## **Copyright Notice**

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see <u>https://creativecommons.org/licenses/by-sa/2.0/legalcode</u>

#### DeepLearning.AI



## Linear Regression with Multiple Variables

### **Multiple Features**

### Multiple features (variables)

| one ->  | Size in feet <sup>2</sup> ( $x$ ) | Price (\$) in 1000's $(y)$ |
|---------|-----------------------------------|----------------------------|
| feature | 2104                              | 400                        |
|         | 1416<br>1534                      | 315                        |
|         | 852                               | 178                        |
|         | •••                               |                            |

 $f_{w,b}(x) = wx + b$ 

Stanford ONLINE ODeepLearning.AI



Model:

Previously: 
$$f_{w,b}(x) = wx + b$$
  
 $f_{w,b}(x) = w_1 X_1 + w_2 X_2 + w_3 X_3 + w_4 X_4 + b$   
example  
 $f_{w,b}(x) = 0.1 X_1 + 4 X_2 + 10 X_3 + -2 X_4 + 80$   
 $f_{w,b}(x) = 0.1 X_1 + 4 X_2 + 10 X_3 + -2 X_4 + 80$   
 $f_{w,b}(x) = 0.1 X_1 + 4 X_2 + 10 X_3 + -2 X_4 + 80$   
 $f_{w,b}(x) = 0.1 X_1 + 4 X_2 + 10 X_3 + -2 X_4 + 80$   
 $f_{w,b}(x) = 0.1 X_1 + 4 X_2 + 10 X_3 + -2 X_4 + 80$   
 $f_{w,b}(x) = 0.1 X_1 + 4 X_2 + 10 X_3 + -2 X_4 + 80$   
 $f_{w,b}(x) = 0.1 X_1 + 4 X_2 + 10 X_3 + -2 X_4 + 80$   
 $f_{w,b}(x) = 0.1 X_1 + 4 X_2 + 10 X_3 + -2 X_4 + 80$ 

$$f_{w,b}(\mathbf{x}) = w_1 x_1 + w_2 x_2 + \dots + w_n x_n + b$$

Stanford ONLINE ODeepLearning.AI

$$f_{\vec{w},b}(\vec{x}) = w_1 x_1 + w_2 x_2 + \dots + w_n x_n + b$$
  

$$\vec{w} = \begin{bmatrix} w_1 & w_2 & w_3 & \dots & w_n \end{bmatrix} \text{ parameters} \text{ of the model}$$
  

$$b \text{ is a number} \text{ of the model}$$
  

$$vector \vec{\chi} = \begin{bmatrix} \chi_1 & \chi_2 & \chi_3 & \dots & \chi_n \end{bmatrix}$$
  

$$f_{\vec{w},b}(\vec{x}) = \vec{w} \cdot \vec{x} + b = w_1 \chi_1 + w_2 \chi_2 + w_3 \chi_3 + \dots + w_n \chi_n + b$$
  

$$dot \text{ product} \text{ multiple linear regression}$$
  

$$(not \text{ multivariate regression})$$

#### DeepLearning.AI



## Linear Regression with Multiple Variables

## Vectorization Part 1

Parameters and features  $\vec{w} = \begin{bmatrix} w_1 & w_2 & w_3 \end{bmatrix}$  n = 3 *b* is a number  $\vec{x} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}$  **NumPy** inear algebra: count from 1  $w [\circ \}$  w [1] w [2] w = np.array([1.0,2.5,-3.3]) b = 4  $x[\circ] x[1] x[2]$ x = np.array([10,20,30])

code: count from 0

Without vectorization A = 100,000  $f_{\vec{w},b}(\vec{x}) = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$ f = w[0] \* x[0] +

Without vectorization  $f_{\vec{w},b}(\vec{x}) = \left(\sum_{i=1}^{n} w_i x_i\right) + b \quad \sum_{j=1}^{n} \rightarrow j = 1...n_{j=1}$  $range(O, n) \rightarrow j = 0...n-1$ f = 0range(n) for j in range(0,n): f = f + w[j] \* x[j]f = f + b

Vectorization

 $f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b$ 

$$f = np.dot(w,x) + h$$

Andrew Ng

#### Stanford ONLINE ODeepLearning.AI

w[2] \* x[2] + b

#### DeepLearning.AI



## Linear Regression with Multiple Variables

## Vectorization Part 2

#### Without vectorization Vectorization np.dot(w,x)for j in range(0,16): f = f + w[j] \* x[j] $t_0$ w[0] w[15] w[1] $t_0$ f + w[0] \* x[0]in parallel \* \* \* ... $t_1$ x[15] x[0] x[1] f + w[1] \* x[1]... $t_1$ ... + w[1]\*x[1] +...+ w[15]\*x[15] w[0] \* x[0] $t_{15}$ f + w[15] \* x[15]efficient -> scale to large datasets

#### Stanford ONLINE ODeepLearning.AI

Gradient descent 
$$\vec{w} = (w_1 \ w_2 \ \cdots \ w_{16})$$
 parameters  
derivatives  $\vec{d} = (d_1 \ d_2 \ \cdots \ d_{16})$   
 $w = np. array([0.5, 1.3, \dots 3.4])$   
 $d = np. array([0.3, 0.2, \dots 0.4])$   
 $compute \ w_j = w_j - 0.1d_j \text{ for } j = 1 \dots 16$   
Without vectorization  
 $w_1 = w_1 - 0.1d_1$   
 $w_2 = w_2 - 0.1d_2$   
 $\vdots$   
 $w_{16} = w_{16} - 0.1d_{16}$   
for j in range(0,16):  
 $w[j] = w[j] - 0.1 * d[j]$   
 $w = w - 0.1 * d$ 

#### DeepLearning.AI



## Linear Regression with Multiple Variables

## Gradient Descent for Multiple Regression

### **Previous notation**

Parameters

 $w_1, \cdots, w_n$ b

Model  $f_{\vec{w},b}(\vec{x}) = w_1 x_1 + \dots + w_n x_n + b$ 

Cost function  $J(w_1, \dots, w_n, b)$ 

Gradient descent

repeat {  

$$w_j = w_j - \alpha \frac{\partial}{\partial w_j} J(w_1, \dots, w_n, b)$$
  
 $b = b - \alpha \frac{\partial}{\partial b} J(w_1, \dots, w_n, b)$   
}  
repeat {  
 $w_j = w_j - \alpha \frac{\partial}{\partial w_j} J(w, b)$   
 $b = b - \alpha \frac{\partial}{\partial b} J(w_1, \dots, w_n, b)$   
}

#### Stanford ONLINE ODeepLearning.AI

Vector notation

 $\vec{w} = \begin{bmatrix} w_1 & \cdots & w_n \end{bmatrix}$   $b \quad s + i \parallel a \quad n \text{ umber}$   $f_{\vec{w}, b}(\vec{x}) = \vec{w} \cdot \vec{x} + b$  $\vec{w} = b \quad dot \text{ product}$ 



### An alternative to gradient descent

- $\rightarrow$  Normal equation
  - Only for linear regression
  - Solve for w, b without iterations

Disadvantages

- Doesn't generalize to other learning algorithms.
- Slow when number of features is large (> 10,000)

What you need to know

- Normal equation method may be used in machine learning libraries that implement linear regression.
- Gradient descent is the recommended method for finding parameters w,b

DeepLearning.AI



## Practical Tips for Linear Regression

## Feature Scaling Part 1



### Feature size and parameter size

|                           | size of feature $x_j$ | size of parameter $w_j$ |
|---------------------------|-----------------------|-------------------------|
| size in feet <sup>2</sup> | $\longleftrightarrow$ | $ \longleftrightarrow $ |
| #bedrooms                 | +                     | $\longleftrightarrow$   |



Stanford ONLINE ODeepLearning.AI



DeepLearning.AI



## Practical Tips for Linear Regression

## Feature Scaling Part 2



### Mean normalization



### **Z-score** normalization



Stanford ONLINE ODeepLearning.Al

### Feature scaling

aim for about  $-1 \le x_j \le 1$  for each feature  $x_j$  $-3 \le x_j \le 3$  $-0.3 \le x_j \le 0.3$  } acceptable ranges

| $0 \le x_1 \le 3$    | okay, no rescaling  |
|----------------------|---------------------|
| $-2 \le x_2 \le 0.5$ | o Kay, no rescaling |

 $-100 \le x_3 \le 100$  too large  $\rightarrow$  rescale

 $-0.001 \le x_4 \le 0.001$  too small  $\rightarrow$  rescale

 $98.6 \le x_5 \le 105$  too large  $\rightarrow$  rescale

Stanford ONLINE ODeepLearning.AI

DeepLearning.AI



## Practical Tips for Linear Regression

### Checking Gradient Descent for Convergence

### Gradient descent

$$\begin{cases} w_j = w_j - \alpha \frac{\partial}{\partial w_j} J(\vec{w}, b) \\ b = b - \alpha \frac{\partial}{\partial b} J(\vec{w}, b) \end{cases}$$

Stanford ONLINE ODeepLearning.AI

### Make sure gradient descent is working correctly



Automatic convergence test Let  $\varepsilon$  "epsilon" be  $10^{-3}$ .

If  $J(\vec{w}, b)$  decreases by  $\leq \varepsilon$ in one iteration, declare convergence.

(found parameters  $\vec{w}, b$ to get close to global minimum)

Stanford ONLINE ODeepLearning.AI

DeepLearning.AI



## Practical Tips for Linear Regression

# Choosing the Learning Rate





DeepLearning.Al



## Practical Tips for Linear Regression

## Feature Engineering

Feature engineering  $f_{\vec{w},b}(\vec{x}) = w_{1} x_{1} + w_{2} x_{2} + b$ frontage depth  $area = frontage \times depth$  $x_3 = x_1 x_2$ new feature  $f_{\vec{w},b}(\vec{x}) = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$ 



Feature engineering: Using intuition to design new features, by transforming or combining original features.

Stanford ONLINE ODeepLearning.Al

DeepLearning.Al



## Practical Tips for Linear Regression

### **Polynomial Regression**

### Polynomial regression



#### Stanford ONLINE ODeepLearning.AI

### Choice of features



#### Stanford ONLINE © DeepLearning.AI