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 ABSTRACT 

 
This paper summarizes a detailed survey of deadlock handling approaches and 
suggests an ingenious approach to handle deadlocks. This approach is based upon 
storing the access patterns of the resources in a system (consisting of processes and 
resources and their abstract relations) and using these to make predictions about the 
future behavior of the system, in particular, to avoid imminent deadlocks. The author 
also investigates the tools and techniques that can be used to implement this approach. 
Further, a suggestion is made to use knowledge-bases in place of the traditional 
resource wait-for-graphs to handle the deadlocks. 

  
Keywords: 
               Deadlock, Bayesian inference, Knowledge bases, Virtual edges, Virtual cycles, 
  
Outline 
1. Introduction 
      1.1 What is a deadlock?  
      1.2 Distributed deadlock 
      1.3 Relevance of deadlocks  
      1.4 Deadlock handling  
           1.4.1 Prevention  
           1.4.2 Avoidance 
           1.4.3 Detection & Recovery 
           1.4.4 Drawbacks of current approaches 
           1.4.5 Speculative approach 
2. A Survey of the deadlock handling techniques  
3. A Speculative approach to Deadlock Handling  
      3.1 Introduction  
      3.2 Outline of the algorithm 
      3.3 Prediction tools 
             3.3.1 Efficient data-structures in the memory  
             3.3.2 Machine learning 
             3.3.3 Knowledge Bases 
      3.4 Throughput-oriented iterative improvement algorithm using prediction classes 
4. Summary and Conclusion 
5. Scope for future work 
 
 
 

mailto:asahai@usc.edu


1. Introduction 
 
1.1 What is a deadlock?  
 
         A deadlock (or deadly embrace) is said to have occurred when a process ends up 
waiting indefinitely (or starving) for its completion because, it waits for another process 
in the system to release a requested resource; at the same time, holding a resource 
requested by that process. This can occur among more than two processes in a system 
where the processes are waiting for each other (to release a requested resource) in a 
cyclic fashion, as in Fig 1(b), thus forming a deadlock cycle. Hence, none of these 
processes can proceed until one of them is explicitly terminated.  
 
         The resource wait-for-graphs (WFG)[18], defined in section 2.4, are used to depict 
and detect the deadlocks in the system. 
 

 
 
Fig.1 Resource-wait-for-graphs depicting deadlocks in the system involving  
          (a) two and (b) three processes.  
 
          The necessary conditions for a deadlock to occur in a system were identified by 
E.G. Coffman[17]. They are as follows:  

• Mutual Exclusion: a resource can be accessed by only one process at a time   
• Hold and wait condition: a process that already holds a resource may request for        

another resource  
• Non-preemption: a process holding a resource cannot be forced to drop a 

resource and only the process itself may release it   
•    Circular Wait: two or more processes wait for a resource that the next process in 

a cycle holds thus forming a circular chain (or deadlock cycle)  
 
      The reader is also encouraged to go through this paper by Levine[13] that attempts 
to define deadlocks comprehensively. 
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1.2 Distributed Deadlock  
  
           Distributed deadlock is a deadlock that occurs in a distributed system wherein, 
the processes and the requested resources involved in the deadlock may be spread 
across the distributed system instead of being present in the same local node. They 
may even be several miles apart. This paper will, for the most part, refer to the issue of 
distributed systems and distributed deadlocks as systems and deadlocks respectively. 
 
           There are different ways to handle such a deadlock depending on the structure 
of the distributed system itself. This paper will discuss distributed, hierarchical, cluster 
based and centralized deadlock handling approaches as these are the most common 
types of existing system organizations and have been analyzed in extensive research.  
 
1.3  Relevance of distributed deadlocks  
 
           Typically, deadlocks occur in systems which can be broken down into 
abstractions of the type: processes that acquire resources with exclusive access rights. 
Processes here may range from light-weight processes (threads) running within a node 
to processes running at different nodes, that may be miles apart, in a distributed 
system. And resources may be: memory (critical section), CPU, input/output devices, 
files, other processes, buffers etc. Deadlocks degrade the performance of the system. 
  
           Deadlock has been widely studied in many fields of computer science, notably in 
communications, database, and operating systems. The issue of deadlocks has 
become even more relevant with the growing size of these systems. Deadlocks also 
show up in cellular robotics networks, sensor networks and wormhole routing networks  
 
1.4 Deadlock handling 
 
          The deadlock handling approaches can be classified into the following categories. 
 
1.4.1 Prevention 
 
           Deadlock prevention technique serializes the execution of the processes so that, 
deadlocks do not occur in the system. This requires prior knowledge of all the resource 
requests of the processes in the system. It overlooks the dynamic behavior of the 
system wherein the processes and resources may enter and leave the system arbitrarily 
 
1.4.2 Avoidance 
 
           Deadlock avoidance involves checking the system to see if it will end up in a safe 
state if, a resource request is granted. So, only such a set of requests are granted that 
do not put the system in an unsafe state.  However, this is very expensive because it 
requires keeping track of the state information of the system which includes number of 
instances of each resource and which processes hold and request which resources. It 



also makes implicit assumptions about the system like the maximum number of 
resources a process may acquire thus, ignoring the dynamic behavior.  
 
            Classification of deadlock handling approaches into prevention and avoidance is 
an arguable topic. There have been papers[4] attempting to collapse the boundary 
between these two approaches. 
               
1.4.3 Detection and Recovery 
  
           Detection is the most commonly employed approach that eliminates the 
overhead involved in the prevention and avoidance techniques. It detects a deadlock 
only when one actually occurs in the system. Note that, it is a more pragmatic approach 
as; it doesn’t make any assumptions about the state of the system. 
 
           Once a deadlock has been detected, a recovery mechanism is executed to bring 
the system to a deadlock-free state. This essentially requires forcing one or more 
processes to relinquish their resources; otherwise killing them to break the deadlock.  
 
1.4.4 Drawbacks of current approaches  
 
           As discussed in the previous sections, prevention is impractical in most cases as, 
it requires prior knowledge of the system state which is not possible for most distributed 
systems because of their dynamic behavior. 
 
           On the other hand, Avoidance is very costly apart from the fact that it makes 
some assumptions about the system state. 
 
            In case of detection, we have to explicitly drop the resource requests or kill the 
processes in midst of their execution which is not the best approach. Further, the 
problem of detecting deadlocks accurately in a system has been proven to be NP-
Complete. Moreover, we could overcome this by detecting the deadlocks before they 
actually occur in the system, at least the most obvious ones, as proposed by the 
Speculative approach proposed by the author in this paper.  
 
1.4.5 A Speculative approach to handling deadlocks 
  
            In this approach proposed by the author the deadlocks will be detected before 
they actually occur in the system; at least the most obvious ones i.e. the ones that have 
the highest Bayesian probability of occurring given their previous occurrences as the 
priori. As a result, it bypasses the effort involved in subsequent detection and recovery 
of those deadlocks. However, ideally this approach will be most effective when run on 
top of deadlock detection and recovery mechanisms, so that, it can be tuned for the 
optimal throughput making it a throughput-oriented approach. 
 
            This is different from both prevention and avoidance techniques as, it neither 
requires any prior information of the system state; nor does it check for the safe state.  

http://delivery.acm.org/10.1145/1060000/1055221/p47-levine.pdf?key1=1055221&key2=3458226411&coll=portal&dl=ACM&CFID=70310191&CFTOKEN=36991710


2. A survey of deadlock handling techniques 
      
       This section will study deadlocks in different fields and at different levels of 
granularity starting from the critical section problem up to large-scale distributed 
systems and effective techniques to tackle them. Process synchronization techniques 
are closely related to broader class of prevention techniques, although, the motivation 
here is to avoid data inconsistency by serializing the execution of the processes and 
sharing of resource is allowed here. The critical section problem and monitors are prime 
examples of places where deadlocks and race conditions may occur within a system 
because exclusive access to the codes is required. Elegant algorithms have been 
proposed to tackle these problems and are discussed in the following paragraphs. 
  
          The Ostrich algorithm is a design strategy that advocates overlooking deadlocks if 
they are known to occur rarely and is used by most modern operating systems like 
UNIX and Microsoft Windows. It is similar to the Great Big Lock algorithm used for the 
protection of critical sections which uses a lock that prevents anything from occurring at 
the same time as anything protected. These are lazy and inefficient design strategies. 
   
• Deadlock prevention and avoidance techniques: 
 
          One or more of the necessary conditions must be negated to prevent or avoid 
deadlocks. Concurrent programming problems and solutions were proposed by 
Dijkstra[6] and later on improved by Lamport[7]. Critical section is that part of the code 
that can be accessed by only one process at a time. The working of Bakery algorithm[7] 
can be better understood by drawing analogy to a bakery (critical section) with 
customers (threads) waiting in a queue to be served. A machine at the entrance of the 
bakery assigns to each customer a coupon before he enters. The number on this 
coupon is incremented by one every time a customer enters the bakery and a global 
counter displays the coupon number of the customer being served to all customers. 
Customers wait in a queue until the baker finishes serving the current customer and the 
next number is displayed on the global counter. Here the number on the coupon can be 
envisaged as the priority associated with the corresponding thread; a lower value 
indicating a higher priority and vice versa. 
 
           The One-shot algorithm[8] is a trivial deadlock prevention strategy that requires 
each process to request all its resources simultaneously and then allocates all these 
resources to the process before it begins execution. Hierarchical algorithm[9] a slightly 
more complex strategy that refuses the resource request by the process either if the 
resource requested is being held by another process or if any of the resources being 
held by the requesting process is of higher priority than the one requested. Repeated 
One-shot algorithm and Hierarchical algorithm with waiting are tweaks to these 
techniques meant for more effective implementations. Dijkstra's Banker's Algorithm 
discussed in the next paragraph is also used for deadlock prevention.  
 
          Banker's algorithm used for deadlock prevention and avoidance is also a largely 
theoretical approach requiring the prior knowledge of resource usage limit. The 
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algorithm works by continuously trying to keep the system in a safe state. A system is in 
a safe-state if there exists a safe sequence: which is an ordering on the processes 
<P1,...,Pn>  such that, for any process Pi in the ordering, its resource requests can be 
satisfied with the resources that are currently available in addition to the resources that 
are held by Pj, where j < i. If no such sequence exists, then the system is said to be in 
an unsafe state which hints to but does not necessarily imply a deadlock. 
  
       Lee et al[12] talk about a deadlock avoidance algorithm (DDA) involving explicit 
Deadlock Avoidance Unit (DAU) that keeps track of the system state and communicates 
with the processes to avoid deadlocks. Iordache et al[13] talk about deadlock prevention 
supervisors using Petri-nets that are mathematical representations of a discrete 
distributed system; graphically depicting their structure as directed bipartite graphs with 
annotations. Andrews et al[14] talk about on-the-fly deadlock prevention using 
Communicating Sequential Processes[15] to serialize the processes. Strict two-phase 
locking[16] is yet another deadlock avoidance technique used in database systems to 
serialize the transactions that relies on two principles: If a transaction T wants to read or 
write a resource, it must request a shared or exclusive lock on the resource 
respectively. All locks held by transaction T are released only when T commits.  
 
• Deadlock detection: 
 
           Deadlock detection involves detecting the deadlocks that have already occurred 
in the system. To detect deadlocks in a distributed system, it is necessary to know the 
global system state. A Global Resource wait-for-graph (RWFG) is the most commonly 
used construct for this. It is necessary to understand the notion of resource-wait-for-
graphs first; the following paragraph defines it. Majority of the currently used techniques 
use the RWFGs to detect deadlocks by checking for cycles in this graph. This paper will 
use the term wait-for-graphs (or WFGs) to refer to the resource-wait for graphs.  
 
           A Resource-wait-for-graph (shown in Fig.1.) is defined as a directional graph G= 
(V, E) which depicts the entire state of the system, where, 
 
          V  set of nodes representing processes or resources; the nodes indicating the 
processes are represented by circles and resources by rectangles  
 

E  set of directed edges representing whether the resource is being held or 
requested by a process. If the edge is directed towards a process node then 
the resource pointed to by the tail of the edge is being held by the process 
pointed to by the head of the same edge. Whereas, if the edge points to a 
resource node then the resource pointed to by the head of the edge is being 
requested to by the process pointed to by the tail of the same edge. 

            Distributed system are classified into AND, OR and AND-OR[19] models in the 
context of deadlocks. In the AND model (or multiple-resource model), a process is 
allowed to make more than one resource request, and it is blocked until all of these 
requests are granted. So, the processes can be involved in several deadlock cycles at 
once. In the OR model (or communication model), a process makes more than one 

http://delivery.acm.org/10.1145/1020000/1016769/p200-lee.pdf?key1=1016769&key2=5588226411&coll=portal&dl=ACM&CFID=70310191&CFTOKEN=36991710
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resource requests and is blocked until any one of them is granted. The AND-OR hybrid 
model allows a combination of these request types, such as a request for a resource X 
and either Y or Z. This paper only considers AND model; it being the more natural one. 

• Deadlock detection techniques: 
 

a. Distributed deadlock detection 
        a.1 Obermarck’s Path-pushing 
        a.2 Chandy, Misra and Haas’s Edge Chasing 
 

b. Hierarchical deadlock detection 
        b.1 Menasce and Muntz’s algorithm  
        b.2 Ho and Ramamoorthy’s algorithm 
 

           Singhal[20] has studied these categories in detail. Hierarchical algorithms are 
best suited for systems where the nodes are organized in a tree structure as compared 
to distributed ones which envisage nodes to be spread randomly across the system.  
 
           Distributed deadlock detection techniques are generally classified as Path-
pushing and Edge-chasing techniques. In the Path-pushing techniques the WFG is 
disseminated into paths that are sequence of edges. Since, these paths are 
disseminated across the distributed system, a deadlock is declared if a node detects a 
local cycle (a closed sequence of these paths).  
 
           Edge chasing is a more elegant and widely used efficient technique. It is closer 
to the end-to-end arguments principle[1] as it requires lesser functionality within each 
node compared to the path-pushing techniques that have the additional overhead of 
managing the paths apart from detecting local cycles. Here, a signal called probe is 
generated at a particular node initiated by a process which wants to detect global 
deadlocks in the system. The probe is sent from one node to another if; a process 
running at one node holds a resource physically present at another node. This probe 
when received by the other node is circulated within its local WFG and is sent out to 
another node if the probe hits upon a local process which hold a resource physically 
present at some other node and so on. This is repeated at each node of the system that 
receives the probe. If the initiator process successfully receives the probe generated by 
it, a deadlock is declared in the system. Note that, the probe travels only along one 
direction and dies off if it cannot proceed. As discussed in section 1.3.5, it is not a 
complete approach since; accurate detection of deadlocks in a system is NP-Complete.  

           Let us examine the specific algorithms more closely. In Obermarck’s Path-
Pushing algorithm[21], each site maintains local WFGs, the process nodes of which are 
classified into the nodes for local processes and “Pex” node representing external 
processes. For example, a path at the local node may look like: Pex1  P1  P2  P3 

 Pex2. Now, if a node Ni detects a cycle without a “Pex” node it declares a local 
deadlock.  If the cycle has a “Pex” node then there is a possibility of global deadlock. To 
check this possibility of deadlock, node Ni sends a message containing its detected 
path to all other sites preferably only when Pex1>Pex2 to decrease the network traffic. If 

http://ieeexplore.ieee.org/iel1/2/1667/00043525.pdf?tp=&arnumber=43525&isnumber=1667
http://delivery.acm.org/10.1145/360000/357402/p277-saltzer.pdf?key1=357402&key2=8519226411&coll=GUIDE&dl=GUIDE&CFID=70322082&CFTOKEN=35353292


a site Nj receives such a message, it updates its local WFG and reevaluates it possibly 
by pushing a path again. The two drawbacks of this approach are that it assumes a 
unique global identifier for a process and may report false deadlocks.  

           The Chandy, Misra and Hass’s Edge-chasing algorithm[23] works as follows. 
When a process has to wait (or block) for a resource, it sends a probe to the process 
holding that resource. Here, processes are allowed to request and wait for multiple 
resources simultaneously. Probe contains 3 values: ID of the process that blocked on 
the resource, ID of process sending the probe and ID of process the probe was sent to, 
though; the latter two identifiers seem obsolete here. When a blocked process receives 
this probe, it propagates the probe to the processes holding the resources that it has 
requested but not before updating the latter two fields of the probe. If the blocked 
process receives its own probe, it declares a deadlock.  

           Performance evaluations of these algorithms have been carried out earlier[40, 
42,43] and the following facts have been determined. In case of Obermarck’s Path-
pushing algorithm, only half of the sites involved in a deadlock send probes on average. 
Every blocked site sends messages to all other sites, thus O(n2) messages are required 
to detect a deadlock. For n sites, the size of this message is O(n). In case of Chandy, 
Misra, and Haas’s algorithm, given n processes in a system, a process holding a 
resource may be blocked by up to n-1 processes, the next process may be blocked by 
another n-2 processes and so on. So, if there are more number of nodes than 
processes, in the worst case, the number of messages is O(n2); size of each probe 
message being 3 integers. 

          Menasce and Muntz’ hierarchical deadlock detection algorithm[24] that assumes 
a hierarchical tree-structured organization of the nodes (or controllers) in a distributed 
system works as follows.  Leaf controllers manage the resources by maintaining a local 
WFG whose resource nodes represent only its own resources. Interior controllers are 
responsible for detecting deadlocks in the WFG which is constructed from the union of 
the WFGs of its children. The changes in the WFGs are propagated upwards 
continuously or periodically. 

           In Ho and Ramamoorthy’s hierarchical deadlock detection algorithm[25] the sites 
are grouped into disjoint clusters. Periodically, a site is chosen as a central control site 
which chooses a control site for each cluster like a soft-state. This control site then 
collects status information from the nodes in its cluster and tries to detect deadlocks in 
that cluster. All the control sites then forward their status information and WFGs to the 
central control site, which combines this information into a global WFG and searches it 
for cycles. Thus, control sites detect deadlocks within clusters whereas, central control 
site detects deadlock between clusters 
 
           Several techniques have been proposed that try to improve upon these 
drawbacks. Lee et al[26] propose a parallel detection algorithm using deadlock 
detection units(DDU) having time complexity of O(min(m, n)), where m is the number of 
resources and n is the number of processes in the system. They have also proposed 

http://delivery.acm.org/10.1145/1090000/1080341/p573-lee.pdf?key1=1080341&key2=9429226411&coll=portal&dl=ACM&CFID=70310191&CFTOKEN=36991710


Operating System designs based on this approach achieving significant speed up[27]. 
This is a significant improvement over the algorithm proposed by Kim[28] with time 
complexity of O(mn). Bracha et al[29] came up with an efficient detection algorithm for 
AND-OR models in the mid 90s. Huang[30] proposed a detection algorithm for CSP-like 
communication that overcomes most of these drawbacks. Self-stabilizing deadlock 
detection algorithms were first proposed by Flatebo et al[31]. Martinez et al bring up the 
interesting topic of effect of buffer sizes[32] and propose an efficient detection algorithm 
for wormhole networks[33]. Kshemkalyani et al[34] noted flaws in the earlier proof 
techniques of detection algorithms and proposed Invariant-based verification technique. 
Mendivil et al[35] propose a Syntactic approach using Automata theory with wait-strings. 
Lee[36] proposed an efficient algorithm for centralized detection and resolution. 
Krivokapic et al[37] proposed a detection algorithm based on dynamic deadlock 
detection agents (DDA). Farajzadeh et al[38,39] propose a history-based edge chasing 
algorithm that resolves the deadlock as soon as detects it without waiting for the probe 
to return back; thus reducing the average persistence time of the deadlock. 
    
           Estimating performance of a deadlock detection algorithm requires the following 
facts to be accounted for. It is usually measured as the number of messages exchanged 
to detect deadlocks. This is deceptive since; messages are also exchanged when there 
are no deadlocks. Size of the messages, being insignificant is not accounted for. It 
should also measure the deadlock persistence time; a measure of resources wastage 
that has a tradeoff with the communication overhead. Storage overhead of WFGs and 
other deadlock detection constructs has to be accounted for. Processing overhead to 
search for cycles and time to recover from deadlocks also has to be accounted for. The 
reader is encouraged to go through this performance analysis study by Lee et al[40].           

• Deadlock resolution: 

           As discussed earlier in the paper, deadlock resolution involves aborting at least 
one process called victim in the cycle and granting its resources to others. There are 
some standard efficiency issues with deadlock resolution. It should be fast i.e. after 
deadlock is detected the victim should be selected quickly. It should be minimal in the 
sense that it should abort minimum number of processes and ideally abort least 
expensive ones, with respect to: completed computation, consumed resources, etc. It 
should be complete i.e. after a victim has been aborted the information about it should 
be quickly removed from the system to avoid phantom deadlocks. Phantom deadlocks 
are those deadlocks that have been already resolved by the time they are detected. 
This may either be due to delay in transmission of system information or failure to 
update the system state. It should avoid starvation of a process which may occur due to 
repeated selection of the same process as the victim and its subsequent abortion. 

           The following are the main problems that show up during resolution of deadlocks. 
Detecting processes (on local nodes) may not have enough information about the 
victim; on the other hand propagating sufficient information makes detection expensive. 
Multiple nodes may simultaneously detect a global deadlock. Since the global state 
information is distributed across the system, removing information about the victim and 
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updating the global information takes time. Finally, livelocks[41] can be a menace where 
the state of processes involved in deadlock keeps changing with respect to each other.  

3. A Speculative approach to Deadlock Handling   
 
3.1 Introduction 
 
           One can maintain salient patterns of the behavioral history of the system by 
taking distributed snapshots[2] of the system at regular intervals. This information can 
be effectively used to make decisions (using Bayesian inference) on the allocation of 
resources to the processes in the system to avoid impending deadlocks. This technique 
should be implemented ideally on top of existing detection mechanisms to be most 
effective. Extent of usage of this technique will be guided by the throughput (due to 
deadlocks) of the system making it a throughput-oriented approach.  
 
3.2 Outline of the algorithm 
      
        Knowledge of the access patterns of the processes is maintained and used 
effectively by the prediction tools running in the background. Using this information, new 
edges called virtual edges are added to the WFG speculatively. Note that these are 
virtual edges and are not considered while declaring deadlocks in the system by the 
actual detection algorithm. The WFG is built upon speculatively by adding virtual edges.  
  
          The goal now is to detect cycles containing one or more virtual edges called 
virtual cycles in the Global WFG which is left to an efficient detection algorithm. Note 
that, this is in addition to the detection and resolution of actual deadlocks in the system. 
Once a virtual deadlock cycle is detected, necessary steps are taken to avoid this cycle 
from occurring in real-time in the future. This can be achieved by denying (or delaying) 
those resources to the processes corresponding to the virtual edges the virtual cycles.  
  
3.3 Prediction tools 

            Prediction tools are used to decide when and which virtual edges to create by 
maintaining the information about the access patterns efficiently. The author will analyze 
different tools that can be used for this purpose and.  

3.3.1 Using data–structures in the memory  
 
            In this section, the author suggests data-structures to store this information and 
doesn’t delve into their implementation details. To cope up with the dynamic behavior of 
the system, linked-lists that grow and shrink can be used to implement structures like 
priority queues. Trees can be more suitable for a hierarchical organization. These data-
structures should store the process id, the corresponding resource ids each having a 
status bit (held/blocked) and an associated priority value that is a measure of the priori 
probability. More information can be stored to better the predictions like the type of 
resources most used by the process i.e. whether it is CPU or I/O intensive etc. 

http://delivery.acm.org/10.1145/220000/214456/p63-chandy.pdf?key1=214456&key2=7040326411&coll=GUIDE&dl=GUIDE&CFID=70323072&CFTOKEN=81673129


  
            Since there will be an upper bound to the available memory space, refreshing 
algorithms have to be used to make the optimal use of this space. The algorithm 
suggested here will refresh the memory at fixed time intervals when a snapshot is 
made. While updating the information, if the algorithm comes across an already existent 
entry (process-resource pair representing an edge in the WFG) it increases the 
associated priority value instead of selecting a victim to replace which it will do 
otherwise, when there is no free space left. This algorithm selects an entry with lowest 
priority value corresponding to the edge in WFG when a new resource comes to be held 
or blocked by an existent process. In the case of new process, the algorithm evicts the 
process with the lowest cumulative value of priorities of the resources associated with it. 
The worst case space complexity is O(p*r*c1*c2)~O(p*r) where, p is number of 
processes, r is number of resources, c1 is for flag bit and c2 is for the priority value.  
 
3.3.2 Machine learning 
  
            Machine learning techniques, can be used to learn and predict the behavior of 
the system over time. Especially those that try to avoid the need for human intuition in 
the analysis of the data will be more useful because, it is not possible for a human to 
monitor this data. However, they need sufficient time for training and are quite costly. 
 
3.3.3 Knowledge Bases 
 
            The author suggests the use of Knowledge bases not only as detection tools but 
also as prediction tools. Knowledge bases provide means for efficient storage, 
organization and retrieval of information. They can be used by exploiting their logical 
deductive reasoning. One can use the system information stored as atomic formulae to 
build a compound formula, using logical operators, to detect deadlocks like: if (((a 
process p1 is holding a resource r1) and (is requesting for a resource r2)) and ((a 
process p2 is holding r2) and (requesting resource r1))), declare a deadlock. 
 
3.4  Throughput-oriented iterative improvement algorithm using prediction classes 
 
           The deadlock predictions can be classified into different classes based on their 
strength. The author suggests two methods to decide the strength of a prediction. One 
method is to take into account only the number of virtual edges involved in the virtual 
cycles with the cycle with lesser number of virtual edges having higher strength and 
vice-versa. It is suitable for more dynamic systems where the priori probabilities 
associated with virtual edges are less dependable because, they are not accounted for 
by this method. The other method would be to consider the priorities (priori probabilities) 
associated with the virtual edges involved, for example, by multiplying them. This 
method will be ideal for more deterministic systems where the priori probabilities are 
more dependable as it uses them to decide the strength of the predictions. The 
predictions with same strength are put under the same prediction class.  
            The idea here is to use these prediction classes to maximize the throughput of 
the system (countering deadlocks). Measuring the throughput countering deadlocks is a 



tricky step that can be done using heuristics, although, the ideal way of measuring it 
would be by making all other factors invariant (or nullifying them). A throughput-oriented 
iterative-improvement algorithm is proposed where first, only the highest class of 
predictions is applied to the system and the resultant throughput is compared to 
throughput of the system without using this technique. If there is an improvement in the 
throughput of the system the next higher class of predictions is considered; this 
procedure is repeated until there is a prediction class that lowers the previous 
throughput. Thus in the worst case, the system uses none of these predictions and in 
the best case it uses all of them. Note that, this approach assumes that the behavior of 
the system is not totally arbitrary. 
 
4. Summary and Conclusions 
  
          This paper surveys deadlocks and deadlock handling techniques: prevention, 
avoidance and detection (and recovery). It studies the issue of deadlocks at different 
levels of granularity. The author analyses some standard deadlock handling techniques 
and brings up their merits and demerits. The conclusion is that the deadlock prevention 
and avoidance approaches are impractical because they do not take into account the 
dynamic behavior of the system and require some prior knowledge of the system. The 
biggest demerit of the currently used deadlock detection and resolution mechanisms, 
however efficient they may seem, is that they can only detect and resolve deadlocks 
that have already occurred in the system.  
  
            The author proposes a novel Speculative approach to deadlock handling that 
will be most effective when run on top of the deadlock detection and recovery 
mechanisms, so that, it can be tuned for the optimal throughput making it a throughput-
oriented approach. An iterative improvement algorithm based on prediction classes is 
also presented to achieve this. It is based on the crucial assumption that there are some 
general access patterns in the system that can be captured by taking periodic 
snapshots of the system. This information can be analyzed to make resource allocation 
decisions to avoid imminent deadlocks thus overcoming the overhead of having to 
detect and resolve these deadlocks subsequently. The author also examines tools for 
making these predictions. It improves upon the detection mechanisms by using 
Bayesian inferences based on the previous system information (as priori). 
 
              Use of Knowledge bases is suggested as a construct for detection and further 
prediction of deadlocks as an alternative to the WFGs.     
 
5. Scope for future work 
 
           More efficient criteria and tools that account for the higher level details of system 
may be thought of to classify and use the predictions. Efficient data-structures and 
algorithms to improve the overall performance of this technique can be explored. 
Further, use of Knowledge bases for detection and prediction can be analyzed.  
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