Assignment-1
CS698F Advanced Data Management

Medha Atre
Dept of Computer Science and Engineering
II'T Kanpur

Due Aug 15, 2016 23:59

Run-length encoding of a bitvector is such that given a bitvector of a kind 1111000011100000

it is represented as [1] 4 4 3 (ignoring the last Os because they anyway indicate non-
existence of values so need not be recorded). As we saw in our class, the 3D bitcube
representing a graph is usually quite sparse, hence after slicing the bitcube in each di-
mension to create 2D bit matrices, we apply run-length-encoding on each row. Note that
the run-length-encoding maintains the row boundaries.

Given an adjancency matrix A of a graph, A2, i.e., multiplying the matrix by itself gives
us a matrix in which a cell has 1 bit if there is a 2-length path between the corresponding
graph nodes. Note that you are supposed to use Boolean matrix multiplication, so that
the resultant matrix is also a matrix of 0/1 bits and no cell has value larger than 1.

You should not assume that the adjancency matrix is symmetric. It is an adjancency
matrix of a directed graph where an edge (a,b) does not imply reverse edge (b, a).

(10 marks) 1. Given a list of edges of a directed graph without edge-labels or edge-
weights, build the run-length-encoded adjancency matrix directly without building the
intermediate uncompressed matrix. Note that your code will be tested on graphs where
it is impossible to build intermediate uncompressed matrix in memory or on disk, hence
your code should be able to build this compressed matrix directly from the given list of
edges of a graph.

(15 marks) 2. Given such a compressed bit-matrix, write a program for multiplying
it with another similarly compressed bit-matrix, without completely uncompressing any
the two matrices or without completely uncompressing any row. You are expected to
use methods that do not require the given compressed matrix data in completely uncom-
pressed form because the data is so large that a commodity computer cannot hold the
entire uncompressed matrix in memory.

For the input method assume that you have a simple text file where each line has an
entry of type “src-node-id,dest-node-id” (without the double quotes), where src and dest
node IDs are integers of less than 232 values.

For the output, you should have a “switch” which decides whether to keep the resultant
matrix in memory or write it out to the disk. There has to be a function through which



the resultant matrix stored on the disk can be read back in memory methodically and
thus retrieved for further operations like computing A% matrix.

You are expected to write your code using C or C++ programming laguage and it
should be compilable with G4++ compiler and run on the Linux platform.

Instructions for the submission will be updated here and on the course webpage soon.



