Copyright Notice

These slides are distributed under the Creative Commons License.
DeepLearning.Al makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite DeepLearning.Al as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode
©) DeepLearning.AI
Stanford
ONLINE

Advice for applying machine learning

Deciding what to try next

Debugging a learning algorithm

You've implemented regularized linear regression on housing prices

$$
J(\overrightarrow{\mathrm{w}}, b)=\frac{1}{2 m} \sum_{i=1}^{m}\left(f_{\overrightarrow{\mathrm{w}}, b}\left(\overrightarrow{\mathrm{x}}^{(i)}\right)-y^{(i)}\right)^{2}+\frac{\lambda}{2 m} \sum_{j=1}^{n} w_{j}^{2}
$$

But it makes unacceptably large errors in predictions. What do you try next?
\rightarrow Get more training examples
\rightarrow Try smaller sets of features
\rightarrow Try getting additional features
\rightarrow Try adding polynomial features ($x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}$, etc)
\rightarrow Try decreasing λ
\rightarrow Try increasing λ

Machine learning diagnostic

Diagnostic: A test that you run to gain insight into what is/isn't working with a learning algorithm, to gain guidance into improving its performance.

Diagnostics can take time to implement but doing so can be a very good use of your time.
() DeepLearning.Al

Stanford ONLINE

Evaluating and choosing models

Evaluating a model

Evaluating your model

Evaluating your model

Dataset:

Train/test procedure for linear regression (with squared error cost)

Fit parameters by minimizing cost function $J(\overrightarrow{\mathrm{w}}, b)$
$\rightarrow J(\overrightarrow{\mathrm{w}}, b)=\underset{\mathrm{w}}{\min }, b[\frac{1}{2 m_{\text {train }}} \sum_{i=1}^{m_{\text {train }}}(\underbrace{}_{\overrightarrow{\mathrm{w}}, b}\left(\overrightarrow{\mathrm{x}}^{(i)}\right)-y^{(i)})^{2}+\frac{\lambda}{2 m_{\text {train }}} \sum_{j=1}^{n} w_{j}^{2}]$
Compute test error: $J_{\text {test }}(\overrightarrow{\mathrm{W}}, b)=\frac{11}{2 m_{\text {test }}}[\sum_{i=1}^{m_{\text {test }}}(\underbrace{\left.\left(\overrightarrow{\mathrm{w}}, b\left(\overrightarrow{\mathrm{x}}_{\text {test }}^{(i)}\right)-y_{\text {test }}^{(i)}\right)^{2}\right)^{2} 12}$

Compute training error:

$$
\frac{\operatorname{Jtrain}^{\text {train }}(\hat{\mathrm{w}}, b)}{}=\frac{1}{2 m_{\text {train }}}\left[\sum_{i=1}^{m_{\text {train }}}\left(f_{\overrightarrow{\mathrm{w}}, b}\left(\overrightarrow{\mathrm{x}}_{\text {train }}^{(i)}\right)-y_{\text {train }}^{(i)}\right)^{2}\right]
$$

Train/test procedure for linear regression (with squared error cost)

Train/test procedure for classification problem

Fit parameters by minimizing $\underline{J(\overrightarrow{\mathrm{w}}, b)}$ to find $\overrightarrow{\mathrm{w}}, b$
$J\left(\underset{\mathrm{w}}{\mathrm{E}}, \mathrm{g}_{\mathrm{b}}\right)^{\prime}=-\frac{1}{m} \sum_{i=1}^{m}\left[y^{(i)} \log \left(f_{\overrightarrow{\mathrm{w}}, b}\left(\overrightarrow{\mathrm{x}}^{(i)}\right)\right)+\left(1-y^{(i)}\right) \log \left(1-f_{\overrightarrow{\mathrm{w}}, b}\left(\overrightarrow{\mathrm{x}}^{(i)}\right)\right)\right]+\frac{\lambda}{2 m} \sum_{j=1}^{n} w_{j}^{2}$
Compute test error:

$$
J_{\text {test }}(\overrightarrow{\mathrm{w}}, b)=-\frac{1}{m_{\text {test }}} \sum_{i=1}^{m_{\text {test }}}\left[y_{\text {test }}^{(i)} \log \left(f_{\overrightarrow{\mathrm{w}}, b}\left(\overrightarrow{\mathrm{x}}_{\text {test }}^{(i)}\right)\right)+\left(1-y_{\text {test }}^{(i)}\right) \log \left(1-f_{\overrightarrow{\mathrm{w}}, b}\left(\overrightarrow{\mathrm{x}}_{\text {test }}^{(i)}\right)\right)\right]
$$

Compute train error;

$$
\begin{gathered}
J_{\text {train }}(\overrightarrow{\mathrm{w}}, b)=-\frac{1}{m_{\text {train }}} \sum_{i=1}^{m_{\text {train }}}\left[y_{\text {train }}^{(i)} \log \left(f_{\overrightarrow{\mathrm{w}}, b}\left(\overrightarrow{\mathrm{x}}_{\text {train }}^{(i)}\right)\right)+\left(1-y_{\text {train }}^{(i)}\right) \log \left(1-f_{\overrightarrow{\mathrm{w}}, b}\left(\overrightarrow{\mathrm{x}}_{\text {train }}^{(i)}\right)\right)\right]
\end{gathered}
$$

Train/test procedure for classification problem

Fit parameters by minimizing $J(\overrightarrow{\mathrm{w}}, b)$ to find $\overrightarrow{\mathrm{w}}, b$
E.g.,
$J(\overrightarrow{\mathrm{w}}, b)=-\frac{1}{m} \sum_{i=1}^{m}\left[y^{(i)} \log \left(f_{\overrightarrow{\mathrm{w}}, b}\right]\right.$
Compute test error:

$$
J_{\text {test }}(\overrightarrow{\mathrm{w}}, b)=-\frac{1}{m_{\text {test }}} \sum_{i=1}^{m_{\text {test }}}[y]
$$

Compute train error:

$$
J_{\text {train }}(\overrightarrow{\mathrm{w}}, b)=-\frac{1}{m_{\text {train }}} \sum_{i=1}^{m_{\text {trai }}}
$$

fraction of the test set and the fraction of the train set that the algorithm has misclassified.
count $\underline{\hat{y}} \neq \underline{y}$

$$
\widehat{y}=\left\{\begin{array}{l}
1 \text { if } f_{\overrightarrow{\mathrm{w}}, b}\left(\overrightarrow{\mathrm{x}}^{(i)}\right) \geq 0.5 \\
0 \text { if } f_{\overrightarrow{\mathrm{w}}, b}\left(\overrightarrow{\mathrm{x}}^{(i)}\right) \leq 0.5
\end{array}\right.
$$ $J_{\text {test }}(\overrightarrow{\mathrm{w}}, b)$ is the fraction of the test set that has been misclassified. $J_{\text {train }}(\overrightarrow{\mathrm{w}}, b)$ is the fraction of the train set that has been misclassified.

() DeepLearning.Al

Stanford
ONLINE

Evaluating and choosing models

Model selection and training/cross validation/test sets

Model selection (choosing a model)

$$
\begin{aligned}
f_{\overrightarrow{\mathrm{w}}, b}(\overrightarrow{\mathrm{x}})= & w_{1} x_{1}+w_{2} x^{2} \\
& +w_{3} x^{3}+w_{4} x^{4}+b
\end{aligned}
$$

Once parameters $\overrightarrow{\mathrm{w}}, b$ are fit to the training set, the training error $J_{\text {train }}(\overrightarrow{\mathrm{w}}, b)$ is likely lower than the actual generalization error.
$J_{\text {test }}(\overrightarrow{\mathrm{w}}, b)$ is better estimate of how well the model will generalize to new data than $J_{\text {train }}(\overrightarrow{\mathrm{w}}, b)$.

Model selection (choosing a model)

Choose $w_{1} x_{1}+\cdots+w_{5} x^{5}+b \quad d=5 \quad J_{\text {test }}\left(w^{\langle 5\rangle}, b^{\langle 5\rangle}\right)$
How well does the model perform? Report test set error $J_{\text {test }}\left(w^{<5>}, b^{<5>}\right)$?
The problem is $\underline{J_{\text {test }}\left(w^{<5>}, b^{<5>}\right)}$ is likely to be an optimistic estimate of generalization error. Ie: An extra parameter d (degree of polynomial) was chosen using the test set.

Training cross validation test set

Training/cross validation/test set

Training error: $\quad J_{\text {train }}(\overrightarrow{\mathrm{w}}, b)=\frac{1}{2 m_{\text {train }}}\left[\sum_{i=1}^{m_{\text {train }}}\left(f_{\overrightarrow{\mathrm{w}}, b}\left(\overrightarrow{\mathrm{x}}^{(i)}\right)-y^{(i)}\right)^{2}\right]$
Cross validation $J_{c v}(\overrightarrow{\mathrm{w}}, b)=\frac{1}{2 m_{c v}}\left[\sum_{i=1}^{m_{c v}}\left(f_{\overrightarrow{\mathrm{w}}, b}\left(\overrightarrow{\mathrm{x}}_{c v}^{(i)}\right)-y_{c v}^{(i)}\right)^{2}\right] \frac{\text { (validation error, }}{\text { error: }}$ dev error)

Test error:

$$
J_{\text {test }}(\overrightarrow{\mathrm{w}}, b)=\frac{1}{2 m_{\text {test }}}\left[\sum_{i=1}^{m_{\text {test }}}\left(f_{\overrightarrow{\mathrm{w}}, b}\left(\overrightarrow{\mathrm{x}}_{\text {test }}^{(i)}\right)-y_{\text {test }}^{(i)}\right)^{2}\right]
$$

Model selection

$d=1$ 1. $f_{\overrightarrow{\mathrm{w}}, b}(\overrightarrow{\mathrm{x}})=w_{1} x_{1}+b$
$d=2$ 2. $f_{\overrightarrow{\mathrm{w}}, b}(\overrightarrow{\mathrm{x}})=w_{1} x_{1}+w_{2} x^{2}+b$
$d=3$ 及. $f_{\overrightarrow{\mathrm{w}}, b}(\overrightarrow{\mathrm{x}})=w_{1} x_{1}+w_{2} x^{2}+w_{3} x^{3}+b$
$d=10$ 10. $f_{\overrightarrow{\mathrm{w}}, b}(\overrightarrow{\mathrm{x}})=w_{1} x_{1}+w_{2} x^{2}+\cdots+w_{10} x^{10}+b$

\longrightarrow Pick $w_{1} x_{1}+\cdots+w_{4} x^{4}+b$

$$
\left(J_{c v} w^{<4>}, b^{<4>}\right)
$$

Estimate generalization error using test the set: $J_{\text {test }}\left(w^{<4>}, b^{<4>}\right)$

Model selection - choosing a neural network architecture

$$
\rightarrow \text { 2. }
$$

$$
\begin{array}{ll}
w^{(1)}, b^{(1)} & \frac{J_{c v}\left(\mathbf{W}^{(1)}, \mathbf{B}^{(1)}\right)}{w^{(2)}, b^{(2)}} \\
w^{(3)}, b^{(3)} & J_{c v}\left(\mathbf{w}^{(2)}, \mathbf{B}^{(2)}\right) \\
J_{c v}\left(\mathbf{w}^{(3)}, \mathbf{B}^{(3)}\right)
\end{array}
$$

Pick $\mathbf{W}^{(2)}, \mathbf{B}^{(2)}$

Train, CV

Estimate generalization error using the test set: $\sqrt[J_{\text {test }}\left(\mathbf{W}^{(2)}, \mathbf{B}^{(2)}\right)]{ }$
©) DeepLearning.AI

Bias and variance

Diagnosing bias and variance

Bias/variance

$$
\begin{gathered}
f_{\overrightarrow{\mathrm{w}}, b}(x)=w_{1} x \\
+b
\end{gathered}
$$

$\rightarrow \quad$ High bias
(underfit)
$d=1 \frac{J_{\text {train }} \text { is high }}{J_{c v} \text { is high }}$

$$
\begin{gathered}
f_{\overrightarrow{\mathrm{w}}, b}(x)=w_{1} x+w_{2} x^{2} \\
+b
\end{gathered}
$$

"Just right"

$$
d=2 \quad \begin{array}{ll}
J_{\text {train }} & \text { is low } \\
J_{c v} & \text { is low }
\end{array}
$$

$$
\begin{gathered}
f_{\overrightarrow{\mathrm{w}}, b}(x)=w_{1} x+w_{2} x^{2} \\
+w_{3} x^{3}+w_{4} x^{4}+b
\end{gathered}
$$

High variance (overfit)
$d=4 \quad \begin{aligned} & J_{\text {train }} \text { is low } \\ & J_{c v} \text { is high }\end{aligned}$

Understanding bias and variance

Diagnosing bias and variance

How do you tell if your algorithm has a bias or variance problem?

High bias (underfit)
$J_{\text {train }}$ will be high

$\left(J_{\text {train }} \approx J_{c v}\right)$
High variance (overfit)

be
train may be be low
High bias and high variance
$\overrightarrow{\text { and }}$ $J_{\text {train }}$ will be high
$J_{c v} \gg J_{\text {train }}$

©) DeepLearning.AI

Bias and variance

Regularization and bias/variance

Linear regression with regularization

Model: $f_{\overrightarrow{\mathrm{w}}, b}(x)=\underline{w}_{1} x+\underline{w}_{2} x^{2}+w_{3} x^{3}+w_{4} x^{4}+b$

$$
J(\overrightarrow{\mathrm{w}}, b)=\frac{1}{2 m} \sum_{i=1} \frac{\left(f_{\overrightarrow{\mathrm{w}}, b}\left(\overrightarrow{\mathrm{x}}^{(i)}\right)-y^{(i)}\right)^{2}}{\uparrow} \frac{\lambda}{2 m} \sum_{j=1}^{n} w_{j}^{2}
$$

$J_{\text {train }}(\overrightarrow{\mathrm{w}}, b)$ is small $J_{c v}(\vec{w}, b)$ is large
size
Intermediate λ

Small λ
High variance (overfit)
$\lambda=0$

Choosing the regularization parameter λ

Model: $f_{\overrightarrow{\mathrm{w}}, b}(x)=w_{1} x+w_{2} x^{2}+w_{3} x^{3}+w_{4} x^{4}+b$

$$
\begin{aligned}
& \rightarrow 4 . \operatorname{Trv} \lambda=0.04 \\
& \rightarrow 5 \text {. Try } \lambda=0.08 \\
& J_{c v}\left(w^{<5>}, b^{<5>}\right) \\
& \text { 12. Try } \lambda \approx 10 \\
& \rightarrow w^{<12>}, b^{<12>} \longrightarrow J_{c v}\left(w^{<12>}, b^{<12>}\right)
\end{aligned}
$$

Pick $w^{<5>}, b^{<5>}$
Report test error: $J_{\text {test }}\left(w^{<5>}, b^{<5>}\right)$

Bias and variance as a function of regularization parameter λ

©) DeepLearning.AI
Stanford ONLINE

Bias and variance

Establishing a baseline level of performance

Speech recognition example

Establishing a baseline level of performance

What is the level of error you can reasonably hope to get to?

- Human level performance
- Competing algorithms performance
- Guess based on experience

Bias/variance examples

©) DeepLearning.AI

Bias and variance

Learning curves

Learning curves

$$
f_{\overrightarrow{\mathrm{w}}, b}(x)=w_{1} x+w_{2} x^{2}+b
$$

$J_{\text {train }}=$ training error $J_{c v}=$ cross validation error

High bias

if a learning algorithm suffers from high bias, getting more training data will not (by

High variance

$$
\begin{gathered}
f_{\overrightarrow{\mathrm{w}}, b}(x)=w_{1} x+w_{2} x^{2}+w_{3} x^{3} \\
+w_{4} x^{4}+b \\
\text { (with small } \lambda \text {) }
\end{gathered}
$$

$$
J_{\text {train }}(\overrightarrow{\mathrm{w}}, b)
$$

 more training data is likely to help.
©) DeepLearning.AI

Bias and variance

Deciding what to try next revisited

Debugging a learning algorithm

You've implemented regularized linear regression on housing prices

$$
J(\overrightarrow{\mathrm{w}}, b)=\underbrace{\frac{1}{2 m} \sum_{i=1}^{m}\left(f_{\overrightarrow{\mathrm{w}}, b}\left(\overrightarrow{\mathrm{x}}^{(i)}\right)-y^{(i)}\right)^{2}+\frac{\lambda}{2 m} \sum_{j=1}^{n} w_{j}^{2}}
$$

But it makes unacceptably /arge errors in predictions. What do you try next?
\rightarrow Get more training examples
\rightarrow Try smaller sets of features
\rightarrow Try getting additional features

\rightarrow Try adding polynomial features ($x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}$, etc)
\rightarrow Try decreasing λ
\rightarrow Try increasing λ_{K}
fixes high variance fixes high variance fixes high bias fixes high bias fixes high bias fixes high variance
©) DeepLearning.AI

Bias and variance

Bias/variance and neural networks

The bias variance tradeoff

$f_{\overrightarrow{\mathrm{w}}, b}(x)=w_{1} x+b$

$$
\begin{array}{ccc}
f_{\overrightarrow{\mathrm{w}}, b}(x)= & w_{1} x+w_{2} x^{2} & f_{\overrightarrow{\mathrm{w}}, b}(x)= \\
& +b & w_{1} x+w_{2} x^{2}+w_{3} x^{3} \\
& +w_{4} x^{4}+b
\end{array}
$$

Simple model High bias

Complex model
High variance

Neural networks and bias variance

Large neural networks are low bias machines

Neural networks and regularization

A large neural network will usually do as well or better than a smaller one so long as regularization is chosen appropriately.

Neural network regularization

Unregularized MNIST model

```
layer_1 = Dense(units=25, activation="relu")
layer_2 = Dense(units=15, activation="relu")
layer_3 = Dense(units=1, activation="sigmoid")
```

model = Sequential([layer_1, layer_2, layer_3])

Regularized MNIST model

```
layer_1 = Dense(units=25, activation="relu", kernel_regularizer=L2(0.01))
layer_2 = Dense(units=15, activation="relu", kernel_regularizer=L2(0.01))
layer_3 = Dense(units=1, activation="sigmoid", kernel_regularizer=L2(0.01)
model = Sequential([layer_1, layer_2, layer_3])
```

() DeepLearning.Al

Stanford ONLINE

Machine learning development process

Iterative loop of
ML development

Iterative loop of ML development

Spam classification example

From: cheapsales@buystufffromme.com To: Andrew Ng
Subject: Buy now!
Deal of the week! Buy now!
Rolex w4tchs - \$100
Med1cine (any kind) - £50
Also low cost MOrgages available.

From: Alfred Ng
To: Andrew Ng
Subject: Christmas dates?
Hey Andrew,
Was talking to Mom about plans for Xmas. When do you get off work. Meet Dec 22?
Alf

Building a spam classifier

Supervised learning: $\frac{\vec{x}}{y}=$ features of email

$$
\bar{y}=\text { spam (1) or not spam (0) }
$$

Features: list the top 10,000 words to compute $x_{1}, x_{2}, \cdots, x_{10,000}$

From: cheapsales@buystufffromme.com
To: Andrew Ng Subject: Buy now!

Deal of the week! Buy now! Rolex w4tchs - \$100
Med1cine (any kind) - £50
Also low cost MOrgages available.

Building a spam classifier

How to try to reduce your spam classifier's error?

- Collect more data. E.g., "Honeypot" project.
- Develop sophisticated features based on email routing (from email header).
- Define sophisticated features from email body. E.g., should "discounting" and "discount" be treated as the same word.
- Design algorithms to detect misspellings. E.g., w4tches, med1cine, m0rtgage.

Iterative loop of ML development

() DeepLearning.Al

Machine learning development process

Error analysis

Error analysis

$m_{c v}=\frac{500}{5000}$ examples in cross validation set.
Algorithm misclassifies 100 of them.
Manually examine 100 examples and categorize them based on common traits.

Pharma: 21
more data
features
Deliberate misspellings (w4tches, med1cine): 3
Unusual email routing: 7 Steal passwords (phishing): Spam message in embedded image: 5

Building a spam classifier

How to try to reduce your spam classifier's error?

- Collect more data. E.g., "Honeypot" project.
- Develop sophisticated features based on email routing (from email header).
- Define sophisticated features from email body. E.g., should "discounting" and "discount" be treated as the same word.

Iterative loop of ML development

() DeepLearning.Al

Machine learning development process

Adding data

Adding data

\rightarrow Add more data of everything. E.g., "Honeypot" project.
\rightarrow Add more data of the types where error analysis has indicated it might help.

Pharma spam

E.g., Go to unlabeled data and find more examples of Pharma related spam.

Data augmentation

Augmentation: modifying an existing training example to create a new training example.

Data augmentation by introducing distortions

Data augmentation for speech

Speech recognition example

4)) Original audio (voice search: "What is today's weather?")
(2)) + Noisy background: Crowd
(2)) + Noisy background: Car
())) + Audio on bad cellphone connection

Data augmentation by introducing distortions Distortion introduced should be representation of the type of noise/distertions in the test set.

> Audio: Background noise, bad cellphone connection

Usually does not help to add purely random/meaningless noise to your data.

$x_{i}=$ intensity (brightness) of pixel i $x_{i} \leftarrow x_{i}+$ random noise

Data synthesis

Synthesis: using artificial data inputs to create a new

 training example.
Artificial data synthesis for photo OCR

Artificial data synthesis for photo OCR

Abcdefg Abcdefg

Cloctlof Abcdefg

Abriefg

Real data

Artificial data synthesis for photo OCR

Real data

Synthetic data

Engineering the data used by your system

Conventional model-centric approach:

AI $=$ Code + Data (algoritip $\sqrt{ }$ model)
 Work on this

Data-centric approach:
() DeepLearning.Al

Stanford ONLINE

Machine learning development process

Transfer learning: using data from a different task

Transfer learning

Supervised pretraining
Fine tuning

Option 1: only train output layers parameters. Option 2: train all parameters.

Why does transfer learning work?

use the same input type

Edges

Corners

Curves / basic shapes

Transfer learning summary

\rightarrow 1. Download neural network parameters pretrained on a large dataset with same input type (e.g., images, audio, text) as your application (or train your own).
$\rightarrow 2$. Further train (fine tune) the network on your own data.
(C) Deeplearning.Al

Machine learning development process

Full cycle of a machine learning project

Full cycle of a machine learning project

Deployment

Inference server
$M L$ model

\rightarrow Software engineering may be needed for:
Ensure reliable and efficient predictions Scaling Logging
System monitoring Model updates
()) DeepLearning.Al

Machine learning development process

Fairness, bias, and ethics

Bias

Hiring tool that discriminates against women.

Facial recognition system matching dark skinned individuals to criminal mugshots.

Biased bank loan approvals.
Toxic effect of reinforcing negative stereotypes.

Adverse use cases

Deepfakes

Spreading toxic/incendiary speech through optimizing for engagement.

Generating fake content for commercial or political purposes.
Using ML to build harmful products, commit fraud etc.
Spam vs anti-spam : fraud vs anti-fraud.

Guidelines

Get a diverse team to brainstorm things that might go wrong, with emphasis on possible harm to vulnerable groups.

Carry out literature search on standards/guidelines for your industry.
Audit systems against possible harm prior to deployment.

Develop mitigation plan (if applicable), and after deployment, monitor for possible harm.
() DeepLearning.Al

Stanford ONLINE

Skewed datasets (optional)

Error metrics for skewed datasets

Rare disease classification example

Train classifier $f_{\overrightarrow{\mathrm{w}}, b}(\overrightarrow{\mathrm{x}})$
($y=1$ if disease present, $y=0$ otherwise)

Find that you've got 1\%error on test set (99\% correct diagnoses)

Only 0.5% of patients have the disease
print("y=0")

$$
99.5 \% \text { accuracy } \frac{0.5 \% \text { error }}{1 \%}
$$

Precision/recall

$y=1$ in presence of rare class we want to detect.

() DeepLearning.Al

Stanford ONLINE

Skewed datasets (optional)

Trading off precision and recall

Trading off precision and recall

Logistic regression: $0<f_{\overrightarrow{\mathrm{w}}, b}(\overrightarrow{\mathrm{x}})<1$
Predict 1 if $f_{\vec{w}, b}(\overrightarrow{\mathrm{x}}) \geq \geq$
\rightarrow Predict 0 if $f_{\overrightarrow{\mathrm{w}}, b}(\overrightarrow{\mathrm{x}})<\mathbf{D} \mathbb{R}$
\Rightarrow precision $=$ true positives
$\overline{\text { total predicted positive }}$

$$
\rightarrow \text { recall }=\frac{\text { true positives }}{\text { total actual positive }}
$$

Suppose we want to predict $y=1$ (rare disease) only if very confident.

\rightarrow higher precision, lower recall.

Suppose we want to avoid missing too many cases of rare disease (when in doubt predict $y=1$)
\rightarrow lower precision, higher recall.
More generally predict 1 if: $f_{\overrightarrow{\mathrm{w}}, b}(\overrightarrow{\mathrm{x}}) \geq$ threshold.

F1 score

How to compare precision/recall numbers?

$$
\text { FI score }=\frac{1}{2}\left(\frac{1}{P}+\frac{1}{R}\right)=2 \frac{P R}{P+R}
$$

