
Copyright Notice
These slides are distributed under the Creative Commons License.

DeepLearning.AI makes these slides available for educational purposes. You may not use or distribute
these slides for commercial purposes. You may make copies of these slides and use or distribute them for
educational purposes as long as you cite DeepLearning.AI as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Linear Regression

with Multiple Variables

Multiple Features

Andrew Ng

𝑓𝑤,𝑏 𝑥 = 𝑤𝑥 + 𝑏

Multiple features (variables)

Size in feet2 (𝑥) Price ($) in 1000’s (𝑦)

400
232
315
178
…

2104
1416
1534
852
…

Andrew Ng

Multiple features (variables)
Size in

feet2
Number of

bedrooms

Number of

floors

Age of home

in years

Price ($) in

$1000’s

2104 5 1 45 460
1416 3 2 40 232
1534 3 2 30 315
852 2 1 36 178
… … … … …

x𝑗 = 𝑗𝑡ℎ feature

𝑛 = number of features

x 𝑖 = features of 𝑖𝑡ℎ training example

x𝑗
𝑖

= value of feature 𝑗 in 𝑖𝑡ℎ training example

Andrew Ng

Model:

Previously: 𝑓𝑤,𝑏 𝑥 = 𝑤𝑥 + 𝑏

𝑓𝑤,𝑏 x = 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯+𝑤𝑛𝑥𝑛 + 𝑏

Andrew Ng

multiple linear regression

𝑓𝑤,𝑏 𝑥 = 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯+𝑤𝑛𝑥𝑛 + 𝑏

𝑓w,𝑏 x = w ∙ x + 𝑏 =

Linear Regression

with Multiple Variables

Vectorization

Part 1

Andrew Ng

x = 𝑥1 𝑥2 𝑥3

𝑓w,𝑏 x = w ∙ x + 𝑏
Without vectorization

f = 0
for j in range(0,n):

f = f + w[j] * x[j]
f = f + b

Vectorization

f = np.dot(w,x) + b

w = 𝑤1 𝑤2 𝑤3
𝑏 is a number

𝑓w,𝑏 x = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑏

w = np.array([1.0,2.5,-3.3])
b = 4
x = np.array([10,20,30])

Without vectorization

f = w[0] * x[0] +
w[1] * x[1] +
w[2] * x[2] + b

linear algebra: count from 1

code: count from 0

Parameters and features

Linear Regression

with Multiple Variables

Vectorization

Part 2

Andrew Ng

for j in range(0,16):
f = f + w[j] * x[j]

np.dot(w,x)

Without vectorization Vectorization

𝑡0
f + w[0] * x[0]

𝑡1
f + w[1] * x[1]

𝑡15
f + w[15] * x[15]

𝑡0 w[0] w[1] … w[15]

x[0] x[1] … x[15]

* * … *

w[0]*x[0] w[1]*x[1] w[15]*x[15]+ +…+

𝑡1…

Andrew Ng

𝑤1 = 𝑤1 −0.1𝑑1
𝑤2 = 𝑤2 − 0.1𝑑2

𝑤16 = 𝑤16 − 0.1𝑑16
⋮

for j in range(0,16):
w[j] = w[j] - 0.1 * d[j]

w = 𝑤1 𝑤2 ⋯ 𝑤16
d = 𝑑1 𝑑2 ⋯ 𝑑16

w = w – 0.1 * d

w = np.array([0.5, 1.3, … 3.4])
d = np.array([0.3, 0.2, … 0.4])

w = w − 0.1d
Without vectorization With vectorization

𝑤𝑗 = 𝑤𝑗 − 0.1𝑑𝑗 for 𝑗 = 1…16compute

Gradient descent

Linear Regression

with Multiple Variables

Gradient Descent for

Multiple Regression

Andrew Ng

𝑏
𝑤1,⋯ ,𝑤𝑛

𝐽 𝑤1,⋯ ,𝑤𝑛, 𝑏 𝐽 w, 𝑏

repeat {
𝑤𝑗 = 𝑤𝑗 − 𝛼 𝜕

𝜕𝑤𝑗
𝐽 𝑤1,⋯ ,𝑤𝑛, 𝑏

𝑏 = 𝑏 − 𝛼 𝜕
𝜕𝑏 𝐽 𝑤1,⋯ ,𝑤𝑛, 𝑏

}

𝑏

Cost function

Parameters

Model

w = 𝑤1 ⋯ 𝑤𝑛

𝑓w,𝑏 x = 𝑤1𝑥1 + ⋯+𝑤𝑛𝑥𝑛 + 𝑏 𝑓w,𝑏 x = w ∙ x+ 𝑏

Gradient descent

repeat {
𝑤𝑗 = 𝑤𝑗 − 𝛼 𝜕

𝜕𝑤𝑗
𝐽 w, 𝑏

𝑏 = 𝑏 − 𝛼 𝜕
𝜕𝑏 𝐽 w,𝑏

}

Previous notation Vector notation

Andrew Ng

Gradient descent

𝑤 = 𝑤− 𝛼
1
𝑚
෍
𝑖=1

𝑚

𝑓𝑤,𝑏 𝑥 𝑖 − 𝑦 𝑖 𝑥 𝑖

𝑛 features 𝑛 ≥ 2

𝑏 = 𝑏 − 𝛼
1
𝑚෍

𝑖=1

𝑚

𝑓𝑤,𝑏 𝑥 𝑖 − 𝑦 𝑖

repeat {
One feature

simultaneously update 𝑤, 𝑏
}

𝑤1 = 𝑤1 − 𝛼
1
𝑚
෍
𝑖=1

𝑚

𝑓w,𝑏 x 𝑖 − 𝑦 𝑖 𝑥1
𝑖

repeat {

𝑏 = 𝑏 − 𝛼
1
𝑚෍

𝑖=1

𝑚

𝑓w,𝑏 x 𝑖 − 𝑦 𝑖

⋮

𝑤𝑛 = 𝑤𝑛 − 𝛼
1
𝑚
෍
𝑖=1

𝑚

𝑓w,𝑏 x 𝑖 − 𝑦 𝑖 𝑥𝑛
𝑖

simultaneously update

𝑤𝑗 (for 𝑗 = 1,⋯ , 𝑛) and 𝑏
}

𝜕
𝜕𝑤 𝐽 𝑤, 𝑏

𝜕
𝜕𝑤1

𝐽 w,𝑏

Andrew Ng

An alternative to gradient descent

Normal equation

• Only for linear regression

• Solve for w, b without

iterations

Disadvantages

• Doesn’t generalize to other
learning algorithms.

• Slow when number of features

is large (> 10,000)

What you need to know

• Normal equation method may

be used in machine learning

libraries that implement linear

regression.

• Gradient descent is the

recommended method for

finding parameters w,b

Practical Tips for

Linear Regression

Feature Scaling

Part 1

Andrew Ng

෣𝑝𝑟𝑖𝑐𝑒 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑏 𝑥1: size (feet2)
range: 300− 2,000

𝑥2: # bedrooms
range: 0 − 5

House: 𝑥1 = 2000, 𝑥2 = 5, 𝑝𝑟𝑖𝑐𝑒 = $500k

size of the parameters 𝑤1,𝑤2?

𝑤1 = 50, 𝑤2= 0.1, 𝑏 = 50

෣𝑝𝑟𝑖𝑐𝑒 = $100,050.5k

෣𝑝𝑟𝑖𝑐𝑒 = 50 ∗ 2000 +0.1 ∗ 5 + 50

𝑤1 = 0.1, 𝑤2= 50, 𝑏 = 50

෣𝑝𝑟𝑖𝑐𝑒 = 0.1 ∗ 2000𝑘+ 50 ∗ 5 +50

෣𝑝𝑟𝑖𝑐𝑒 = $500k

Feature and parameter values

Andrew Ng

size of feature 𝑥𝑗 size of parameter 𝑤𝑗

size in feet2

#bedrooms

Features Parameters

𝑥1 size in feet2

𝑥2
bedrooms

𝑤1 size in feet2

𝑤2
bedrooms

𝐽 w,𝑏

Feature size and parameter size

Andrew Ng

Features Parameters

𝑥1 size in feet2

𝑥2
bedrooms

𝑤1 size in feet2

𝑤2
bedrooms

𝐽 w,𝑏

𝑤1 size in feet2
rescaled

𝑤2
bedrooms

rescaled

𝐽 w,𝑏

𝑥1 size in feet2
rescaled

𝑥2
bedrooms

rescaled

Feature size and gradient descent

Practical Tips for

Linear Regression

Feature Scaling

Part 2

Andrew Ng

𝑥1 size in
feet2

𝑥2
bedrooms 300 ≤ 𝑥1 ≤ 2000 0 ≤ 𝑥2 ≤ 5

𝑥2,𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥2
5

𝑥1,𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥1

2000

0.15 ≤ 𝑥1,𝑠𝑐𝑎𝑙𝑒𝑑 ≤ 1 0 ≤ 𝑥2,𝑠𝑐𝑎𝑙𝑒𝑑 ≤ 1

Feature scaling

𝑥1 size in
feet2 rescaled

𝑥2
bedrooms

rescaled

Andrew Ng

𝑥1 size
in feet2

𝑥2
bedrooms

𝑥1 size in feet2
normalized

𝑥2
bedrooms
normalized

300 ≤ 𝑥1 ≤ 2000 0 ≤ 𝑥2 ≤ 5

𝑥2 =
𝑥2 − 𝜇2
5−0

𝑥1 =
𝑥1 − 𝜇1

2000−300

−0.18 ≤ 𝑥1 ≤ 0.82 −0.46 ≤ 𝑥2 ≤ 0.54

Mean normalization

Andrew Ng

300 ≤ 𝑥1 ≤ 2000 0 ≤ 𝑥2 ≤ 5

𝑥2 =
𝑥2 − 𝜇2
𝜎2

𝑥1 =
𝑥1 − 𝜇1
𝜎1

−0.67 ≤ 𝑥1 ≤ 3.1 −1.6 ≤ 𝑥2 ≤ 1.9

Z-score normalization

standard deviation 𝜎

𝜎1 = 450
𝜎2 = 1.4

𝑥2
bedrooms

𝑥1 size
in feet2

𝑥1 size in feet2
normalized

𝑥2
bedrooms
normalized

𝜎1

Andrew Ng

aim for about −1 ≤ 𝑥𝑗 ≤ 1 for each feature 𝑥𝑗

0 ≤ 𝑥1 ≤ 3

−2 ≤ 𝑥2 ≤ 0.5

−100 ≤ 𝑥3 ≤ 100

−0.001 ≤ 𝑥4 ≤ 0.001

−3 ≤ 𝑥𝑗 ≤ 3
−0.3 ≤ 𝑥𝑗 ≤ 0.3

Feature scaling

98.6 ≤ 𝑥5 ≤ 105

Practical Tips for

Linear Regression

Checking Gradient Descent

for Convergence

Andrew Ng

Gradient descent

Andrew Ng

0 100 200 300 400

Make sure gradient descent is working correctly

iterations

objective: min
w,𝑏

𝐽 w, 𝑏

𝐽 w, 𝑏 after 100 iterations

𝑤, 𝑏

𝐽 w, 𝑏 should decrease

after every iteration
Automatic convergence test

𝐽 w, 𝑏 after 200 iterations

𝐽 w, 𝑏 likely converged

by 400 iterations

𝐽 w, 𝑏

(found parameters w, 𝑏
to get close to

global minimum)

Let 𝜀 “epsilon” be 10−3.

If 𝐽 w, 𝑏 decreases by ≤ 𝜀
in one iteration,

declare convergence.

iterations needed varies

Practical Tips for

Linear Regression

Choosing the

Learning Rate

Andrew Ng

parameter 𝑤1

𝐽 𝑤,𝑏

Identify problem with gradient descent

With a small enough 𝛼,

𝐽 w, 𝑏 should decrease

on every iteration

Use smaller 𝛼

If 𝛼 is too small,

gradient descent takes

a lot more iterations to

converge

𝛼 is too big

parameter 𝑤1

𝐽 𝑤,𝑏

iterations

𝐽 𝑤,𝑏

Adjust learning rate

𝑤1 = 𝑤1 + 𝛼𝑑1
use a minus sign

𝑤1 = 𝑤1 − 𝛼𝑑1

𝛼 is too large

learning rate is too

large
or

𝐽 𝑤,𝑏

iterations

Andrew Ng

Values of 𝛼 to try:

… 0.001 s p. . ace0.01sp . a.e0.1spa . ce1…

iterations

J w, b

iterations

J w, b

Practical Tips for

Linear Regression

Feature Engineering

Andrew Ng

Feature engineering:

Using intuition to design

new features, by

transforming or combining

original features.

Feature engineering

𝑓w,𝑏 x = 𝑤1 𝑥1 + 𝑤2 𝑥2 + 𝑏

= 𝑓𝑟𝑜𝑛𝑡𝑎𝑔𝑒 × 𝑑𝑒𝑝𝑡ℎ𝑎𝑟𝑒𝑎

𝑥3 = 𝑥1𝑥2

𝑓w,𝑏 x = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑏

Practical Tips for

Linear Regression

Polynomial Regression

Andrew Ng

Polynomial regression

𝑓𝑤,𝑏 𝑥 = 𝑤1𝑥 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑏

𝑓𝑤,𝑏 𝑥 = 𝑤1𝑥 + 𝑤2𝑥2 + 𝑏

size x

price y

Andrew Ng

size x

price y

𝑓w,𝑏 𝑥 = 𝑤1𝑥 + 𝑤2 𝑥 + 𝑏

Choice of features

