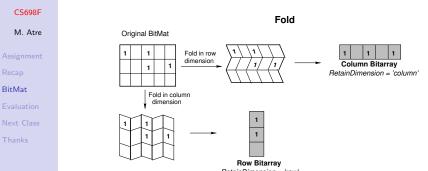

Graphical Representation


SPARQL

SELECT ?friend ?sitcom WHERE { :Jerry :hasFriend ?friend . ?friend :actedIn ?sitcom . ?sitcom :location :NewYorkCity .

Eqv. SQL query

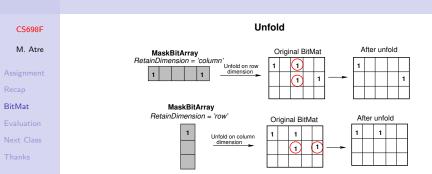

SELECT t1.o. t2.o from rdf as t1. rdf as t2, rdf as t3 WHERE t1.s=":Jerry" and t1.p=":hasFriend" and t2.p=":actedIn" and t3.p=":location" and t3.o=":NewYorkCity" and t1.o=t2.s and t2 = t3 s



・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト э

BitMat - brief overview

Fold and Unfold



RetainDimension = 'row'

 $fold(BM_{tp}, RetainDimension)$ procedure is nothing but projection of distinct values from the given dimension of BitMat, e.g., in the triple pattern (?friend :actedIn ?sitcom) if BM_{tp} is an O-S BitMat, then ?sitcom is in the "row" dimension of the BitMat.

$$fold(BM_{tp}, dim_{?i}) \equiv \pi_{?i}(BM_{tp})$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

For every *unset* bit in the *MaskBitArray*, *unfold*(*BM*_{tp}, *MaskBitArray*, *RetainDimension*) clears all the bits corresponding to that position of the *RetainDimension*.

 $unfold(BM_{tp}, \beta_{?j}, dim_{?j}) \equiv \{t \mid t \in BM_{tp}, t.?j \in \beta_{?j}\}$

t is a triple in BM_{tp} that matches tp. $\beta_{?j}$ is the *MaskBitArray* containing bindings of ?*j* to be retained. $dim_{?j}$ is the dimension of BM_{tp} that represents ?*j*, and *t*.?*j* is a binding of ?*j* in triple *t*. In short, unfold keeps only those triples whose respective bindings of ?*j* are set to 1 in $\beta_{?j}$, and removes all other.

Semi-join and clustered-semi-join

CS698F

M. Atre

Assignment

Recap

BitMat

Evaluation

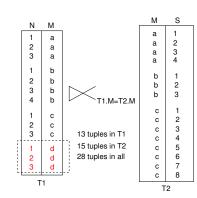
Next Class

Thanks

- $tp_2 \ltimes_{?j} tp_1 = \pi_{attr(tp_2)}(tp_2 \Join_{?j} tp_1)$ is a semi-join [Bernstein1981, Ullman1989].
- A *clustered-semi-join* between (*tp*₁, *tp*₂, ...*tp*_n) over ?*j* is similar to *n*-way semi-join.
- Semi-joins are achieved through the *fold* and *unfold* primitives of BitMat.

tp1 :Jerry :hasFriend ?friend tp2			?friend :acte	?friend :actedIn ?sitcom .		tp3 ?sitcom :location :NewYorkCity .			
:Jerry	hasErier	nd :Larry	:Larry	:actedIn	:CurbYour	Enthu	:Seinfeld	:location	:NewYorkCity
:Jerry			:actedIn	:Seinfeld		·			
·			:Julia	:actedIn	:Veep				
			:Julia	:actedIn	:NewAdvOl				
	$\sim \sim$	tn1	:Julia	:actedIn	:CurbYourE	Inthu			
tp2			clı	stered-semi-	-join(?sitcom	, (tp2, tp3)) =	$\begin{pmatrix} tp2 \searrow_{(2)} \\ tp3 \bigotimes_{(2)} \\ \end{pmatrix}$	esitcom) tp3 sitcom) tp2	
Julia :actedIn :CurbYourEnthu			าน	tp2	K⊂(?sitcom)) tp3		tp3 ▷	<(?sitcom) ^{tp2}
tp2 left with all the triples		:Julia	:actedIn	:Seinfeld	:Seinfeld	:location	:NewYorkCity		
Now <i>tp2</i> left with only one triple					tp3 left	with the ori	ginal one triple		

Revisit the example of a low selectivity query


M. Atre

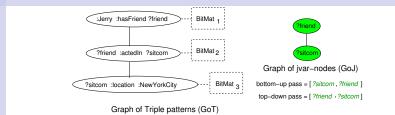
Assignmen

Recap

BitMat Evaluati Next Cla

Thanks

If we do a standard join of these two tables, we get 48 results (tuples) – a polynomial increase in the size of the results.


Instead, if we do a semi-join $(T1 \ltimes_M T2)$ of T1 and T2, we are left with 10 tuples in T1 (3 tuples with M='d' get eliminated from T1) and 15 in T2, **25** in all, down from 28 original tuples.

Inner-joins background

CS698F

M. Atre

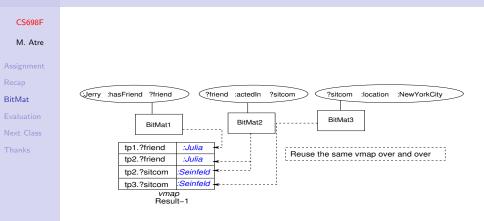
BitMat

- If the Graph of Tables (GoT) is acyclic (tree), then the tuples in each table can be reduced to a minimal by traversing the GoT in a bottom-up followed by top-down fashion, performing a semi-join at each table node [Bernstein1981, Ullman1989].
 - A table has minimal tuples for a query, if every tuple contributes to at least one final result, none of the tuples gets eliminated in the final result generation.
- If the Graph of Triple Patterns (GoT) is acyclic, the Graph of Join-variables (GoJ) is acyclic too, and vice versa (Lemma 3.2 in [Atre2015]).

Pattern Query Processing

CS698F

M. Atre


Assignment

- Recap
- BitMat
- Evaluation
- Next Class
- Thanks

- Choose the *least selective* join variable (jvar) as the root of the GoJ tree, so that more selective jvars are leaves¹, and do a bottom-up and top-down pass on GoJ with *clustered-semi-joins* at each jvar.
 - This leaves a *minimal* set of triples in the BitMat associated with each triple pattern.
- Do n-way multi-join to join all the triple patterns to produce the final results.

Any jvar can be chosen as the root, but this anti-greedy selection favors query performance. 🚊 🔊 🔍 🖓

N-way multi-joins

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

How to evaluate?

CS698F

M. Atre

Assignment Recap BitMat Evaluation Next Class Thanks Development environment: Lenovo T540p laptop with Intel Core i3-4000M 2.40GHz CPU, 8 GB memory, 12 GB swap space, and 1 TB Western Digital 5400RPM SATA hard disk, C/C++ language, compiler g++ v4.8.2, -O3 -m64 flags, 64 bit Linux 3.13.0-34-generic SMP kernel (Ubuntu 14.04 LTS distribution).

Competitive RDF stores: Virtuoso and MonetDB (contemporary research systems such as RDF-3X or TripleBit cannot process left-outer-join queries).

Datasets:

- \blacksquare LUBM: Synthetic university dataset with \approx 1.33 billion triples.
- \blacksquare UniProt: A real life protein network with \approx 845 million triples.
- **DBPedia:** RDF version of the Wikipedia network with \approx 565 million triples.

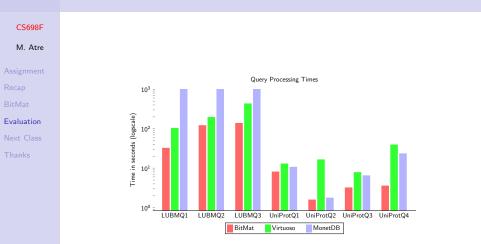
Metrics

CS698F

M. Atre

Assignme Recap BitMat

Evaluation


Next Clas

Thanks

- **1** End-to-end query processing times for all three systems.
- 2 Time required to load initial data through BitMats.
- 3 Time required for pruning via semi-joins.
- **4** Time required for multi-way pipelined joins.
- 5 Initial number of triples required to be accessed by a query.
- 6 Triples left after pruning (semi-joins).
- 7 Total number of final results.

Metrics 5-7 help in understanding the selectivity of the queries.

How to present

Next Class

(5	u	х	

M. Atre

Assignmen

BitMat

Evaluation

Next Class

Thanks

In the next class we will go over a some main research and general purpose graph storage and querying systems – RDF-3X, TripleBit, gStore, Neo4j, Openlink Virtuoso, MonetDB (database), Titan.

A much more comprehensive list on Wikipedia: https://en. wikipedia.org/wiki/Graph_database#List_of_graph_databases

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

M. Atre

Assignmen

Recap

BitMat

Evaluation

Next Class

Thanks

Questions?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ