
CS698F

M. Atre

Reachability
Queries

Query
Processing

Approaches

2-hop cover

GRAIL

Compr
Bitvectors

Next Class

Advanced Data Management

Medha Atre

Office: KD-219
atrem@cse.iitk.ac.in

Sept 26, 2016

CS698F

M. Atre

Reachability
Queries

Query
Processing

Approaches

2-hop cover

GRAIL

Compr
Bitvectors

Next Class

Reachability defined

Given a graph G (V ,E) with V as the set of nodes and E as
the set of edges, a reachability query asks – does there exists
any path between nodes x and y . The pair of nodes can be
any two nodes from the given graph.
In case of directed graph, the path is directed and other for
undirected graphs the path is undirected.
The graphs may have cycles too, giving rise to the strongly
connected components.

CS698F

M. Atre

Reachability
Queries

Query
Processing

Approaches

2-hop cover

GRAIL

Compr
Bitvectors

Next Class

Query Processing Challenges

Identification of strongly connected components and
merging them.

Efficient traversal over large graphs, e.g., number of
vertices and edges being several millions.

High computational complexity O(|V |3) for standard
algorithms like all-pair shortest path, which also gives us
transitive clousure for answering reachability.

High storage space O(|V |2) if the entire transitive
clousure is meant to be stored.

CS698F

M. Atre

Reachability
Queries

Query
Processing

Approaches

2-hop cover

GRAIL

Compr
Bitvectors

Next Class

Key aspects to consider

Index creation time, e.g., O(|V |3) for a näıve technique
like all pair shortest path.

Index size, e.g., O(|V |2) for storing complete transitive
closure.

Query answering time, O(1) if we have complete transitive
closure.

However, the first two aspects – time to create index and
the index size – become prohibitives large if the graph is
dense and has a large number of nodes.

Hence several approaches defined over the past decade to
either reduce index creation time, index size, or both, at
the cost of compromising some query answering time.

CS698F

M. Atre

Reachability
Queries

Query
Processing

Approaches

2-hop cover

GRAIL

Compr
Bitvectors

Next Class

Existing published approaches

Approaches which answer queries using only index
(node-idx-labels)

These focus on building a reachability index such that for
any pair of nodes (u, v) the reachability query over them
can be answered using only this index without traversing
any part of the original graph.
2-Hop [SODA 2002], Path-Tree [SIGMOD 2008], 3-Hop
[SIGMOD 2009], PWAH8 [SIGMOD 2011], TF-label
[SIGMOD 2013], Hierarchical Labeling (HL) and
Distribution Labeling (DL) [VLDB 2013].
Not all of these build indexes of O(|V |2), they try to
improve upon this worst case bound.

CS698F

M. Atre

Reachability
Queries

Query
Processing

Approaches

2-hop cover

GRAIL

Compr
Bitvectors

Next Class

Existing published approaches

Approaches that answer queries by partly using the index

These focus on reducing the time spent in building the
index and the size (space) of the index.
For certain queries they have to traverse part of the graph
to give a definitive answer to the given reachability query.
For such queries the index alone cannot answer the
reachability query definitively, since it is incomplete.
Tree+SSPI [VLDB 2005], GRIPP [SIGMOD 2007], GRAIL
[VLDB 2010], Ferrari [ICDE 2013], SCARAB [SIGMOD
2012].

CS698F

M. Atre

Reachability
Queries

Query
Processing

Approaches

2-hop cover

GRAIL

Compr
Bitvectors

Next Class

2-hop cover [SODA 2002]

The aim is to reduce the size of the reachability index
using a method called 2-hop cover such that entire
transitive closure is not needed.

2-hop Reachability Labeling: each vertex v ∈ V has a
label L(v) = (Lin(v), Lout(v)). Lin(v) contains all nodes
x ∈ V such that v can be reached from x . Lout is defined
similarly.

u v iff Lout(u) ∩ Lin(v) 6= φ.

2-hop covers: for every (u, v) s.t. u v , let Puv be all
the paths between (u, v).

A “hop” is defined as (H, u) s.t. H is a path which ends
in u. u is said to be the “handle” of hop H.

CS698F

M. Atre

Reachability
Queries

Query
Processing

Approaches

2-hop cover

GRAIL

Compr
Bitvectors

Next Class

2-hop cover

A collection of such hops is called a 2-hop cover, if for
every u, v ∈ V , where v is reachable from u, there exist
two hops (H1, u) and (H2, v) where H1.H2 gives some
path between u and v .

Optimal 2-hop cover problem is NP-hard as it can be
reduced to the optimal set-cover problem.

But due to the above observation, we use greedy method
of set-cover for 2-hop cover problem.

Start with a ground set T = {(u, v)|Puv 6= φ}.
We will update this T and call it T ′ in each iteration, by
removing the pairs of nodes, as we cover them with the
hops.

CS698F

M. Atre

Reachability
Queries

Query
Processing

Approaches

2-hop cover

GRAIL

Compr
Bitvectors

Next Class

2-hop cover

For each vertex w ∈ V , we construct an undirected
bipartite graph Gw = (Vw ,Ew) where Vw contains Lin and
Lout nodes representing the respective sets for every other
node in the graph.

There is an edge between these nodes, if w is a node on
some path between u, v .

From all such bipartite graphs for each w , iteratively
choose the w for which the following ratio is maximized
until T ′ is not empty (equivalent to greedy set-cover):

{(u, v)} ∩ T ′

|Cin(v)|+ |Cout(u)|

This greedy method is also equivalent to finding densest
subgraph of each Gw .

CS698F

M. Atre

Reachability
Queries

Query
Processing

Approaches

2-hop cover

GRAIL

Compr
Bitvectors

Next Class

GRAIL [VLDB 2010]

Background: for a directed tree-shaped graph, we can
create complete interval reachability label of type [l , r] for
each node in 1-dimension, s.t., for any pair of nodes (u, v)
if u v then v ’s label interval is completely contained
within u’s label interval.

The above observation does not hold for an acylic graph
which is not a tree.

CS698F

M. Atre

Reachability
Queries

Query
Processing

Approaches

2-hop cover

GRAIL

Compr
Bitvectors

Next Class

GRAIL

Figure taken from Grail, PVLDB 2010.

CS698F

M. Atre

Reachability
Queries

Query
Processing

Approaches

2-hop cover

GRAIL

Compr
Bitvectors

Next Class

GRAIL

Exceptions: (1, 2), (2, 4), (3, 4), (4, 7) etc. Exercise: compute all the exceptions

from this node labeling scheme.

Figure taken from Grail, PVLDB 2010.

CS698F

M. Atre

Reachability
Queries

Query
Processing

Approaches

2-hop cover

GRAIL

Compr
Bitvectors

Next Class

GRAIL

Aim is to cover as many pairs of vertices of the graph as
possible by hyperdimensional labels, because
1-dimensional labels are insufficient to report the true
reachability, i.e., they may generate false positives as seen
in the example before.
For generating hyperdimensional labels, consider k
different spanning trees over the given directed acyclic
graph, and for each spanning tree, generate 1-dimensional
labels for each node.
At the end combine these k labels for each node from
each spanning tree.
A node v is not reachable from u, if for any of these k
label intervals of type [l iv , r

i
v], [l iu, r

i
u], 1 ≤ i ≤ k v ’s label is

not contained within u’s label. That is to say: with
GRAIL, we will certainly know if u 6 v by just checking
the interval labels of u, v .

CS698F

M. Atre

Reachability
Queries

Query
Processing

Approaches

2-hop cover

GRAIL

Compr
Bitvectors

Next Class

GRAIL

Figure taken from Grail, PVLDB 2010.

CS698F

M. Atre

Reachability
Queries

Query
Processing

Approaches

2-hop cover

GRAIL

Compr
Bitvectors

Next Class

GRAIL

If the k interval labels of u, v indicate that u v , then
we have to do a DFS walk over the original graph
beginning from u to check if we actually reach v , due to
the possibility of false positives.

Key obervation: If we consider large enough DFS trees
over the given DAG and generate interval labels for each
of these trees, then we will most likely eliminate all false
positives. Open question: can we come up with an upper
bound k̄ such that interval labeling of k̄-dimension will
always eliminate any false positives?

In practice k is kept fixed and false positives are
eliminated at the run-time.

Optimization: While doing a DFS walk on the graph from
u, if you are at vertex w , and if v ’s interval label is outside
w ’s, you can ignore that branch of DFS since w 6 v .

CS698F

M. Atre

Reachability
Queries

Query
Processing

Approaches

2-hop cover

GRAIL

Compr
Bitvectors

Next Class

Partitioned Word-Aligned Hybrid compression
[SIGMOD 2011]

Merge strongly connected components.

Sort all the vertices in the resulting DAG using a
topological sort – assign level lv to each node v ∈ Vdag

such that lv = (longest possible path from a node u to v ,
s.t., indegree(u) = φ).

Do a reverse DFS walk over this DAG considering the
topological sort.

Key observation: When you do a reverse DFS walk on a
DAG, vertices that are adjacent in the topological sort tend
to cluster together in the adjacency list – hence techniques
like run-length-encoding can be applied on them.

While doing a reverse DFS walk to compute reachability,
compress contiguous sequence of vertices using
compressed bitvectors – bitvector compression favours
contiguous lengths of 1s and 0s.

CS698F

M. Atre

Reachability
Queries

Query
Processing

Approaches

2-hop cover

GRAIL

Compr
Bitvectors

Next Class

Partitioned Word-Aligned Hybrid compression

Computing the reachability of a any given intermediate
node w , is nothing but doing a bitwise OR of the
compressed interval lists of all its children and adding the
children themselves to the reachability bitvector, and then
applying compression on them.

Word-Aligned Hybrid compression scheme has limitations,
hence authors introduce Partitioned Word-Aligned Hybrid
(PWAH) scheme.

The generated index is complete, and saves significant
amount of memory compared to approaches that store
interval lists without any compression.

CS698F

M. Atre

Reachability
Queries

Query
Processing

Approaches

2-hop cover

GRAIL

Compr
Bitvectors

Next Class

Next Class

In the next class we will mainly review other reachability
computation methods such as IP-labeling [SIGMOD 2014],
TF-folding [SIGMOD 2013] and some others as Chain-cover,
Path-tree etc (time permitted).

	Reachability Queries
	Query Processing
	Approaches
	2-hop cover
	GRAIL
	Compr Bitvectors
	Next Class

