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𝑓𝑤,𝑏 𝑥 = 𝑤𝑥 + 𝑏

Multiple features (variables)

Size in feet2 (𝑥) Price ($) in 1000’s (𝑦)

400
232
315
178
…

2104
1416
1534
852
…
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Multiple features (variables)
Size in 

feet2
Number of 

bedrooms

Number of 

floors

Age of home 

in years

Price ($) in  

$1000’s

2104 5 1 45 460
1416 3 2 40 232
1534 3 2 30 315
852 2 1 36 178
… … … … …

x𝑗 = 𝑗𝑡ℎ feature

𝑛 = number of features

x 𝑖 = features of 𝑖𝑡ℎ training example

x𝑗
𝑖

= value of feature 𝑗 in 𝑖𝑡ℎ training example
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Model:

Previously: 𝑓𝑤,𝑏 𝑥 = 𝑤𝑥 + 𝑏

𝑓𝑤,𝑏 x = 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯+𝑤𝑛𝑥𝑛 + 𝑏
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multiple linear regression

𝑓𝑤,𝑏 𝑥 = 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯+𝑤𝑛𝑥𝑛 + 𝑏

𝑓w,𝑏 x = w ∙ x + 𝑏 =
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x = 𝑥1 𝑥2 𝑥3

𝑓w,𝑏 x = w ∙ x + 𝑏
Without vectorization

f = 0
for j in range(0,n):

f = f + w[j] * x[j]
f = f + b

Vectorization

f = np.dot(w,x) + b

w = 𝑤1 𝑤2 𝑤3
𝑏 is a number

𝑓w,𝑏 x = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑏

w = np.array([1.0,2.5,-3.3])
b = 4
x = np.array([10,20,30])

Without vectorization

f = w[0] * x[0] + 
w[1] * x[1] + 
w[2] * x[2] + b

linear algebra: count from 1

code: count from 0

Parameters and features
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for j in range(0,16):
f = f + w[j] * x[j]

np.dot(w,x)

Without vectorization Vectorization

𝑡0
f + w[0] * x[0]

𝑡1
f + w[1] * x[1]

𝑡15
f + w[15] * x[15]

𝑡0 w[0] w[1] … w[15]

x[0] x[1] … x[15]

* * … *

w[0]*x[0] w[1]*x[1] w[15]*x[15]+ +…+

𝑡1…
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𝑤1 = 𝑤1 −0.1𝑑1
𝑤2 = 𝑤2 − 0.1𝑑2

𝑤16 = 𝑤16 − 0.1𝑑16
⋮

for j in range(0,16):
w[j] = w[j] - 0.1 * d[j]

w = 𝑤1 𝑤2 ⋯ 𝑤16
d = 𝑑1 𝑑2 ⋯ 𝑑16

w = w – 0.1 * d

w = np.array([0.5, 1.3, … 3.4])
d = np.array([0.3, 0.2, … 0.4])

w = w − 0.1d
Without vectorization With vectorization

𝑤𝑗 = 𝑤𝑗 − 0.1𝑑𝑗 for 𝑗 = 1…16compute

Gradient descent



Linear Regression 

with Multiple Variables

Gradient Descent for 

Multiple Regression



Andrew Ng

𝑏
𝑤1,⋯ ,𝑤𝑛

𝐽 𝑤1,⋯ ,𝑤𝑛, 𝑏 𝐽 w, 𝑏

repeat {
𝑤𝑗 = 𝑤𝑗 − 𝛼 𝜕

𝜕𝑤𝑗
𝐽 𝑤1,⋯ ,𝑤𝑛, 𝑏

𝑏 = 𝑏 − 𝛼 𝜕
𝜕𝑏 𝐽 𝑤1,⋯ ,𝑤𝑛, 𝑏

}

𝑏

Cost function

Parameters

Model

w = 𝑤1 ⋯ 𝑤𝑛

𝑓w,𝑏 x = 𝑤1𝑥1 + ⋯+𝑤𝑛𝑥𝑛 + 𝑏 𝑓w,𝑏 x = w ∙ x+ 𝑏

Gradient descent

repeat {
𝑤𝑗 = 𝑤𝑗 − 𝛼 𝜕

𝜕𝑤𝑗
𝐽 w, 𝑏

𝑏 = 𝑏 − 𝛼 𝜕
𝜕𝑏 𝐽 w,𝑏

}

Previous notation Vector notation
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Gradient descent

𝑤 = 𝑤− 𝛼
1
𝑚
෍
𝑖=1

𝑚

𝑓𝑤,𝑏 𝑥 𝑖 − 𝑦 𝑖 𝑥 𝑖

𝑛 features 𝑛 ≥ 2

𝑏 = 𝑏 − 𝛼
1
𝑚෍

𝑖=1

𝑚

𝑓𝑤,𝑏 𝑥 𝑖 − 𝑦 𝑖

repeat {
One feature

simultaneously update 𝑤, 𝑏
}

𝑤1 = 𝑤1 − 𝛼
1
𝑚
෍
𝑖=1

𝑚

𝑓w,𝑏 x 𝑖 − 𝑦 𝑖 𝑥1
𝑖

repeat {

𝑏 = 𝑏 − 𝛼
1
𝑚෍

𝑖=1

𝑚

𝑓w,𝑏 x 𝑖 − 𝑦 𝑖

⋮

𝑤𝑛 = 𝑤𝑛 − 𝛼
1
𝑚
෍
𝑖=1

𝑚

𝑓w,𝑏 x 𝑖 − 𝑦 𝑖 𝑥𝑛
𝑖

simultaneously update 

𝑤𝑗 (for 𝑗 = 1,⋯ , 𝑛) and 𝑏
}

𝜕
𝜕𝑤 𝐽 𝑤, 𝑏

𝜕
𝜕𝑤1

𝐽 w,𝑏
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An alternative to gradient descent

Normal equation

• Only for linear regression

• Solve for w, b without 

iterations

Disadvantages

• Doesn’t generalize to other 
learning algorithms.

• Slow when number of features 

is large (> 10,000)

What you need to know

• Normal equation method may 

be used in machine learning 

libraries that implement linear 

regression.

• Gradient descent is the 

recommended method for 

finding parameters w,b
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෣𝑝𝑟𝑖𝑐𝑒 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑏 𝑥1: size (feet2)
range: 300− 2,000

𝑥2: # bedrooms 
range: 0 − 5

House: 𝑥1 = 2000, 𝑥2 = 5, 𝑝𝑟𝑖𝑐𝑒 = $500k

size of the parameters 𝑤1,𝑤2?

𝑤1 = 50, 𝑤2= 0.1, 𝑏 = 50

෣𝑝𝑟𝑖𝑐𝑒 = $100,050.5k

෣𝑝𝑟𝑖𝑐𝑒 = 50 ∗ 2000 +0.1 ∗ 5 + 50

𝑤1 = 0.1, 𝑤2= 50, 𝑏 = 50

෣𝑝𝑟𝑖𝑐𝑒 = 0.1 ∗ 2000𝑘+ 50 ∗ 5 +50

෣𝑝𝑟𝑖𝑐𝑒 = $500k

Feature and parameter values
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size of feature 𝑥𝑗 size of parameter 𝑤𝑗

size in feet2

#bedrooms

Features Parameters

𝑥1 size in feet2

𝑥2
# bedrooms

𝑤1 size in feet2

𝑤2
# bedrooms

𝐽 w,𝑏

Feature size and parameter size
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Features Parameters

𝑥1 size in feet2

𝑥2
# bedrooms

𝑤1 size in feet2

𝑤2
# bedrooms

𝐽 w,𝑏

𝑤1 size in feet2
rescaled

𝑤2
# bedrooms

rescaled

𝐽 w,𝑏

𝑥1 size in feet2
rescaled

𝑥2
# bedrooms

rescaled

Feature size and gradient descent
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𝑥1 size in 
feet2

𝑥2
# bedrooms 300 ≤ 𝑥1 ≤ 2000 0 ≤ 𝑥2 ≤ 5

𝑥2,𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥2
5

𝑥1,𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥1

2000

0.15 ≤ 𝑥1,𝑠𝑐𝑎𝑙𝑒𝑑 ≤ 1 0 ≤ 𝑥2,𝑠𝑐𝑎𝑙𝑒𝑑 ≤ 1

Feature scaling

𝑥1 size in 
feet2 rescaled

𝑥2
# bedrooms

rescaled
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𝑥1 size 
in feet2

𝑥2
# bedrooms

𝑥1 size in feet2
normalized

𝑥2
# bedrooms 
normalized

300 ≤ 𝑥1 ≤ 2000 0 ≤ 𝑥2 ≤ 5

𝑥2 =
𝑥2 − 𝜇2
5−0

𝑥1 =
𝑥1 − 𝜇1

2000−300

−0.18 ≤ 𝑥1 ≤ 0.82 −0.46 ≤ 𝑥2 ≤ 0.54

Mean normalization
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300 ≤ 𝑥1 ≤ 2000 0 ≤ 𝑥2 ≤ 5

𝑥2 =
𝑥2 − 𝜇2
𝜎2

𝑥1 =
𝑥1 − 𝜇1
𝜎1

−0.67 ≤ 𝑥1 ≤ 3.1 −1.6 ≤ 𝑥2 ≤ 1.9

Z-score normalization

standard deviation 𝜎

𝜎1 = 450
𝜎2 = 1.4

𝑥2
# bedrooms

𝑥1 size 
in feet2

𝑥1 size in feet2
normalized

𝑥2
# bedrooms 
normalized

𝜎1
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aim for about −1 ≤ 𝑥𝑗 ≤ 1 for each feature 𝑥𝑗

0 ≤ 𝑥1 ≤ 3

−2 ≤ 𝑥2 ≤ 0.5

−100 ≤ 𝑥3 ≤ 100

−0.001 ≤ 𝑥4 ≤ 0.001

−3 ≤ 𝑥𝑗 ≤ 3
−0.3 ≤ 𝑥𝑗 ≤ 0.3

Feature scaling

98.6 ≤ 𝑥5 ≤ 105
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Gradient descent
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0 100 200 300 400

Make sure gradient descent is working correctly

# iterations

objective: min
w,𝑏

𝐽 w, 𝑏

𝐽 w, 𝑏 after 100 iterations

𝑤, 𝑏

𝐽 w, 𝑏 should decrease 

after every iteration
Automatic convergence test

𝐽 w, 𝑏 after 200 iterations

𝐽 w, 𝑏 likely converged 

by 400 iterations

𝐽 w, 𝑏

(found parameters w, 𝑏
to get close to 

global minimum)

Let 𝜀 “epsilon” be 10−3.

If 𝐽 w, 𝑏 decreases by ≤ 𝜀
in one iteration, 

declare convergence.

# iterations needed varies
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parameter 𝑤1

𝐽 𝑤,𝑏

Identify problem with gradient descent

With a small enough 𝛼,

𝐽 w, 𝑏 should decrease 

on every iteration

Use smaller 𝛼

If 𝛼 is too small,

gradient descent takes

a lot more iterations to

converge

𝛼 is too big

parameter 𝑤1

𝐽 𝑤,𝑏

# iterations

𝐽 𝑤,𝑏

Adjust learning rate

𝑤1 = 𝑤1 + 𝛼𝑑1
use a minus sign

𝑤1 = 𝑤1 − 𝛼𝑑1

𝛼 is too large

learning rate is too 

large
or

𝐽 𝑤,𝑏

# iterations
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Values of 𝛼 to try:

… 0.001 s p. . ace0.01sp . a.e0.1spa .   ce1…

# iterations

J w, b

# iterations

J w, b
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Feature engineering: 

Using intuition to design 

new features, by 

transforming or combining 

original features.

Feature engineering

𝑓w,𝑏 x = 𝑤1 𝑥1 + 𝑤2 𝑥2 + 𝑏

= 𝑓𝑟𝑜𝑛𝑡𝑎𝑔𝑒 × 𝑑𝑒𝑝𝑡ℎ𝑎𝑟𝑒𝑎

𝑥3 = 𝑥1𝑥2

𝑓w,𝑏 x = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑏
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Polynomial regression

𝑓𝑤,𝑏 𝑥 = 𝑤1𝑥 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑏

𝑓𝑤,𝑏 𝑥 = 𝑤1𝑥 + 𝑤2𝑥2 + 𝑏

size x

price y
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size x

price y

𝑓w,𝑏 𝑥 = 𝑤1𝑥 + 𝑤2 𝑥 + 𝑏

Choice of features


