
Using Trusted Computing to Detect VM Rootkits

Ankur Sahai

University of Southern California

asahai@usc.edu

Abstract

Virtual Machine (VM) Rootkits have emerged as an important security threat recently as
they are difficult to detect. A VM Rootkit works by installing itself at a lower abstract
logical layer in the machine, closer to the kernel; thus making it difficult for the security
tools running at a higher logical layer to detect it. The latest and more effective Rootkits,
after having intruded the system by exploiting a security flaw, drop a Virtual Machine
Monitor (VMM) underneath the Operating System (OS) installation and hoist the native
OS into a VM running on top of the malicious VMM as a guest OS. This gives the Rootkit
more control over the system and at the same time makes it extremely difficult to detect it;
especially by the security tools running on the guest OS (originally native OS) on top of
the malware VMM as, it can easily misguide such tools by intercepting the hardware
calls made through the guest OS. We suggest a Trusted Computing based technique, that
uses remote attestation by having a trusted third party (that has a code of the VM
Rootkit) authenticate the code running on the hardware. We analyze the different security
issues posed by the suggested technique and explore the security mechanisms that can be
used address these issues. We think that, this technique can prove to be very effective in
detecting generally any malware present on the system; specifically VM Rootkits that are
very difficult to detect otherwise.

1. Introduction

VM Rootkits have received much attention of late by researchers working in the area of
malicious software (malware) design and detection. This can be attributed to the
interesting behavioral features of the VM Rootkits, primarily their method of operation
that makes it very difficult to detect their presence. The term Rootkit was first associated
with the set of recompiled Unix commands that would hide the presence of an intruder
and allow him to maintain root access to the system. However, the current usage of the
term Rootkit refers to the malware that try to hide themselves from the system

Rootkits can be classified into 4 different categories based on the abstract layer in the
system where they operate from namely: application, library, kernel and virtual level.
Application level Rootkits usually modify or replace the code of the applications running
on the system. Library level Rootkits modify the system calls to hide their presence.
Kernel level Rootkits modify the kernel code (like loadable kernel modules and device
drivers) to hide a backdoor installed on the system. Virtualized Rootkits are the lowest
level of Rootkits that work by either modifying the boot sequence of the machine to load
themselves instead of the native OS or by installing themselves underneath the native OS.

mailto:asahai@usc.edu

Rootkits are classified into different categories depending upon its interaction with the
system components by Jonna [1]. Type I Rootkits work by modifying the static
components of the system like in-memory code sections of the kernel. Type II Rootkits
work by modifying the dynamic resources of the system like data-sections e.g. modifying
the function pointer in some kernel data-structure, so that, the intruders code now runs
instead of the original system or application code. Type III Rootkits usually drop a VMM
under the native OS and hoist the native OS onto a VM running on top it.

Application, Library and Type I Rootkits can be detected based on some prior
information about their behavior. However, it is very difficult to detect the other types of
Rootkits namely Kernel, Virtual level and the Type III Rootkits as they are present at a
level below the native Operating System, above which, most of the security tools operate.

We propose a Trusted Computing based Remote Attestation approach where-in the client
sends a copy of code running on it to a trusted authentication server. The trusted
authentication server looks for VM Rootkits in this code and sends back the result to the
client. There are several issues to be addressed here like How does one compare such a
large code as the one running on the hardware with the code of the VM Rootkit? We try
to address these and related issues in sections 4, 5 and 6. Before that, we give a brief
introduction of VMMs and VM Rootkits in Section 2, 3 and Trusted Computing in
section 4.

2. VM and VM Rootkits

A Virtual machine is an abstract machine that consists of a part or all of the resources of
its host machine. Thus it is possible to have multiple Virtual Machines running on a
machine that share the entire resource pool of the host between them. To manage the
different virtual machines running on the same physical machine an abstract layer called
VMM (Virtual Machine Monitor) also known as hypervisor is added. The Virtual
Machines instead of communicating with the hardware directly, now communicate with
the hardware through a VMM or hypervisor. All the system calls or traps are made to the
Hypervisor which then handles these system calls appropriately.

As is seen from Fig. 1, the VM Rootkits exploit this closeness of VMM to the hardware.
They drop in a VMM and have the native OS run on a VM on top of the VMM (as the
Guest OS). Now, the VMM is in total control because any system calls made by the
applications running on the Guest OS can be trapped before sending them to the
underlying hardware layer. So any security tool like a malware detection tool has no way
of knowing that it is now running on top of a VMM instead of the original machine.

This means that the VMM has control over most of the resources that can be accessed by
the Guest OS. This is a much more dangerous issue than any sort of malicious attack on
the OS itself. The Rootkit can run any malicious code on the machine as long as it is not
detected by the Guest OS running on a VM. It can either use another OS to run the
malicious ode or have some malicious code that does not need to run in an OS.

Fig 1. Logical layout of the system before and after the VM Rootkit attack

(Courtesy [1])

3. Techniques for detecting VM Rootkits

It is to be noted that running VMM on a system has an associated CPU and Memory and
Storage overhead. Out of these CPU overhead is the most reliable source for detection. It
is very difficult to detect anomalies in the memory and storage resources of the machine
due to their large sizes and more largely random behavior. For example, the VM Rootkit
adds an overhead for trapping the instructions from the VM and then communicating
with the hardware as compared to the OS running on the VM directly communicating
with the hardware. The VMM will also have a slight memory and storage overhead for
example the paging overhead due to the VMM pages that have to be in the memory for
most of the time which reduces the number of page frames for pages of other processes.
Also since the VMMs use virtual devices, significant change may be observed in the
devices.

Detection tools that monitor the time for computation of Operating System instructions
can be used. Such a timing difference can be captured by comparing the running-time of
the benchmarks against an external clock time (as the local clock of the machine can no
longer be trusted).

Special instructions may be added to the instruction set that do not trap to the VMM;
instead communicate directly with the underlying hardware. For example, instructions
that can request logging of the system calls, so that, this log can be subsequently retrieved
to look for anomalies indicating the presence of a Rootkit.

All the above mentioned techniques have associated with them, the problem of false
positives and negatives because, it may be difficult to definitively say if the overhead is
due to a VMM or one or more resource intensive processes.

Abstract security layers may be added closer to the hardware so that the VM Rootkits are
not able to run above these. However, the down side with using such tools is that they
will require separate computation, memory and storage modules embedded in the
hardware which is a very costly approach. They cannot use any of the components above
the hardware layer as there is the risk of the VM Rootkits getting in control of them.

Finally a remote attestation technique can be built on top of Trusted Platform Module that
can be used to detect the authenticity of the code running on the machine. We propose a
protocol based on this technique.

4. Trusted Computing

Trusted Computing is computer security concept that advocates building systems in
which at least a minimum level of trust that can be placed. A certain component of the
system known as ‘root of trust’ can be always trusted. This ‘root of trust’ acts a starting
point for building a ‘chain of trust’ among the different components of the system that
can be extended even outside the system. It is based on two fundamental concepts:
Endorsement Key and a Root of Trust.

The Endorsement key is public-private key pair where the private key is the secret key
embedded in a system component like CPU or Motherboard, so that; it cannot be
accessed by other components or processes. Root of Trust is usually implemented as a
computing engine embedded in the system that must perform a minimal set of functions
independent of the software running on top of the system. Root-of-Trust component
should be unique for a system so that the system can be uniquely identified.

Using the PKI (Endorsement Key), it should be possible to identify the system uniquely.
This may be helpful for the Remote Attestation mechanism where the system has to
interact with a trusted third party to authenticate a piece of code running on it. It is
assumed that the trusted third party has the codes of malwares against which it can
compare the code send by a machine suspecting malware.

5. Using Trusted Computing to detect VM Rootkits

Security tools running on the suspected system itself cannot be trusted completely
especially if they are running on the malicious VMM installed by the VM Rootkit. This is
because, the VM Rootkit might have modified the code used by the security tool to hide
itself. Thus it becomes necessary to use a trusted authentication server to validate the
software running on the system. However, to have the trusted authentication server
authenticate the validity of the code running on the machine there has to be built-in

mechanism in the machine to communicate with the authentication server. Moreover, the
ability of the machine to communicate with a n authentication server should not be
affected by any process running on the machine. This is where a trusted computing based
approach fits very nicely.

A root-of-trust module has to be embedded into the Trusted Platform Module. The TPM
needs to have a capability to get a snapshot of all the code running on the system and use
a hash function to get the hash of the code for integrity. It should then be able to encrypt
this using its private (Endorsement) key and send it to an authentication server. Further, it
should be able to receive the authentication response from the authentication server and
interpret it. On detecting a response from the server indicating the presence of a Rootkit,
it should be able to take necessary action like ‘beeping the PC speaker’.

We propose an approach based on trusted computing that uses the remote attestation
mechanism to verify the authenticity of the code. Here, the Trusted Platform Module
running on the machine gets a snapshot of the code running on it and sends this code to
an authentication server. The authentication server has a code of the VM Rootkit which it
uses to detect the presence of the malware on the code running on the machine.

We make the assumption here that the trusted authentication server is not infected and
has the code of possible malwares and the TPM has the capabilities mentioned above.
Given this assumption, we propose a protocol based on remote attestation to detect the
presence of a VM Rootkit. It is based on the following steps.

5.1 Generating the authentication request

The Trusted Platform Module running on the suspected system gets a snapshot of all or
part of (if it has an idea of the range of memory addresses where the Rootkit may be
installed) code running on the machine. It then uses a hash function (the knowledge of
which it shares with the authenticating server) generate the hash of the code for integrity.
The TPM then encrypts this message consisting of the code and its hash with it’s private
(Endorsement) key sends it to an authentication server.

5.2 Client sends authentication request to authentication server

After having taken the snapshot of the code currently executing on the machine and
generating its hash, the client encrypts this information, along with its ID (IP address),
using the server’s public key. It then sends this message to the authentication server using
a dedicated port (part of TPM). Note that, by encrypting the message in the server’s
public key the client makes sure that no one except the intended server can observe the
code running on the client. Otherwise, if the message was encrypted with the clients
private key this would make it available to the attackers who can exploit this.

5.3 Authentication server checks authenticity and integrity of authentication request

The authentication server upon receiving the message decrypts it using the client’s public
key. It then retrieves the code and generates a hash of the code and compares it with the
hash embedded in the message relieved. A matching hash value would insure the
integrity of the message. The authentication server also compares the address in the
source field of the message to the address of the client embedded in the message.
Matching ID values indicate that the message is authentic. Otherwise, the server simply
ignores the message considering it as a possible attack.

5.4 Authentication server looks for malware

To begin with, the trusted third party must have the code of the VM Rootkit. Apart from
this, it may have some additional information about the VM Rootkit like the relative
address mapping of the VM Rootkit that it may use for detecting the Rootkit.

Sliding Window based approach similar to the one used by Polygraph [7] is used to
detect the malware. The authentication server has a mechanism by which it takes the code
of the VM Rootkit and conceptually slides it over the code received from the client. The
size of the sliding window should be equal to the size of the memory map of the code.
The code is simply slid over the suspect code and matching bits are detected using AND
logical operation. This problem is solvable in polynomial time. The time-complexity
would be q((m-n)*c1*c2)) ~ q(m-n) where ‘m’ is the size of the code running on the
machine, ‘n’ is the size of the window (= size of the code) and c1 and c2 are constant
time defining the time to perform AND operation and time to check for a match
respectively. The time-complexity is q(m-n) instead of q(m) because, the algorithm
always compares a piece of code that is exactly the size of code m. Thus, it will not
compare the last n bits of the code.

Apart from this, we suggest an approach based on analyzing static code to detect its
dynamic behavior though this may be difficult considering the large size of the code
running on the machine. In particular, this approach may be used if; any part of the code
running on the machine has similarities with the codes of the known Rootkits. It is to be
noted that this method can be used to detect any kind of malware apart from VM Rootkit.

5.5 Authentication server sends authentication reply to client

If there is a match found to any of the malware codes using the above detection process,
the authentication server sends back a message ATTACK indicating the presence of
malware. Otherwise it sends a message OK indicating that the code was successfully
authenticated ie. malware was note detected. The authentication server before sending
this message adds its identity and encrypts it in its private key. Note that there is no need
to hide this message from an attacker as it is merely a decision message.

5.6 Client receives authentication reply and performs necessary action

The client then receives the authentication response from the authentication server and
decrypts it using the server’s public key. It compares the identity information found in the
message to the address of the intended server to insure its identity before proceeding. If
there is a mismatch it ignores the message and waits for sometime for a valid reply. If
there is no valid reply from the server side it times out and sends a new authentication
request to the server. On detecting a positive response from the server indicating
ATTACK, the client takes appropriate measures like triggering a beep in the PC speaker
or interrupting the display hardware to display a warning.

6. Security Issues

It is very important to address these security issues to make the protocol robust. We
classify the security issues as follows:

6.1 Rate for performing code authentication

What is the time-period for performing such a check? If the time interval is chosen to be
too large the VM Rootkit may have already caused sufficient damage like stealing the
private (Endorsement) key from the TPM or blocking the dedicated communication port.
On the other hand, if this period is chosen to be small it may result in large computational
and communication overhead; bringing down the performance of the system. However, it
is not possible to arrive at an optimal period without practical experiments with Rootkits.

6.2. Trusted platform related Issues

There are various issues that need to be addressed while designing a Trusted Computing
based platform for this system. Foremost, among them is to make the private
(Endorsement) key secure and inaccessible. Next is the issue of building a Trusted
Platform Module on top of ‘root of trust’ component that should perform the necessary
operations. However, this design is not secure unless there is a mechanism to thwart the
attacks on this system that can break its integrity. This paper [6] classifies the attacks on a
Trusted Platform as follows.

6.2.1 Classification based on system component affected

6.2.1.1 Software attacks

The Root of Trust is usually implemented using some part of BIOS. So an attacker may
try to modify this component of the BIOS to prevent the TPM from operating properly.

6.2.1.2 Hardware attacks
The communication among the components of Trusted Platform Module can be
monitored to extract the private (Endorsement) key. This can be done using techniques

like ‘probing’ the BUS signals or using Side Channel Attacks (use information about the
physical implementation of TPM)

6.2.1.3 Attacking the communication channel

TPM should have a dedicated port for communicating with the Authentication Server.
The attacker may try to disrupt communication through this port thus disabling the
machine from verifying the authenticity of code running on it.

6.2.2 Classification based on methodology of attack

6.2.2.1 Passive attacks

These types of attacks usually eavesdrop on the bus to monitor the activities of the
Trusted Platform module. Once the attacker manages to read sufficient details about the
TPM, he can use this information to duplicate TPMs. This breaks the notion of trust.

6.2.2.2 Active attacks

These types of attacks try to communicate with the TPM in an attempt to extract its
configuration details. They may subsequently modify the operation of the TPM for
example, cheating the Remote Attestation process.

6.3 Securing the Communication between the client and the authentication server

The server can verify the authenticity and integrity of the message using the ID (IP
address) and the hash value embedded in the message. The identity is used to verify if the
message was generated by the entity whose address appears in the Source field of the
associated IP packets. The hash obtained by decrypting the message can be used to verify
the integrity of the message as the hash is a one-way function i.e. a unique message
would generate a unique hash. The server hashes the contents of the message received
using the same hash function and compares this hash value with the hash embedded in
message. If there is a match, this will insure the integrity of the message. Similarly the
authenticity of the response sent by the server can be verified using the private key of the
server in a fashion similar to that done at the server side.

We discuss some security attacks that can be launched on the system and ways to counter
them below.

6.3.1 Replay Attacks

A Replay attack can occur when the messages sent by the authentication server are
intercepted and then replayed back to the requesting client. Consider the scenario where
at some point of time the authentication server did not find any malware in the code sent
by the suspecting client and sends an OK message indicating the same. This message is
intercepted by an attacker by some means like sniffing the packets and looking into the
source and destination addresses for the address of the suspecting client and the

authentication server respectively. Now, say that the same attacker launches a VM
Rootkit based attack. After managing to successfully drop a VM Rootkit in the machine,
the attacker would obviously be interested in hiding it from the authentication server,
which can detect the presence of the Rootkit on the code executing on a given machine
using a pre-defined code. To accomplish this he first detects the next authentication
message sent from the client to the server and then replays the OK message that it had
intercepted some time back. This deceives the client into believing that there is no
malware detected on the currently running code though, the machine has been infected by
the VM Rootkit deployed by the attacker. We suggest using a NONCE or a TIME-
STAMP to thwart a replay attempt by an attacker.

A unique NONCE can be embedded into the message that is encrypted by the private
Endorsement key of the client machine. This message is then decrypted by the
authentication server using the client’s public key to the get the value of the Nonce. This
NONCE value is then decremented (using any 1-1 function shared by the client and the
server) by the server and then embedded into the reply sent by the server. If the client
detects that the NONCE value sent by it matches the NONCE in the message from the
server then it can be sure that this is not a replay attack. It is to be noted that both the
client and the server have to maintain a buffer of recently used NONCE values to detect a
replay attack. The NONCE embedded in the current message is compared with the
previous NONCES. If the NONCE value matches any of the NONCE values available in
the buffer the party can be sure that this is a reply attack as the NONCEs are unique.

A TIMESTAMP may be used to insure the freshness of the message and the two parties
may simply drop older messages. Say that the two parties have a mechanism to find the
propagation delay involved in the communication between the two parties (e.g. by
measuring the round-trip-time involved with the PING message). Then, if either the client
or the server detects a message that has a TIMESTAMP value for which the absolute
difference between the TIMESTAMP and the receiving party’s local time is greater than
the propagation delay, then it simply drops the message. It is to be noted that this
approach is vulnerable to attacks that target the modification of the local time on the
machines. Thus a robust time-synchronization mechanism has to be build on top of time-
synchronization protocols like NTP that can detect clock drifts (variation between local
clocks on different machine) and skew (variation in the clock on a local machine).

6.3.2 Man-in-the middle attack

A Man-in-the-middle is a security attack where an attacker is able to intercept the
communication messages between two parties and read, modify them or insert new
messages. In our system, the attacker may modify any of the fields of the messages
exchanged by the two parties at will since it can read the messages. It is based on making
the client and server believe that the public key that they are using belongs to each other
when it actually belongs to the attacker who can thus intercept and modify the messages
from both side. This attack comes into picture only if it is successfully carried out during
the initial (public) key exchange between the server and the client.

The attacker achieves this by reading the messages involved in the initial key exchange
between the client and the server. The message containing the public keys is intercepted
by the attacker and modified to provide different public key. For example, the attacker
may modify the message containing the public key of the client and the server to replace
it with his own public key. In case of the authentication request send from the client to
the server, the message will now be encrypted using the public key of the attacker instead
of the intended server.

This would allow the attacker to read the content of the message containing the code
running on the machine. He may then modify the contents with a version of code that is
known to be safe ie. it will not be labeled as malware by the authentication server. The
attacker may know if a given code will be labeled as malware or not by sending a
message to the server containing the code encrypted in his private key and observing the
response from the server using the server’s public key. Once he has determined a safe
code, he encrypts this code using his private key or the server’s public key or both
depending on the procedure used. In the next step, he intercepts the reply message from
the server, which is going to be OK, and then encrypts it using his public key before
sending it to the client. As a result, the client is always duped into believing that there is
no malware running on it

It is to be noted that, in this type of attack, the attacker has to make sure that he does not
allow any direct communication between the client and server. Otherwise, the client or
server may smell something suspicious if it detects two different messages with two
different public keys intended for the same entity.

6.3.3. Brute-force attack

A Brute force attack is a security attack where the attacker may try to break the
encryption mechanism by trial and error using cipher text or plain text-cipher text pairs.
This may be used by the attacker to gain access to the client’s private (Endorsement) key.
Once, the attacker gains access to the private key embedded in the Trusted Platform
Module on the client, he has broken the trust placed in the trusted platform module. This
is equivalent to saying that is not trusted computing anymore.

An attacker may gain access to the cipher-text by using techniques like packet sniffing.
Once the attacker has a set of cipher texts, he may try to use different encryption
algorithms and keys to decrypt the message to see if the text thus decrypted makes any
linguistic/semantic sense. Further, if he manages to get access to the cipher text-plain text
pairs, then this makes his task easier by giving him more to compare with. In this case, he
can take a given plaintext and try to apply different encryption algorithms with different
keys to see if it produces the corresponding cipher text.

6.3.4 Denial-of-Service attacks

A denial-of-service attack is a security attack that targets the availability of the system
itself. In the case of our system, the attacker will try to make the authentication system

unavailable. The attacker can achieve this by thwarting any attempt by the client to
authenticate the code running on it by communicating with the authentication server.
There are many possible scenarios for launching such an attack.

The simplest scenario is where the attacker intercepts or blocks all the authentication
requests sent from the client to the authentication server, thus preventing any such request
from reaching the authentication server. It may be do this using some security tools
installed on the communication path for example in the routers and switches.

Other way to do this would be to flood the authentication server with a lot of requests
which may cause traffic congestion in the network. This will prevent the authentication
server from authenticating the client’s code at periodic intervals thus giving a better
opportunity for the Rootkit to infest the system before it can be detected. As discussed in
section 6.1, this may enable the Rootkit to gain more control over the system like
blocking the channel used for authentication purposes.

6.4 Miscellaneous Issues

There is the initial key exchange problem where the client and server exchange each
others public key to be used for subsequent communication between the two parties. For
this we suggest in-personal exchange of keys for safety. Robust security mechanisms
have to be used to secure the authentication server that is an important part of this
protocol.

7. Related Work

This paper[1] analyzes this topic of implementing and detecting malware with Virtual
machines. The primary argument put forward by this paper is that the security
components have to be present at a lower abstract logical level than the malware itself to
be of reliable use. They implement two different VM Rootkits called ‘Subvirt’ for
Windows XP and Linux target systems. They discuss the design and implementation of
VM Rootkits in detail. They also discuss the various malicious services that can be
implemented using such a malware. These services are hidden from the native OS (that
runs as a Guest OS) by running a different OS called Attack OS. The malicious services
are classified into three categories. First kind of services that that need not interact with
the target OS, are run on other OS called Attack OS like spam relays, distributed denial
of service, zombies and phishing web-server. Second type of service observes data or
events from the target system like the hardware level data which includes keystroke
logger and network packet monitor. Third type of service hinders the execution of the
system e.g. modifying network communication, delete e-mail messages etc. They also
discuss some detection techniques for this type of malware.

They classify the detection techniques based on whether the security software runs below
or above the VM Rootkit. The security software that runs below the VM Rootkit is more
effective in detecting the Rootkit by means of reading the physical memory and looking

for anomalies. They suggest running low level security software that runs below the VM
Rootkit. They stress on getting the boot sequence right though this seems a bit outdated
as recently developed VM Rootkits like Blue Pill and Vitriol can install themselves even
during the runtime and do not require a modification of the boot sequence.

This paper [5] explores ways to tackle the VM Rootkits that work by changing the boot-
sequence. It implements a prototype called the BootSafe that prevents the Boot Firmware
from being changed. They use Efficient Code Certification technique that performs static
checks on the relevant code to predict dynamic properties of the code.

This paper discusses the design and implementation of a TCG-based Integrity
Measurement Architecture for Linux [10]. All executable content that is loaded into
Linux, is measured for integrity before it is run. Trusted Platform Module (TPM) is used
to protect all these measurements. It uses the TCG trust measurement concept from the
BIOS all the way to the application layer.

IBM research has developed a Virtual Trusted Platform Module [7]. This platform is used
to implement a trusted platform on multiple Operating Systems running on the same
physical platform. They have added additional instructions to the TPM 1.2 for this
purpose. They also support interesting features like migrating the current configuration of
the TPM along with the Virtual Machine. This includes the migration of storage keys
among the systems sharing them.

In a slightly different note this paper[6] proposes a ‘Virtual Machine based platform for
trusted computing’. Terra uses a Trusted Virtual Machine Monitor (TVMM) that
partitions a tamper-resistant trusted platform into multiple isolated virtual machines. For
each of the VMs, the TVMM provides the semantics of either a open-box or closed-box
hardware platform. Open-box hardware platform is a general purpose hardware platform
like today’s PC whereas Closed-box is an opaque and special purpose platform that
protects privacy and integrity of its contents.

8. Conclusions and Future Work

Thus we propose a Trusted Computing based Remote Attestation protocol to detect VM
Rootkit running on a system. Then we evaluate the protocol from security standpoint by
analyzing different attack techniques and ways to get over them. We also analyze other
approaches that can be used to detect VM. We think that the Trusted Computing
approach can get over the problem of false positives and negatives.

Other efficient techniques can be explored for the detection of malware in a given code.
Vendors may consider adding a security module along with the TPM running at hardware
level in future.

References

1. Samuel King, Peter M. Chen, Yi-Min Wang, Chad Verbowski, Helen J. Wang,
Jacob R. Lorch, SubVirt: Implementing malware with virtual machines,
Proceedings of the 2006 IEEE Symposium on Security and Privacy , May 2006

2. Joanna Rutkowska, Subvering VISTA Kernel for Fun and Profit, SyScan ’06 and

Black Hat briefing ‘06

3. Joanna Rutkowska, Introducing Stealth Malware Taxonomy, COSEINC Advanced
Malware Labs, Nov. 2006

4. Reiner Sailer, Xiaolan Zhang, Trent Jaeger and Leendert van Doorn, Design and

implementation of a TCG-based Integrity Measurement Architecture, Proceedings
of he 13th USENIX Security Symposium, August 2004

5. Frank Adelstein, Mat Stillerman, Dexter Kozen, Malicious code Detection for Open

Firmware, Proceedings of the 18th Annual Computer Security Applications
Conference 2002.

6. Klaus Kursawe, Dries Schellekens, Bart Preneel, Analyzing Trusted Platform

Communication, Katholieke Universiteit Leuven, Belgium, July 2005

7. Newsome, J., Karp, B., and Song, D., Polygraph: Automatically Generating
Signatures for Polymorphic Worms, Proceedings of the IEEE Symposium on
Security and Privacy, May, 2005

8. Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, Dan Boneh, Terra: A

Virtual Machine-Based Platform for Trusted Computing, SOSP October 2003

9. Stefan Berger, Ram´on C´aceres, Kenneth A. Goldman, Ronald Perez, Reiner
Sailer, Leendert van Doorn, vTPM: Virtualizing the Trusted Platform Module, 15th
USENIX Security Symposium, 2006

10. K. Hwang, Y. Chen, and H. Liu, "Defending Distributed Systems Against

Malicious Intrusions and Network Anomalies," Keynote Presentation by Kai
Hwang in the IEEE International Workshop on Security in Systems and Networks
(SSN'05), in conjunction with the IPDPS-2005, USA. April 8, 2005

11. Keith Adams, Ole Agesen, A Comparison of Software and Hardware Techniques

for x86 Virtualisaion, ASPLOS, October 2006

12. Trusted Computing Group, TCG Specification Architecture Overview, Revision
1.2, April 2004

