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Abstract
Elliptic curves are widely used in cryptographic protocols. Hyperelliptic curves, a gener-
alization of elliptic curves, also hold the promise of large-scale applications. Hyperelliptic
curves need half field sizes compared to elliptic curves. However, the arithmetic of hy-
perelliptic curves is slower than that of elliptic curves. Hyperelliptic curves defined over
subfields can accelerate point counting and Jacobian arithmetic.

In this dissertation, a new family of hyperelliptic curves is proposed. The point-counting
algorithm for this family is detailed. Existing algorithms for Jacobian arithmetic are com-
pared. Implementation details of the finite-field arithmetic is also presented. The perfor-
mance for the proposed family is analyzed. Finally, the discrete logarithm problem defined
over the Jacobian of the curves is scrutinized.

ElGamal encryption is a popular public-key cryptographic primitive. This can be imple-
mented using the proposed family of hyperelliptic curves. For this purpose, an encoding
map is proposed. It is proved that the encoding map is well distributed and efficiently
computable. It is established that this variant of ElGamal encryption is no less secure than
original ElGamal encryption.

Keywords Hyperelliptic-Curve Cryptography (HECC), Subfield curves, Point-Counting Algo-
rithms, Jacobian Arithmetic, ElGamal Encryption, Message Encoding, Message Indis-
tinguishability, Computational Diffie–Hellman Problem, Discrete Logarithm Problem.
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CHAPTER

ONE

INTRODUCTION

1.1 Introduction

Cryptographic primitives are extensively used to secure the modern digital era. Tradition-
ally, cryptography deals with three principal characters: the sender (Alice), the receiver
(Bob), and the attacker (Malice). Alice sends an encrypted message via an insecure channel
to Bob. Bob decrypts the ciphertext using a predefined secret key, and recovers the message.
Malice listens to the channel, and reads the encrypted message. His goal is to figure out the
plaintext message from the ciphertext. Cryptographic protocols should ensure that Malice
can succeed only with negligible probability.

Of late, digital communications are expanding exponentially. Currently, social media
is connecting 2.65 billion people. The number of mobile wallet users is increasing by 140
millions per year. Therefore, security issues are of high concern. An important purpose of
cryptography is to enhance authenticity and privacy of digital data. In addition to commer-
cial and online uses like debit and credit cards and net-banking, cryptographic protocols are
used by military and government organizations. Hard disks too use encryption to protect
their contents. Consequently, the construction of suitable secure, efficient, and lightweight
cryptographic primitives is an important and practical domain of research.

Public-key cryptography originates from the seminal discoveries of the Diffie–Hellman
key-agreement protocol [11] and the RSA cryptosystem [59]. Since then, quite a few cryp-
tographic schemes are proposed that are based on the difficulty of factoring large integers
or computing discrete logarithms in large groups. Protocols based on the hardness of DLP
is defined over a cyclic group G, like a multiplicative group of integers modulo n.

Discrete Logarithm Problem (DLP): Suppose (G, ·) is an Abelian group. Given u, v ∈ G, find r
(if it exists) such that ur = v. Such a group G is said to be cryptographically suitable if

• the group elements are compact,

• the group operation is fast and efficient,

• the order of the group is large and can be computed efficiently,

• DLP is computationally hard in G.

1
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Two popular families of groups are the multiplicative groups of finite fields, and the sets
of rational points on elliptic curves defined over finite fields. Proposed by Koblitz [40] and
Miller [68], elliptic curves have been used extensively in several cryptographic protocols.
The main advantage of ECC is that it provides the same level of security as the traditional
multiplicative groups (like F∗q), but the elliptic-curve groups are much smaller than finite-
field groups.

Later in 1989, Koblitz [41] proposes the use of hyperelliptic curves over finite fields for
cryptographic purposes. However, these curves are studied less extensively by the cryp-
tographic community than the schemes based on RSA, finite-field, and elliptic-curve dis-
crete logarithms. Genus-two hyperelliptic curves offer the same level of security as elliptic
curves, but with half field sizes. To achieve 128 bits of security, elliptic curves need 256-bit
fields, whereas hyperelliptic curves require only 128-bit fields. The following table shows
that curve-based cryptography needs less bits compared to DH or RSA to achieve the same
levels of security.

DH or RSA ECC HEC
512 112 56
1024 160 80
2048 224 112
3072 256 128
7680 384 192

15360 512 256

Table 1.1: NIST Guidelines for Key Size

1.2 Motivation and Objectives

Genus-one hyperelliptic curves are known as elliptic curves. Higher-genus curves (g > 1)
are also considered for cryptographic purposes. For hyperelliptic curves of genus g > 1,
the Jacobians of the curves provide the underlying Abelian group structure. For large-genus
hyperelliptic curves, there exist algorithms faster than the generic square-root methods and
having subexponential running times, to solve the DLP. But for g ≤ 3, no such subexponen-
tial algorithm is known.

In hyperelliptic-curve cryptography, generating suitable cryptographically secure curves
over finite fields is an important issue. Literature suggests that point-counting algorithms
over large prime finite fields are not very efficient. However, subfield hyperelliptic curves
are especially attractive from an efficiency point of view. Moreover, subfield hyperelliptic
curves offer faster Jacobian arithmetic than hyperelliptic curves over large prime fields.

Furukawa et al. [20] propose an algorithm for the order computation of the Jacobian of
the hyperelliptic curve of the form y2 = x5 + ax over large prime fields. They also present
the new family y2 = x5 + a. Satoh [62] develops a probabilistic polynomial-time algorithm
to identify whether the curve y2 = x5 + ax3 + bx is suitable, that is, whether the order of
the Jacobian has a large prime divisor. Buhler and Koblitz [5] propose an algorithm for
particular types of curves y2 + y = xn over Fp, where n is odd, and p is any prime with
n|(p − 1). To the best of our knowledge, no families of subfield hyperelliptic curves are
explicitly proposed in the literature.



3 1.3. Contributions of the Dissertation

There exist software implementations of elliptic- and hyperelliptic-curve cryptography.
Gaudry [30] writes a library for finite-field arithmetic. The mpFq library is practically used
for curve-based public-key cryptography. A HECC software implementation is done by
Pelzl et al. [55]. They put execution times in tabulated manner for curves of genus two
and three. Avanzi [3] implements a prime-field library nuMONGO which includes elliptic-
and hyperelliptic-curve arithmetic. These implementations use large prime fields. We are
not aware of any reported implementation that includes subfield curves for cryptographic
purposes.

An efficient addition algorithm for the divisor group is required for the hyperelliptic
curves. Cantor proposes a fast algorithm for addition using Mumford representation of
divisors. This addition of the divisor group in the hyperelliptic curve is not so efficient as
elliptic-curve point addition. The performance gap was narrowed by Harley [32]. Later,
Lange provides an explicit version of Harley’s formula [42]. Lange’s explicit version gives a
potentially powerful speedup for hyperelliptic-curve addition. To enhance the performance
further, Lange [44] also proposes an inversion-free addition algorithm. Several researchers
try to improve the performance of divisor-class arithmetic.

In this backdrop, our work is mostly motivated by the need of narrowing of the per-
formance gap between elliptic- and hyperelliptic-curve cryptography. The process involves
looking for new families of hyperelliptic curves and going for and tuning software imple-
mentations of the Jacobian arithmetic. Eventually, the study should investigate the effec-
tiveness of using these curves in practical cryptographic schemes.

1.3 Contributions of the Dissertation

Let C be a hyperelliptic curve of genus two defined over a finite field Fq. A suitably large
subgroup G of the Jacobian Jq is to be used to build cryptographic schemes. For crypto-
graphic reasons, the group order n should be a prime. The bit length of n is dictated by the
security level l. Since the square-root attacks are the only attacks known for hyperelliptic
curves of genus two, we take l ≈ |n|/2. Since 64-bit security is not considered safe given
the available computing powers, and we require l ≥ 80. Security level l = 128 is prescribed
for long-term use. We target achieving several security levels depending upon the needs of
the cryptographic applications. More specifically, we take l = 80, 96, 112, 128.

For achieving l-bit security, we need a field Fq of bit size |q| ≥ l. Moreover, the size of
the Jacobian Jq should be a prime (around 2l-bits). One option is to take an l-bit prime as q.
But point-counting algorithms over such large prime fields are mathematically complicated
and practically inefficient.

To work around this problem, we have devised a slightly modified approach. We use
quintic extensions. For l ≤ 128, this prime p fits in a 32-bit unsigned integer. We generate
a curve over Fp, and compute the order of Jp. Since p is now small, simple and practical
point-counting algorithms can be used. We then consider the quintic extension Fq = Fp5 .
The curve C is naturally defined over Fq. Moreover, given the group size |Jp|, the group
size |Jq| can be calculated using simple formulas. We require n = |Jq|/|Jp| to be a prime.
This approach helps us generate many suitable curves of security level l fairly quickly. On
the flip side, we now have to work in a field of bit size |q| = 5l/4. For efficiency reasons,
we take C of the form

C : y2 = x5 + x + a, a ∈ Fp.
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To compute the orders of the curves over Fp, the baby-step-giant-step method is used.
This algorithm may fail on a few occasions, but given that we have a large domain for
varying a, many curves with known orders can be generated fairly efficiently. We have
|Jp| ≈ p2.

Since Fp ⊆ Fq, C is naturally defined over the extension field Fq = Fp5 , and the order of
Jq can be computed by the Newton–Girard formulas. We have |Jp| ≈ q2 = p10. Since Jp is
a subgroup of Jq, the order of Jp must divide the order of Jq. We use the cofactor

n =
|Jq|
|Jp|

.

If n is prime, Jq contains a subgroup G of this order. The bit length of n is

|n| = |Jq| − |Jp| ≈ (10− 2)|p| = 8|p|,

that is, the security level is |n|/2 ≈ 4|p| = l, as planned.

Indeed, we have |n| = 2l or |n| = 2l + 1 if p ≈ 2l/4. In terms of efficiency of Jacobian
arithmetic over Fq, there is hardly any difference in the running times between these two
cases. However, for index arithmetic (modulo n), the case |n| = 2l + 1 introduces some
inefficiency. If we use 32-bit words to pack fragments of multiple-precision integers, then
for the stated values of l, we need an extra word compared to the case |n| = 2l. This may
be an issue for some cryptographic algorithms.

Being subfield curves, the members of this family are easy to generate. Although slightly
slower than elliptic curves at the same security level, hyperelliptic curves of our family
exhibit performance comparable to widely used hyperelliptic curves over prime fields.

A map to encode messages to divisors is developed for the ElGamal encryption scheme.
This map is well-distributed, and renders the adapted encryption scheme the same security
guarantees as in the original ElGamal encryption.

1.4 Organization of the Thesis

The rest of this thesis is organized as follows.

Chapter 2 deals with the mathematical preliminaries about hyperelliptic curves. More pre-
cisely, the concepts of divisors, divisor classes, and the Jacobians are introduced. The
discussion also sets up the notations we use in the rest of the thesis.

Chapter 3 starts by pointing out the difficulties for computing the orders of Jacobians. Sub-
sequently, an algorithm is described for computing the order of Jacobians for subfield
curves. It also deals with Jacobian arithmetic. Here, Cantor’s, Harley’s and Lange’s
algorithms are introduced for computing the sum of two reduced divisors. Inversion-
free divisor-class addition is also described. The chapter presents the performance
analysis of the proposed subfield curves alongside elliptic curves. The use of Lange’s
formulas and inversion-free arithmetic leads to comparable performances between
subfield hyperelliptic curves and elliptic curves.

Chapter 5 is a discussion of the use of our curves in cryptographic schemes. An adaptation
of the ElGamal scheme to the case of our curves raises some security issues which are
identified in this chapter. A security analysis is also presented for the adapted scheme.



5 1.4. Organization of the Thesis

Chapter 6 concludes the dissertation after summarizing the reported work and identifying
some directions for further research.

Appendix A provides a list of several cryptographically suitable hyperelliptic curves at
different security levels.
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CHAPTER

TWO

MATHEMATICAL BACKGROUND

2.1 Introduction

The chapter introduces the basic mathematics used in our work. It starts with an exposition
to hyperelliptic curves. The defining equation for a hyperelliptic curve is followed by the
construction of the Jacobian for a curve. The difficulty of the discrete logarithm problem
over hyperelliptic curves is also discussed. Detailed coverage of hyperelliptic curves can be
found in [7, 50, 22, 9]. For finite fields, the textbook [46] is referred.

2.2 Plane Curves

The section focuses on a few elementary notions from algebraic geometry [19, 33]. The next
section specializes to hyperelliptic curves.

2.2.1 Affine and Projective Coordinates

Let K be a field (not necessarily finite), and its algebraic closure is denoted by K. The set of
all n-tuples (x1, x2, . . . , xn) over Kn is denoted by An

K or An, and is called the n-dimensional
affine space over K. An element from An

K is called a point, and each xi is a coordinate of
the point. The affine plane over K is the affine space A2

K. The affine line over K is A1
K. Let

F ∈ K[x1, x2, · · · , xn] be a polynomial. The set of zeros of F is defined as

Z(F) = {P ∈ An
K | F(P) = 0}.

The set of zeros for a non-constant polynomial F is known as a hypersurface defined by F. An
affine plane curve is a hypersurface in A2

K. An affine plane curve C is defined by a polynomial
F(x1, x2) ∈ K[x1, x2], and is denoted as C : F(x1, x2) = 0. C(K) denotes the set of K-rational
points on the curve C : F(x1, x2) = 0, and is defined by

C(K) = {(x1, x2) | F(x1, x2) = 0}.
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We define a relation ∼ on the affine space An+1
K − {0, 0, . . . , 0} of dimension n + 1 by

(x0, x1, . . . , xn) ∼ (y0, y1, . . . , yn) if and only if there exist λ ∈ K− {0} such that for all i, we
have xi = λyi. It is easy to see that∼ is an equivalence relation on An

K − {(0, 0, · · · , 0)}. The
set of all equivalence classes defined by ∼ is said to be the n-dimensional projective space Pn

K
over K. For n = 2, P2

K is known as the projective plane over K. An element P ∈ Pn
K is known

as a point. The set of homogeneous coordinates for P is the equivalence class of the point P.

Consider the affine plane curve C : F(x1, x2) = 0 over the field K with d = deg(F). Then,
Fh(x1, x2, x3) = xd

3 F(x1, x2) is a degree-d homogeneous polynomial in K[x1, x2, x3]. The poly-
nomial Fh is known as the homogenization of F. Putting x3 = 1 converts it into the original
polynomial F(x1, x2), that is Fh(x1, x2, x3) = F(x1, x2). F is known as the dehomogenization of
the homogeneous polynomial Fh.

A projective plane curve C over a field K is defined by a homogeneous polynomial
H(x1, x2, x3), and is denoted by C : H(x1, x2, x3) = 0. The points satisfying H(x1, x2, x3) = 0
form the set C(K) of K-rational points.

2.2.2 Coordinate Ring

Let C : F(x1, x2) = 0 be a curve defined over K. We assume that F is an irreducible polyno-
mial over K. Although we work with the set C(K) of K-rational points of the corresponding
homogeneous curve, we write the affine equation for notational simplicity. The solutions
of C in the affine plane A2

K are the finite points on the curve. Other points of the projective
plane that lie on the curve are called points at infinity on the curve.

A point P = [a, b, c] is called a regular or smooth or non-singular point of C if P satisfies
the following properties.

• If P is a finite point (that is, if c 6= 0), then the partial derivatives ∂F
∂x1

and ∂F
∂x2

must not
vanish simultaneously at ( a

c , b
c ).

• If P is a point at infinity (that is, if c = 0), then we must have a 6= 0 or b 6= 0.
Take a 6= 0 (the other case can be handled analogously). Choose the polynomial
G(x2, x3) = Fh(1, x2, x3) ∈ K[x2, x3]. Then, ( b

a , 0) is a finite point on C ′ : G(x2, x3) = 0.
The partial derivatives ∂G

∂x2
and ∂G

∂x3
should not vanish simultaneously at ( b

a , 0).

A non-smooth point on C is called non-regular or singular. The curve C is called non-singular
or regular or smooth if all points are smooth on C.

The coordinate ring of C over K is the quotient ring defined as K[C] = K[x1, x2]/〈F〉. In a
similar manner, the coordinate ring of C over K is defined as K[C] = K[x1, x2]/〈F〉. Elements
of K[C] are called polynomial functions. Since we assume that F is irreducible over K, 〈F〉 is a
prime ideal, so K[C] is an integral domain.

The field of fractions of K[C] is called the function field of C over K, and is denoted by
K(C). Similarly, the quotient field of K[C] is known as the function field of C over K, and is
denoted by K(C). Elements of K(C) can be written as g(u,v)

h(u,v) with g, h ∈ K[C], h 6= 0, and

are called a rational functions on C. Clearly, K[C] is a subring of K(C), so every polynomial
function is also a rational function.

Let P be a rational point on C, and r ∈ K(C). Then r is said to be defined at P if there exist
polynomial functions g, h ∈ K(C) such that r = g

h with h(P) 6= 0. If no such function exists,
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then r is not defined at P. If r is defined at P, the value of r at P is r(P) = g(P)
h(P) . If r(P) = 0,

then r has a zero at P. If r is not defined at P or if r(P) = ∞, then r has a pole at P.

2.2.3 Divisors

Divisors are formal sum of rational points.

• A formal sum of rational points on C is called a divisor D. A divisor is therefore of the
form

D = ∑
P∈C

mPP, mP ∈ Z,

with only a finite number of P for which mP 6= 0.

• A divisor is called an effective divisor or a positive divisor if mP ≥ 0 for all P.

• Let D = ∑P∈C mPP, and D′ = ∑P∈C nPP be two effective divisors. We write D ≥ D′ if
each mP ≥ nP.

• The sum ∑P∈C mP is the degree of D, denoted by deg D.

• The integer mP is the order of D at a point P, and is written as ordP(D).

• The set D of all divisors is an additive group under the addition rule:

∑
P∈C

mPP + ∑
P∈C

nPP = ∑
P∈C

(mP + nP)P.

• The gcd of two divisors D1 = ∑P∈C mPP and D2 = ∑P∈C nPP is defined as

gcd(D1, D2) = ∑
P∈C

min(mP, nP)P−
(

∑
P∈C

min(mP, nP)

)
O.

• D0 denotes the set of all degree-zero divisors.

• Let R ∈ Fq(C). The divisor of R, denoted div(R), is written as

div(R) = ∑
P∈C

(ordpR)P,

where ordp R denotes the order of the rational function R at the point P.

• A principal divisor is the divisor of a rational function, that is, D = div(R) for some
R ∈ Fq(C). The set of all principal divisors is denoted by P. Each principal divisor has
degree zero, that is, P forms a subgroup of D0. The quotient group J = D0/P is called
the Jacobian of the curve C. If D1, D2 ∈ D0, we write D1 ∼ D2 if D1 − D2 ∈ P. In this
case, D1 and D2 are called equivalent.

• Two divisors D1, D2 are linearly equivalent, denoted D1 ≡ D2, if D2 = D1 + div(z) for
some z ∈ K.

– The relation ≡ is an equivalence relation.
– For z ∈ K, D = div(z) if and only if D ≡ 0.
– D1 ≡ D2 implies that deg(D1) = deg(D2).
– If D1 ≡ D2 and D′1 ≡ D′2, then D1 + D′1 = D2 + D′2.
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2.2.4 Vector Space L(D)

For a divisor D = ∑P∈C mPP, define a set L(D) = { f ∈ K | ordP( f ) ≥ −mP for all P ∈ CK}.
A rational function f ∈ L(D) implies that div( f ) + D ≥ 0 or f = 0. Moreover, L(D) is a
vector space over K, and l(D) denotes the dimension of L(D).

Properties

• D ≤ D′ implies L(D) ⊂ L(D′) and deg(D′ − D) ≥ dimK(L(D′)/L(D)).

• If deg(D) < 0, then L(D) = 0. Also L(0) = K.

• For all D, L(D) is finite dimensional. Also, deg(D) ≥ 0 implies l(D) ≥ deg(D) + 1.

• L(D) = L(D′) if D ≡ D′.

Theorem 2.2.1 (Riemann Theorem) There exists an integer g such that l(D) ≥ deg(D)+ 1− g
for all divisors D. The smallest such non-negative integer g is called the genus of C.

2.3 Elliptic and Hyperelliptic Curves

An elliptic curve is a genus-one non-singular irreducible projective curve over K having
at least one K-rational point. The usual form of an elliptic curve is y2 = x3 + ax + b with
a, b ∈ K. The set of all K-rational points is an Abelian group under point addition. The
details of elliptic curves are available in [7].

Hyperelliptic curves form a generalization of elliptic curves. The Jacobian of an elliptic
curve E over K is isomorphic to the set of all K-rational points on E . But for a hyperelliptic
curve, this property does not hold, that is, the set of all K-rational points on a hyperelliptic
curveH no longer possesses the Abelian-group structure.

Definition A non-singular curve C over K with genus g > 1 is called a hyperelliptic curve
if the function field K(C) is a degree-two separable extension of the rational function field
K(x) for some function x. In other words, a hyperelliptic curve C is a curve over K having a
degree-two finite morphism f : C → P1

K and genus

g = max{b(deg( f (x))− 1)/2c, deg(h(x))− 1}.

The hyperelliptic curve C of genus g > 1 over K is usually expressed by the equation

C : y2 + h(x)y = f (x), (2.1)

where h(x) ∈ K[x] is a polynomial of degree ≤ g, and f (x) ∈ K[x] is a monic polynomial of
degree equal to 2g + 1. The curve C must be non-singular, that is, it must not contain any
solution P = (x, y) ∈ K2 of the equation y2 + h(x)y− f (x) = 0, at which both the partial
derivatives vanish:

h′(x)y− f ′(x) = 0, and 2y + h(x) = 0.

If the characteristic of the field is not two, then C can be simplified as y2 = f (x), where
f is monic of degree 2g + 1. The curve should be smooth, that is, f (x) must be square free,
that is, we should have gcd( f (x), f ′(x)) = 1.
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Figure 2.1: Elliptic curve: E : y2 = x3 − 5x + 3 over R

Figure 2.2: Hyperelliptic curveH : y2 = x5 − 3x4 + 15x2 + 4x− 12 over R
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Rational Points

The set C(K) of rational points on the curve C includes all the ordered pairs (the finite points)
(x, y) ∈ K2 which satisfy Eqn (2.1), along with a special point at infinity O. For a finite
point P = (u, v) ∈ K2 on C, we take the opposite of P as the point P̃ = (u,−v− h(u)). The
opposite of O is O itself. A finite point P is known to be special if P = P̃; otherwise, the
point is ordinary.

Polynomials and Rational Functions

The coordinate ring of a hyperelliptic curve C over K, denoted by K[C], is the quotient ring
defined as

K[C] = K[x, y]/〈y2 + h(x)y− f (x)〉,

where 〈y2 + h(x)y− f (x)〉 indicates the ideal in K[x, y] generated by the polynomial y2 +
h(x)y− f (x). Each element of K[C] is called a polynomial function on C. They can be uniquely
expressed as G(x, y) = a(x) + yb(x) for a(x), b(x) ∈ K[x]. The conjugate of G is G′(x, y) =
a(x) + b(x)(h(x) + y).

The function field K(C) of C over K is the field of fractions of K[C]. Each element of
K(C) is called a rational function on C. Every rational function r(x, y) can be represented as
r(x, y) = G(x,y)

H(x,y) with H(x, y) 6= 0.

The definitions given for general algebraic curves continue to remain valid for hyper-
elliptic curves. Suppose P = (x′, y′) be a point the curve C. The divisor of the rational
function r = (x− x′)n equals

div(r) =
{

nP + nP̃− 2nO, if P is an ordinary point,
2nP− 2nO, ifP is a special point.

(2.2)

Definition The support of a divisor D = ∑P∈C mPP is the set Supp(D) = {P ∈ C|mp 6= 0}.

Definition A divisor D = ∑ miP− (∑ mi)Owith each mi ≥ 0 is called a semi-reduced divisor.
If Pi ∈ Supp(D) is an ordinary point, then P̃i 6∈ Supp(D). If Pi = P̃i ∈ Supp(D) is a special
point, then mi = 1.

For every divisor D1 ∈ D0, there exists a semi-reduced divisor D2 ∈ D0 such that
D1 ∼ D2.

Definition A semi-reduced divisor D = ∑ miP− (∑ mi)O is a reduced divisor if ∑ mi ≤ g.

For every divisor D1 ∈ D0, there exists a unique reduced divisor D2 ∈ D0 such that
D1 ∼ D2.

Definition A divisor D = ∑ mPP is said to be defined over K if Dσ de f
= (xσ, yσ) is equal to D

for all automorphisms σ of K[x, y] over K[x, y]. The set J of all divisor classes in J that have
representatives defined over K is a subgroup of J.
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Now, we specialize to finite fields. The Jacobian J defined over a finite field is a finite
Abelian group. Each divisor in the Jacobian has a compact representation. The discrete
logarithm problem is computationally difficult in the Jacobian. So one can generate cryp-
tographically suitable hyperelliptic curves, and implement cryptographic primitives based
on the group.

Mumford Representation

Each reduced divisor has a unique representation of the form

gcd(div(u(x)), div(u(x)− v)),

abbreviated as (u, v) [45]. Here, u, v ∈ Fq[x] must satisfy:

1. u is monic,

2. deg(v) < deg(u) ≤ g,

3. u|(v2 + h(u)v− f (u)).

Let D = ∑l
i=1 Pi − lO, where Pi = (xi, yi) 6= O, Pi 6= Pj for i 6= j, and l ≤ g. Then, the

divisor D of the curve C is defined by the polynomials

u(x) =
l

∏
i=1

(x− xi),

and (
d

dx

)j

[v(x)2 + v(x)h(x)− f (x)]x=xi = 0 for 0 ≤ j ≤ l − 1.

The polynomial v(x) can be derived from Lagrange’s interpolation formula for l rational
points on the curve.

v(x) =
l

∑
i=1

∏j 6=i(x− xj)

∏j 6=i(xi − xj)
yi.

In particular, for g = 2 and l = 2, we have

u(x) = (x− x1)(x− x2) and v(x) =
(

x− x2

x1 − x2

)
y1 +

(
x− x1

x2 − x1

)
y2.

A single rational point (x1, y1) also gives a valid divisor (x− x1, y1) (corresponding to l = 1).
For l=0, we have the reduced divisor (1, 0) which acts as the identity of the group.

2.3.1 Group Law

The Jacobian group is constructed using equivalence classes of reduced divisors. Every
class has a unique reduced divisor. Given two reduced divisors, we need to find the unique
reduced divisor that represents the sum of the classes of the input divisor classes.
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Let the rational points P1, P2 define the first divisor, and the points Q1, Q2 the second di-
visor. A degree-three polynomial passing through these four points has two more intersec-
tion points R1, R2 with C. The opposites −R1,−R2 of these points define the sum of the in-
put divisors. Geometrically, this is equivalent to saying that the six points P1, P2, Q1, Q2, R1,
R2 on the cubic add up to zero. Cantor [6] provides an algorithm for performing divisor-
class addition. Later, Harley [32] modifies Cantor’s algorithm to make it more efficient.
These algorithms are studied in detail in Chapter 3. We work with fields of characteristic
6= 2, so we use curves of the special form y2 = f (x). For these curves, the opposite (additive
inverse) of the divisor (u, v) is (u,−v). Finally, the reduced divisor (1, 0) is the identity of
the group.

Figure 2.3: Divisor addition on CurveH : x5 − 3x4 + 15x2 + 4x− 12 over R
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2.3.2 Scalar Multiplication

Scalar multiplication plays a vital role in hyperelliptic-curve cryptography. Let D be a divi-
sor. We need to compute the n-th multiple E = nD = D + D + · · ·+ D of D. Addition and
doubling are the basic operations used in scalar multiplication. Some popular algorithms to
perform this are the double-and-add, the windowed double-and-add, the nonadjacent-form
double-and-add, Montgomery-ladder, and other addition-chain algorithms [51].

The double-and-add algorithm works with the binary representations of n. Let ni denote
the i-th bit n. If ni = 1, then the algorithm performs one doubling and one addition. If
ni = 0, then only one doubling suffices. The l-bit windowed method uses the representation
of n as n = n0 + 2ln1 + 22ln2 + · · ·+ 2ltnt. At the cost of some precomputation overhead,
the windowed method can reduce many addition steps. All doubling steps are carried out
anyway. Usually, l = 4 is the most preferred choice. The double-and-add algorithms are
not secure against side-channel attack (SCA).

The Montgomery ladder is secure against SCA [52]. This algorithm is treated as a smart
modification of the double-and-add algorithm. Some minor differences from the basic
double-and-add algorithms follow.

1. The Montgomery ladder needs two variables for storing intermediate values.

2. The Montgomery ladder allows differential addition to enhance efficiency.

3. In each iteration, one doubling and one addition are always performed.

2.4 Discrete Logarithm Problem on the Jacobian

Koblitz suggests the use of the Jacobians J of hyperelliptic curves in cryptographic applica-
tions. The discrete logarithm problem is considered difficult in the Jacobian.

Discrete logarithm problem on HEC: Given two divisors D1, D2 such that D2 = mD1, find m.
This m is unique modulo the order of D1.

To construct 128-bit secure cryptographic protocols, EC and HEC need 256- and 128-bit
finite fields, respectively. Pollard’s rho method and its variants [23, 57, 69] are well-known
for solving the DLP in O(

√
n) time, where n is the group order. Some individual cases of

DLP on HEC as reported by [18, 60] have lower complexity than O(
√

n). In 1994, Adleman
proposes a subexponential-time algorithm for computing discrete logarithms in large-genus
curves [1]. For genus g > 4, this algorithm performs better than Pollard’s rho method.
In 2000, Gaudry [24] reports that the index calculus method has lower complexity than
Pollard’s rho method for hyperelliptic curves of genus g > 4. In 2003, Thériault provides
an optimized algorithm for computing discrete logarithms in J of low-genus curves, which
runs in subexponential time [66]. In 2007, Enge and Gaudry [14] propose a much faster
algorithm for computing DLP in Jacobians of curves.

Despite the existence of these subexponential-time algorithms, no algorithms faster than
the generic square-root methods are known for hyperelliptic curves of genus two. In view
of this, our work reported in this thesis concentrates on curves of genus two only.
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CHAPTER

THREE

DIVISORS ARITHMETIC

3.1 Introduction

This chapter starts with computing the order of the Jacobian. Counting the cardinality of
all rational points is not important in this context, since for hyperelliptic curves the set of all
rational points does not form a group. Instead the Jacobian is an additive Abelian group.
The Jacobian arithmetic is addressed next. Cantor’s algorithm is the entry point for divisor-
class arithmetic. For efficiency, some tuned algorithms for genus-two curves are discussed.
The performance of the family of subfield curves is mentioned at the end of the chapter.

3.2 Computing the Jacobian Order

Proposing suitable hyperelliptic curves is a challenging problem in curve-based cryptogra-
phy. The order of the Jacobian should have a large prime factor. To achieve 128-bit security,
the bit size of this prime factor should be 256 (or more). A point-counting algorithm is
essential to identify suitable curves. Elliptic curves have polynomial-time point-counting
algorithms [63, 13, 26]. However, there are no such practical and efficient point-counting
algorithms for hyperelliptic curves over large prime fields. For small prime fields, efficient
algorithms exist based on the p-adic method [39, 61]. A generalized version of Schoof’s
algorithm [63] is introduced by Pila [56]. Huang [36] and Adleman [2] also come up with
point-counting algorithms. These algorithms are important from theoretical perspectives.
Gaudry and Harley [27, 29] propose and implement a point-counting algorithm for hyper-
elliptic curves defined over large prime fields.

We start with a few mathematical definitions. This is followed by the point-counting
algorithm that we use for subfield curves. This section ends with a few examples.

Frobenius endomorphism

Frobenius endomorphism usually apply to commutative rings with prime characteristics.
Here, we work with finite fields K = Fq = Fpd . This maps each element to its q−th power:

F (α) = αq for α ∈ Fq.

17
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This map preserves multiplication, that is, F (αβ) = F (α)F (β). The map F extends to
divisors on Jq. For a reduced divisor D = (u, v) ∈ Jq, we have F (D) = F ((u, v)) =
(F (u),F (v)).

The Frobenius map is a linear map and satisfies a degree-2g characteristic polynomial
with integer coefficients:

L(x) = x4 + s1x3 + s2x2 + s1qx + q2.

L(F ) is the identity map on the Jacobian Jq. It therefore follows that the cardinality of the
Jacobian is equal to L(1).

Zeta function

For a non-singular projective curve C, the zeta function ZC(T) can be written as

ZC(T) =
L(T)

(1− T)(1− qT)
,

where L(T) can be expressed as

L(T) =
2g

∏
i=1

(1− αk
i T).

Riemann’s hypothesis for C implies that |αi| = q1/2. By Hasse’s theorem, the cardinality n
of the Jacobian of a curve having genus g satisfies

d(√q− 1)2ge ≤ n ≤ b(√q + 1)2gc

The width w of the Hasse–Weil interval is therefore

w = b(√q + 1)2gc − d(√q− 1)2ge ≈ 4gqg− 1
2

3.2.1 Order Computation

Let l be the security level (a bit size) we want to achieve. A hyperelliptic curve of this
security level can be generated as follows. Take an l-bit prime p. Generate curves C over
Fp, and compute the order of its Jacobian over Fp. Repeat until a 2l-bit prime is obtained
as the order. The bottleneck of this approach is the algorithm for computing orders over
large fields Fp. The literature provides algorithms to this effect, but these algorithms are
complicated and inefficient [61].

To avoid this difficulty, we choose an l/4-bit prime p. For l ≤ 128, this prime p fits
in a 32-bit unsigned integer. We generate a curve over Fp, and compute the order of Jp.
Since p is now small, simple and practical point-counting algorithms can be used. We then
consider the quintic extension Fq = Fp5 . The curve C is naturally defined over Fq. Moreover,
given the group size |Jp|, the group size |Jq| can be calculated using simple formulas. We
require n = |Jq|/|Jp| to be a prime. This approach helps us generate many suitable curves
of security level l reasonably quickly. On the flip side, we now have to work in a field of bit
size |q| = 5l/4.

In the rest of this section, we discuss the two-stage process we adopted.
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• Compute the order of Jp for the prime p

To compute the order of an element in Jp, we use a baby-step-giant-step algorithm.
The order of Jp lies in the Weil interval [wl , wh], where wl =

⌈
(
√

p− 1)4⌉ and wh =⌊
(
√

p + 1)4⌋. The order of any point in Jp is an integral divisor of the group order [61].
The following algorithm computes the order of an element P.

1. Set W = wh − wl .

2. Set S =
⌈√

W
⌉

.

3. Precompute −jP for j = 0, 1, 2, . . . , S− 1, and store the pairs (−jP, j) in a list.
// Baby steps
// Notice that −jP is computed as −(j− 1)P + (−P) for j > 0.

4. If some j > 0 is found such that −jP = (1, 0), return j as the order of P.
// Recall that (1, 0) is the identity in Jp.

5. Sort the list with respect to −jP.

6. Compute Q = wl P using the repeated double-and-add algorithm.

7. Compute SP = −(−(S− 1)P + (−P)).

8. For i = 0, 1, 2, . . . , S− 1, repeat // Giant steps

(a) Search the list for Q using the binary search algorithm.
(b) If some entry (Q, j) is found in the list, store k = wl + iS + j.
(c) Update Q = Q+ SP. // SP was precomputed, so this is just an addition

9. If there is only one match k, then return this k as the order of P. If there are
multiple matches, return the difference between any two consecutive matches as
the order of P.

Given this algorithm for computing element orders, the group order can be computed
as follows. We keep on generating random elements P, and compute their orders k. If
2k > wh, then k is order of Jp. Otherwise, we keep on computing the lcm of individual
element orders until the lcm l satisfies 2l > wh. If in several iterations, no such k or
l can be obtained, the curve has low exponent, and its order cannot be determined
using the above baby-step-giant-step algorithm. In this case, we discard the curve.
The failure to pinpoint the order of some of the curves is not a practically severe issue.

The algorithm makes O(S log S) group operations, where S is the square-root of the
width W = wh − wl of the Weil interval. For p ≈ 232, we have W ≈ 2× 1015, and
S ≈ 5× 107, so this algorithm is reasonably efficient.

• Compute the order of Jq for q = pd

We work in quintic extensions, so d = 5 for us. We here provide a treatment for a
general d. Since Fq is an extension of Fp, a curve available from the previous stage
continues to remain a curve defined over Fq. It is easy to compute the order of Jq from
the order of Jp. Instead of running a point-counting algorithm for C over Fq, we now
use the L-functions of the curve [39, 7].

C : y2 = f (x) is a genus-two hyperelliptic curve defined over a prime field Fp. Here,
f (x) is a monic square-free polynomial of degree five. Let Nd denote the number of
rational points on C over Fpd (including the point at infinity). Notice that Nd is not the
order of the Jacobian group Jpd . It is fairly straightforward to obtain the count Nd (by
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exhaustive enumeration) so long as pd is small. We will shortly see that only N1 needs
to be computed.

The zeta function of the curve C is defined by the infinite series

ZC(T) = exp

(
∞

∑
d=1

NdTd

d

)
= 1 +

(
∞

∑
d=1

NdTd

d

)
+

1
2!

(
∞

∑
d=1

NdTd

d

)2

+ · · ·

= 1 + N1T +
1
2
(N2

1 + N2)T2 + · · · .

It turns out that this function has an alternate expression

ZC =
L(T)

(1− T)(1− pT)
,

where

L(T) = s0 + s1T + s2T2 + s3T3 + s4T4

for some integers s0, s1, s2, s3, s4. These integers satisfy s0 = 1 and s4−i = p2−isi for
i = 0, 1, 2. Therefore we can rewrite L(T) as

L(T) = 1 + s1T + s2T2 + s1 pT3 + p2T4.

If we can compute the two integers s1, s2, then L(T) is fully determined. This function
is related to the Jacobian orders as follows.

L(1) = |Jp|, (3.1)

L(−1) = |J̃p|. (3.2)

Here, C̃ is a quadratic twist of C over Fp defined by vy2 = f (x), where v is a quadratic
non-residue modulo p. Using two resulting linear equations, we can compute s1 and
s2. But since the point-counting algorithm is written for curves of the form y2 = f (x)
only, we use an equation other than (3.2). To that end, we make the power-series
expansion of the second expression for ZC(T).

ZC(T) = (1 + s1T + s2T2 + s1 pT3 + p2T4)(1− T)−1(1− pT)−1

= (1 + s1T + s2T2 + s1 pT3 + p2T4)(1 + T + T2 + · · · )(1 + pT + p2T2 + · · · )
= 1 + (p + s1 + 1)T + (p2 + s2 + 1 + s1 + s1 p + p)T2 + · · · .

Comparing this with the first power-series expansion of ZC (equating coefficients of T
and T2) gives

N1 = p + s1 + 1, (3.3)
N2 = 2(p2 + s2 + 1 + s1 + s1 p + p)− N2

1 = p2 − s2
1 + 2s2 + 1. (3.4)

The determination of N2 requires working in the quadratic extension Fp2 . It is thus
evident that the easiest way to determine L(T) is to use Eqns (3.1) and (3.3).

Let α1, α2, α3, α4 be the four roots (complex numbers) of L(opp)(T) = T4 + s1T3 + s2T2 +
s3T + s4 (the opposite of L(T)). For each d = 1, 2, 3, . . . , define

Ld(T) = (1− αd
1T)(1− αd

2T)(1− αd
3T)(1− αd

4T).
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The connection between these L-polynomials and the Jacobian orders is this:

|Jpd | = Ld(1) = (1− αd
1)(1− αd

2)(1− αd
3)(1− αd

4). (3.5)

(We have L(T) = L1(T), and |Jp| = L1(1) = L(1) which is consistent with Eqn (3.1).)

It therefore follows that if we can compute the four roots α1, α2, α3, α4 with sufficient
precision, we readily obtain the Jacobian orders in extension fields.

We can avoid complex arithmetic altogether. Indeed, we do not need to compute
the roots α1, α2, α3, α4 of L(opp)(T). The elementary symmetric polynomials in four
variables α1, α2, α3, α4 are defined as follows.

e0 = 1,
e1 = α1 + α2 + α3 + α4,
e2 = α1α2 + α1α3 + α1α4 + α2α3 + α2α4 + α3α4,
e3 = α1α2α3 + α1α2α4 + α1α3α4 + α2α3α4,
e4 = α1α2α3α4,
ek = 0 for k ≥ 5.

Since L(opp)(T) = T4 + s1T3 + s2T2 + s3T + s4 = (T − α1)(T − α2)(T − α3)(T − α4), it
follows that

e0 = 1, e1 = −s1, e2 = s2, e3 = −s3, e4 = s4, ek = 0 for k ≥ 5.

Now, let us define the power sums of the four roots for all k ≥ 1:

pk = αk
1 + αk

2 + αk
3 + αk

4.

The Newton–Girard formula [7] relates these two sequences as follows:

kek =
k

∑
i=1

(−1)i−1ek−i pi

for all k ≥ 1. Since we know the ek values, we can compute the pk values iteratively
using this formula. More explicitly, we have

p1 = e1,
p2 = e1 p1 − 2e2,
p3 = e1 p2 − e2 p1 + 3e3,
p4 = e1 p3 − e2 p2 + e3 p1 − 4e4,
pk = e1 pk−1 − e2 pk−2 + e3 pk−3 − e4 pk−4 for all k ≥ 5.

Now, let us come back to our original problem of computing the right side of Eqn (3.5).
Notice that αd

1, αd
2, αd

3, αd
4 are the roots of

L(opp)
d (T) = (T − β1)(T − β2)(T − β3)(T − β4),

where βi = αd
i for i = 1, 2, 3, 4. Name the elementary symmetric polynomials in

β1, β2, β3, β4 as Ek (for example, E1 = β1 + β2 + β3 + β4), and the power sums as Pk
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(for example, P2 = β2
1 + β2

2 + β2
3 + β2

4). These new power sums are related to the old
power sums (in αi) as

Pk = βk
1 + βk

2 + βk
3 + βk

4 = αdk
1 + αdk

2 + αdk
3 + αdk

4 = pdk.

We need only P1, P2, P3, P4 (that is, pd, p2d, p3d, p4d). Consequently, we compute pk for
k = 1, 2, 3, . . . , 4d. Now, we use the Newton–Girard formula for L(opp)

d (T), that is,

kEk =
k

∑
i=1

(−1)i−1Ek−iPi

for all k ≥ 1, and obtain

E0 = 1,
E1 = P1,

E2 =
1
2
(E1P1 − P2),

E3 =
1
3
(E2P1 − E1P2 + P3),

E4 =
1
4
(E3P1 − E2P2 + E1P3 − P4).

This, in turn, implies

Ld(T) = E0 − E1T + E2T2 − E3T3 + E4T4,

and, in particular,

|Jpd | = Ld(1) = E0 − E1 + E2 − E3 + E4.

We have |Jp| ≈ q2 = p10. Since Jp is a subgroup of Jq, the order of Jp must divide the
order of Jq. We use the cofactor

n =
|Jq|
|Jp|

.

If n is prime, Jq contains a subgroup G of this order. The bit length of n is

|n| = |Jq| − |Jp| ≈ (10− 2)|p| = 8|p|,

that is, the security level is |n|/2 ≈ 4|p| = l, as planned.

Indeed, we have |n| = 2l or |n| = 2l + 1 if p ≈ 2l/4. In terms of efficiency of Jacobian
arithmetic over Fq, there is hardly any difference in the running times between these
two cases. However, for index arithmetic (modulo n), the case |n| = 2l + 1 introduces
some inefficiency. If we use 32-bit words to pack fragments of multiple-precision
integers, then for the stated values of l, we need an extra word compared to the case
|n| = 2l. This may be an issue for some cryptographic algorithms.

We present a set of curves that were obtained by our approach. For efficiency reasons,
we take C of the form y2 = x5 + x + a. We vary a in the range [0, 1000] and record
all the cases where n is a prime. The database of curves obtained by this algorithm
is presented in the appendix. A few examples are presented here. All these exam-
ples correspond to the 20-bit prime p = 1048571. The resulting curves provide 80-bit
security.
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Example 1 – Curve C1 : y2 = x5 + x + 47
– |Jp| = 1099928953312 = 240 + 417325536
– Count of rational points on C1 over Fp is 1048979
– This gives
|Jq| = 1606861421126112580388908685296656425664857224973157020278432
= 2200 − 76623132877695153053407044506176857345768809635815022944

– The cofactor
n = |Jq|/|Jp|
= 1460877465119621059080883122151454896336021166011
= 2160 − 624172211281859122801710564828123319911376965 is prime. So this
curve is accepted.

Example 2 – C2 : y2 = x5 + x + 46
– |Jp| = 1097744558000 = 240 − 1767069776
– Count of rational points on C2 over Fp is 1046895
– This gives:
|Jq| = 1606861421126118518527811084904153739543257852153511445450000
= 2200 − 76623132871757014151007437008862978945141629281389851376

– The cofactor n = |Jq|/|Jp|
= 1463784456425534398803014685411133451998636874275
= 2160 + 2282819094631480599329852694850432342704331299 is not a prime. So
repeat the algorithm.

Example 3 – C3 : y2 = x5 + x + 60
– |Jp| = 1098401972048 = 240 − 1109655728
– Count of rational points on C3 over Fp is 1047522
– This gives
|Jq| = 1606861421126117326279311266898329713697223055120690303050128
= 2200 − 76623132872949262650825442832888824979938662102532251248

– The cofactor n = |Jq|/|Jp|
= 1462908354152060576672027642006156546558828957461
= 2160 + 1406716821157658468342809289873526902896414485, even though prime,
may be discarded because n > 2160.

3.3 Arithmetic of Divisors

Now that we have a family of curves available to us, we concentrate on the algorithms for
doing arithmetic in the Jacobians of these curves.

Cantor’s Arithmetic

The inverse of a reduced divisor (u(x), v(x)) is (u(x),−v(x)). The additive identity in the
Jacobian has the Mumford representation (1, 0). Let D1 = (u1, v1) and D2 = (u2, v2) be
two reduced divisors on the given hyperelliptic curve C. We target to compute the unique
reduced divisor (u, v) of the sum D1 + D2 in the Mumford representation. Cantor [6] pro-
vides the following algorithm for computing D1 + D2. Improvements in this algorithm can
be found in [42].
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Algorithm 1 Cantor’s Addition Algorithm

INPUT: Two divisor classes D1 = (u1, v1) and D2 = (u2, v2) on the curve C.
OUTPUT: The unique reduced Mumford divisor D = (u, v) = D1 + D2.

1: procedure CANTOR(D1, D2)
2: d1 ←− gcd(u1, u2); . d1 = e1u1 + e2u2
3: d←− gcd(d1, v1 + v2 + h); . d = c1d1 + c2(v1 + v2 + h)
4: s1 ←− e1c1 s2 ←− e2c1 and s3 ←− c2

5: u←− u1u2

d2 and v←− u1v2s1 + u2v1s2 + s3(v1v2 + f )
d

(mod u)
6: while deg u ≤ g do

7: u′ ←− f − vh− v2

u
8: v′ ←− (−h− v) (mod u′)
9: u←− u′

10: v←− v′

11: make u monic
12: return D = (u, v) . Reduced divisor

Thomas Wollinger mentions (in his Ph.D. thesis [70]) that the explicit version of Cantor’s
addition algorithm takes 2I + 44M + 4S field operations for hyperelliptic curves of genus
two over arbitrary finite fields. Here, I stands for field inversion, S for squaring, and M
for multiplication of field elements. The doubling formula takes 2I + 42M + 8S field op-
erations. Simpler versions of this algorithm are required for the sake of efficiency. Robert
Harley provides an optimized practical method.

Harley’s Explicit Formulas

Harley’s algorithm, for addition in genus-two hyperelliptic curves, is first published in [27].
Later, Harley provides a complete description in his web page [32]. He also includes sample
C codes for doubling. The algorithm is based on the theory and the tools presented in Mum-
ford’s textbook [53]. It avoids the computation of quadratic forms related to hyperelliptic-
curve function fields, and extends the so-called chord-and-tangent law for point addition on
elliptic curves. Special attention to different types of divisors is a crucial issue to optimize
the field operations.

We now give the details of Harley’s addition and doubling algorithms. We use genus-
two hyperelliptic curves of the form (2.1) over finite fields having arbitrary characteristics.
For odd-characteristic fields, we fix h = 0. We assume that in addition operations, the
two divisors are co-prime to each other and also to their opposites. Harley provides these
subexpressions for addition.

• k = ( f − v2h− v2
2)/u2

• s = (u2)−1(v1 − v2) (mod u1)

• l = u2s

• u = (k− s(h + l + 2v2))/u1

• u′ = u made monic
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• v′ = −h− (v2 + l) (mod u′)

Lange simplifies these subexpressions, and counts the number of field operations [43]. The
explicit version takes 2I + 3S + 24M for addition, and 2I + 6S + 24M for doubling. Here,
we deal with genus-two curves only. The addition algorithm is presented now.

Algorithm 2 Addition (deg u1 = deg u2 = 2) by Harley’s formulas

INPUT: Two divisor classes D1 = (u1, v1) and D2 = (u2, v2), where ui = x2 + ui1x + ui0 and
vi = vi1x + vi0.

OUTPUT: The unique reduced Mumford divisor D = (u, v) = D1 + D2.

k = ( f − v2h− v2
2)/u2

Subexpressions: . M + S
d = u11u21
t = u20 − d + u2

11 − u10
Resultant: . S + 2M
r = u20(t− u10) + u10(u2

21 − d + u10)
Inverse of u2 modulo u1: . I + 2M
inv = ((u11 − u21)x + t)/r
s = (v1 − v2)inv (mod u1) . 5M
l = u2s . 3M
u = (k− s(h + l + 2v2))/u1 . S + 6M
u′ = u made monic . I + 2M
v′ = −h− (l + v2) (mod u′) . 3M
return (u′, v′) . Total 2I + 3S + 24M

Compared to Cantor’s algorithm, there is a significant improvement in terms of squar-
ing and multiplication, but there no change in the number of inversions. Matsuo [49] mod-
ifies Harley’s algorithm, and reduces the number of multiplications for addition and dou-
bling. In 2002, Lange made a case study on the addition of different types of divisors, and
provides optimized algorithms for addition and doubling. This work reduces one inver-
sion.

Lange’s addition algorithm which we present now also assumes that the two input di-
visors (of degree two) are co-prime to each other and to their opposites.

Algorithm 3 Addition (deg u1 = deg u2 = 2) by Lange’s formulas

INPUT: Two divisor classes D1 = (u1, v1) and D2 = (u2, v2), where ui = x2 + ui1x + ui0 and
vi = vi1x + vi0.

OUTPUT: The unique reduced Mumford divisor D = D1 + D2 = (u, v).

Compute r = Res(u1, u2): . 1S + 3M
z1 = u11 − u21, z2 = u20 − u10, z3 = z1u11 + z2 and r = z3z2 + u10z2

1

Compute almost inverse of u2 (mod u1) (inv = r/u2 (mod u1)):
inv0 = z3 and inv1 = z1

Compute s′ = sr = (inv(v1 − v2)) (mod u1) . 5M
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w1 = v11 − v21, w0 = v10 − v20, w3 = w1inv1 and w2 = w0inv0
s′0 = w2 − w3u10 and s′1 = (w1 + w0)(inv1 + inv0)− w3(1 + u11)− w2;
if s′1 = 0 then

Compute s′′ = x + s0/s1 = x + s′0/s′1 and s1 . I + 2S + 5M

w1 = (s′1r)−1, w2 = w1r and w3 = w1s′1
2

w4 = w2r , w5 = w4
2 and s′′0 = w2s′0;

we have w1 = 1/r2s1, w2 = 1
s′1

, w3 = s1 and w4 = 1
s1

Compute l′ = u2s′′ = x3 + l′2x2 + l′1x + l′0 . 2M
l′2 = s′′0 + u21, l′1 = u21s′′0 + u20 and l′0 = u20s′′0
Compute u′ = (s(2v2 + h + l)− t)/u1 = x2 + u′1x + u′0 . 3M
u′0 = (h2w4 − z1 + s′′0 )(s

′′
0 − u11)− u10

u′0 = l′1 + u′0 + w4(2v21 + h1) + w5(z1 + 2u21 − f4)
u1 = h2w4 + 2s′′0 − w5 − z1

Compute v′ = −h− (v2 + l) (mod u′) = v′1x + v′0 . 4M
w1 = l′2 − u′1 , w2 = u′0 + w1u′1 − l′1 and v′1 = w3w2 + h2u′1 − h1 − v21
w2 = w1u′0 − l′0 and v′0 = w3w2 + h2u′0 − h0 − v20

return [u′, v′] . Total I + 22M + 3S

Special case s = s0

Compute s . I + M
inv = r−1 and s0 = invs′0
Compute u′ = t− s(2v2 + h + l)/u1 = x + u′0 . S
u0 = f4 − u11 − u21 − s0(h2 + s0)

Compute v′ = −h− (l + v2) (mod u′) = v′0 . 2M
w1 = s0(u′0 + u21) + v21 + h1 − h2u′0 and w2 = h0 + v20 + s0u20
v′0 = w1u′0 − w2

return (u′, v′) . Total I + 11M + 2S

For the doubling algorithm, we again assume that the divisor has degree two.

Algorithm 4 Doubling (deg u = 2) by Lange’s formulas

INPUT: Divisor class D = (u, v)
OUTPUT: The unique reduced Mumford divisor D = (u′, v′) = 2D1 = 2(u, v), where

u = x2 + u1x + u0 and v = v1x + v0.

Compute ṽ = (2v + h) (mod u) = ṽ1x + ṽ0
ṽ1 = 2v1 + h1 − u1h2 and ṽ0 = 2v0 + h0 − u0h2

Compute resultant r = Res(u, ṽ) . 3M + 2S
w0 = v2

1, w1 = u21 and w2 = ṽ2
1

w3 = ṽ1u1 and r = ṽ0(ṽ0 − w3) + w2u0

Compute inv′ = r inv
inv′0 = ṽ0 − w3 and inv′1 = −ṽ1
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Compute t′ = ( f − hv− v2)/u (mod u) = t0 + t′1x . M
w3 = w1 + f3, w4 = 2u0
t′0 = u1(2w4 − w3 + h2v1 + f4u1)− w0 + f2 − h2v0 − h1v1 − 2 f4u0
t′1 = 2(w1 − f4u1)− h2v1 − w4 + w3

Compute s′ = (inv′t′) (mod u) . 5M
w0 = inv′0t′0 and w1 = inv1t′1
s′0 = w0 − w1u0 and s′1 = (t′0 + t′1)(inv′1 + inv′0)− w1(u1 + 1)− w0
if s′1 = 0 then

Compute s′′ = x + s0/s1 and s1 . I + 5M + 2S
w1 = 1/(s′1r), w2 = w1r and w3 = w1s′1
w4 = w2r, w5 = w2

4 and s0 = w2s′0
we have w1 = 1/(s′1r2), w2 = 1

s′1
, w3 = s1 and w4 = 1

s1

Compute l′ = us′′ = x3 + l′2x2 + l′1x + l′0 . 2M
l′0 = s′′0 u0, l′1 = u0 + s′′0 u1 and l′2 = s′′0 + u1

Compute u′ = s2 + (2v + h)s/u + (v2 + hv− f )/u2 . 2M + S
u′0 = s′′0 + w5(2u1 − f4) + w4(2v1 + h2(s′′0 − u1) + h1)
u′1 = h2w4 + 2s′′0 − w5

Compute v′ = −h− (l + v) (mod u′) = v′1x + v′0 . 4M
w1 = l′2 − u′1, w2 = w1u′1 − l′1 + u′0 and v′1 = w3w2 + h2u′1 − h1 − v1
w2 = w1u′0 − l′0 and v′0 = w3w2 + h2u′0 − h0 − v0

return [u′, v′] . Total I + 22M + 5S

Special case s = s0

Compute s and precomputations . I + 2M
w1 = 1/r, s0 = w1s′0 and w2 = v0 + s0u0 + h0

Compute u′ = ( f − hv− v2)/u2 − (h + 2v)s/u− s2 . S
u′0 = f4 − 2u1 − h2s0 − s2

0

Compute v′ = −h− (su + v) (mod u′) . 2M
w1 = v1 − h2u′0 + s0(u1 − u0) + h1 and v′0 = w1u′0 − w2

return [u′, v′] . Total I + 13M + 3S

Projective Coordinates

In Chapter 1, projective coordinates are introduced. For affine coordinates, a divisor D =
(u, v) can be explicitly written as (u1, u0, v1, v0). For projective coordinates, one new vari-
able Z is introduced, and this tuple becomes a quintuple (u1, u0, v1, v0, Z). This quintuple
can be viewed as (x2 + u1

Z x + u0
Z , v1

Z x + v0
Z ). To get back the divisor in affine coordinates, one

puts Z = 1. Divisor-class arithmetic using projective coordinates does not require any field
inversion.

The use of projective coordinates for hyperelliptic curves is proposed by Miyamoto in
Japanese, and later improved in [44]. Also see [7]. In the algorithm that follows, we deal
with a genus-two hyperelliptic curve over a finite field of odd characteristic.
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Algorithm 5 Addition (deg u1 = deg u2 = 2) using projective coordinates

INPUT: Two divisor classes D1 = (U1, V1) and D2 = (U2, V2) of the form Ui(x) = x2 +
Ui1
Zi

x + Ui0
Zi

and Vi(x) = Vi1
Zi

x + Vi0
Zi

.
OUTPUT: The unique reduced Mumford divisor D = D1 + D2 = (U′, V ′), where U′ =

x2 +
U′2
Z′ x +

U′1
Z′ and V ′ = V′1

Z′ x +
V′0
Z′ .

Precomputations . 5M
Z = Z2Z1
Ũ21 = U21Z1 Ũ20 = U20Z1
Ṽ21 = V21Z1, Ṽ20 = V20Z1

Compute r = Res(U1, U2): . 1S + 6M
z1 = Z2U11 − Ũ21, z2 = Ũ20 − Z2U10
z3 = z1U11 + Z1z2 and r = z3z2 + U10z2

1

Compute almost inverse of U2 (mod U1) (inv = r/U2 (mod U1)):
inv0 = z3, inv1 = z1

Compute s . 5M
w0 = Z2V10 − Ṽ20 and w1 = Z2V11 − Ṽ21,
w3 = w1inv1 and w2 = w0inv0
s1 = (w1 + w0)(inv0 + inv1Z1)− w3(Z1 + U11)− w2
s0 = w2 − w3U10

Precomputations . S + 8M
R = rZ, s0 = Zs0, s3 = Zs1 and R̃ = s3R
S = s1s0, S3 = s2

3 and S̃ = s1s3

R̂ = S̃R̃ and Ŝ = s0s3

Compute l . 3M
l0 = Ũ20S and l2 = Ũ21S̃
l1 = (S + S̃)(Ũ20 + Ũ21)− l0 − l2
l2 = Ŝ + l2

Compute U′ . 2S + 8M
U′0 = s2

0 + z1s1(s1(Ũ21 + z1)− 2s0) + S̃z2 + R(2Ṽ21s1 + r(2Ũ21 + z1 − f4Z))
U′1 = 2Ŝ− R2 − z1S̃

Precomputations . 4M
l2 = l2 −U′1 w2 = U′0l2 − l0S3 and w1 = S3(U′0 − l1) + l2U′1
Adjust . 3M
Z′ = S3R̃, U′1 = U′1R̃ and U′0 = U′0R̃

Compute V ′ . 2M
V ′0 = w0 − Ṽ20R̂ and V ′1 = w1 − Ṽ21R̂

return (U′, V ′) = (U′1, U′0, V ′1, V ′0, Z′) . Total 47M + 4S

The doubling operation for genus-two hyperelliptic curves over finite fields of odd char-
acteristics is now presented.
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Algorithm 6 Doubling (deg u = 2) using projective coordinates

INPUT: Divisor class D1 = (U1, V1) of the form U(x) = x2 + U1
Z x+ U0

Z and V(x) = V1
Z x+ V0

Z .
OUTPUT: The unique reduced Mumford divisor D = 2D1 = (U′, V ′), where D = (U′, V ′),

U′ = x2 +
U′2
Z′ x +

U′1
Z′ and V ′ = V′1

Z′ x +
V′0
Z′ .

Compute r = Res(Ṽ, U) . 4M + 3S
Z2 = Z2, Ṽ1 = 2V1 and Ṽ0 = 2V0
w1 = U2

1 , w0 = V2
1 and w2 = 4w0

w3 = Ṽ0Z−U1Ṽ1 and r = Ṽ0w3 + w2U0

Compute almost inverse :

inv0 = w3, inv1 = −Ṽ1

Compute t: . 5M
w3 = f3Z2 + w1, w4 = 2U0, t1 = w3 − Z(w4 + 2 f4U1 + 2w1)
t0 = Z(Z(Z f2 − 2U0 f4)− w0) + U1(Z(2w4 + U1 f4)− w3)

Compute s . 7M
w0 = inv0t0 and w1 = inv1t1
s3 = (t1 + t0)(inv1 + inv0)− w3(1 + U1)− w0
s1 = Zs3 and s0 = w0 − w1U0Z

Precomputations . 2S + 6M
R = Z2r, and R̃ = s1R, S1 = s2

1 and S0 = s2
0

s0 = s3s0, s1 = s3s1, S = Zs0, and R̂ = s1R̃

Compute l . 3M
l0 = s0U0 and l2 = s1U1
l1 = (U0 + U1)(s0 + s1)− l0 − l2

Compute U′ . 2S + 8M
U′0 = S0 + R(2V1s3 + rZ(2U1 − f4Z))
U′1 = 2S− R2

Precomputations . 4M
l2 = S + l2 −U′1, w0 = l2U′0 − l0S1 and w1 = l2U′1 + S1(U′0 − l1)

Adjust . 3M
Z′ = R̃S1, U′1 = U′1R̃ and U′0 = U′0R̃

Compute V ′ . 2M
V ′0 = w0 −V0R̂ and V ′1 = w1 −V1R̂

return (U′, V ′) = (U′1, U′0, V ′1, V ′0, Z′) . Total 38M + 6S

Weighted Coordinates

The use of weighted coordinates is first proposed by Lange [44]. A sextuple (U1, V0, V1, V0,
Z1, Z2) of a divisor D = (U, V) represents the affine class (x2 + U1

Z2
1

x+ U0
Z2

1
, V1

Z3
1 Z2

x+ V0
Z3

1 Z2
). This

tuple needs one more variable than projective coordinates. To enhance the performance of



Chapter 3. Divisors arithmetic 30

divisor-class arithmetic further, two more variables z1 and z2 are introduced. These new
variables are connected by the relations z1 = Z2

1 , z2 = Z2
2 . We therefore have an 8-tuple

(U1, U0, V1, V0, Z1, Z2, z1, z2) to represent a reduced divisor. As earlier, (U1, U0, V1, V0, 1, 1, 1, 1)
represents the divisor (U1, U0, V1, V0) in affine coordinates.

Algorithm 7 Addition (deg u1 = deg u2 = 2) using weighted coordinates

INPUT: Two divisor classes D1 = (U1, V1) and D2 = (U2, V2) of the form Ui(x) = x2 +
Ui1
Z2

1i
x + Ui0

Z2
1i

and Vi(x) = Vi1
Z3

1iZ2i
x + Vi0

Z3
1iZ2i

.

OUTPUT: The unique reduced Mumford divisor D = D1 + D2 = (U′, V ′), where U′ =
x2 +

U′2
Z′21

x +
U′1
Z′21

and V ′ = V′1
Z′31 Z′2

x +
V′0

Z′31 Z′2
.

Precomputations . 8M
z23 = Z21Z22, z13 = Z11Z12, z14 = z11z13, z24 = z23z21
Ũ21 = z11U21, Ũ20 = z11U20, Ṽ21 = z14V21, Ṽ20 = z14V20

Compute r = Res(U1, U2): . 4S + 11M
y1 = z21U11 − Ũ21, y2 = Ũ21 − z21U10 and y3 = y1U11 + z11y2
r = y2y3 + y2

1U10, Z′2 = Z11Z21, Z̃2 = Z12Z22 and Z′1 = Z′22
Z̃2 = rZ′1Z̃2, Z′2 = Z̃2Z′2, Z̃2 = Z̃2

2 and z′2 = Z′22
Compute almost inverse of U2 (mod U1) (inv = r/U2 (mod U1)):
inv0 = y3, inv1 = y1

Compute s . 8M
w0 = V10z24 − Ṽ20, and w1 = z24V11 − Ṽ21
w2 = w0inv0 and w3 = w1inv1
s1 = (z11inv1 + inv0)(w1 + w0)− w3(z11 + U11)− w2
s0 = w2 − w3U10

Precomputations . 3S + 6M
S1 = s2

1, S0 = Z′1s0, Z′1 = Z′1s1, S = S0Z′1 and S0 = S2
0

R = Z′1r, s0 = s0Z′1
s1 = s1Z′1, z′1 = Z′21

Compute l . 3M
l2 = s1Ũ21 and l0 = s0Ũ20
l1 = (Ũ21 + Ũ20)(s1 + s0)− l2 − l0 and l2 = S + l2

Compute U′ . 6M
V ′1 = Ṽ21R
U′0 = S0 + Z̃2(2Ũ21 + y1) + y1(S1(y1 + Ũ21)− 2s0) + s1y2 + 2V ′1
U′1 = 2S− y1s1 − z′2
Precomputations . 2M
l2 = l2 −U′1,
w1 = U′1l2 and w0 = l2U′0
Compute V ′ . 3M
V ′0 = w0 − z′1(l0 + Ṽ20R) and V ′1 = w1 − z′1(l

′
1 −U′0 + V ′1)

return (U′, V ′) = (U′1, U′0, V ′1, V ′0, Z′1, Z′2, z′1, z′2) . Total 47M + 7S
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The doubling algorithm for weighted coordinates is as follows.

Algorithm 8 Doubling (deg u = 2) using weighted coordinates

INPUT: Divisor class D1 = (U1, V1) of the form U(x) = x2 + U1
Z2

1
x + U0

Z2
1

and V(x) =
V1

Z3
1 Z2

x +
V0

Z3
1 Z2

.

OUTPUT: Compute unique reduced Mumford divisor D = 2D1, where D = (U′, V ′), U′ =
x2 +

U′2
Z′21

x +
U′1
Z′21

and V ′ = V′1
Z′31 Z′2

x +
V′0

Z′31 Z′2
.

Compute r = Res(Ṽ, U) and precomputations . 8M + 3S
Ũ0 = z1U0, w0 = V2

1 , w1 = U2
1 and w3 = z1V0 −V1U1

r = U0w0 + w3V0, Z̃2 = rz1Z2, Z′2 = 2Z1Z̃2 and Z̃2 = Z̃2
2

Compute almost inverse:

inv0 = w3, inv1 = −V1

Compute t: . 6M + S
z3 = z2

1, w3 = w1 + z3 f3, and t1 = z2(w3 + 2(w1 − Ũ0))

z3 = z1z3, and t0 = z2(U1(4Ũ0 − w3) + f2z3)− w0

Compute s . 5M
w0 = inv0t0 and w1 = inv1t1
s3 = (t0 + t1)(inv0 + inv1)− w3(1 + U1)− w0
and s0 = w0 − Ũ0w1

Precomputations . 3S + 5M
Z′1 = z1s1, S0 = s2

0, z′1 = Z′21 and S = Z′1s0
z′2 = Z′22 , R = Z′1r, s0 = s1s0 and s1 = s1Z′1

Compute l . 3M
l2 = s1U1 and l0 = s0U0
l1 = (U0 + U1)(s0 + s1)− l2 − l0
l2 = S + l2

Compute U′ . 2M
V ′1 = V1R, U′0 = 4(V ′1 + 2U1Z̃2) and U′1 = 2S− z′2

Precomputations . 2M
l2 = l2 −U′1, w1 = U′1l2 and w0 = U′0l2

Compute V ′ . 3M
V ′1 = w1 − z′1(2V ′1 + l1 −U′0)
V ′0 = w0 − z′1(2V0R + l0)

return (U′, V ′) = (U′1, U′0, V ′1, V ′0, Z′1, Z′2, z′1, z′2) . Total 34M + 7S

Further optimizations are reported in the literature [7, 8, 35]. Table 3.1 lists the numbers
of arithmetic operations needed to perform addition and doubling for elliptic and hyperel-
liptic curves.
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Algorithms Addition Doubling
Elliptic-Curve Arithmetic I + 2M + S I + 2M + 2S

Cantor’s Algorithm 2I + 44M + 4S 2I + 42M + 8S
Harley’s Formula 2I + 24M + 3S 2I + 24M + 6S

Matsuo’s Improvement 2I + 22M + S 2I + 23M + 2S
Lange’s Explicit Version I + 22M + 3S I + 22M + 5S

Projective Coordinate 47M + 4S 38M + 6S
Weighted Coordinate 47M + 7S 34M + 7S

Costello and Lauter [8] 43M + 4S 30M + 9S
Hisil and Costello [35] 41M + 7S 28M + 8S

Table 3.1: Divisor-class addition and doubling algorithms

3.4 Discrete Logarithm Problem for Subfield Curves

In Chapter 2, we talk about the discrete logarithm problem. There we focus only on generic
attacks. In this section, we argue that our family of curves is secure.

We first consider an attack proposed in [7]. Let Jq be the Jacobian of a genus-g hyperel-
liptic curve defined over Fpd . Suppose that p||Jq|. There exists a morphism from Jq to the

Fq-vector space of holomorphic differentials of the curve. This vector space and F2g−1
q are

isomorphic. The complexity of computing the map is O(log q). As a result, discrete loga-
rithms in Jq are efficiently mapped to those in F2g−1

q . The time complexity of the method is
O((2g− 1) log qk) for a small constant k. For our family, we therefore need to ensure that
the condition p||Jq| does not hold. If this condition holds, we must discard the curve.

The Weil-descent attack reduces the DLP from EFpd to the Jacobian of a curve Cp, and
computes the discrete logarithm by the index calculus method on the Jacobian. Gaudry,
Hess and Smart develop a Weil-descent method for elliptic curves defined over binary
fields F2d [28]. Galbraith [21] generalizes the attack to hyperelliptic curves defined over
even binary extension fields. Diem [10] studies elliptic and hyperelliptic curves over finite
extension fields of odd characteristics. Diem’s work is the most relevant in the current con-
text. In particular, he shows that when the extension degree d is five, there exist potentially
vulnerable elliptic curves. This attack therefore does not apply to our family of hyperelliptic
curves. Hess [34] generalizes the Weil-descent construction of the GHS attack to arbitrary
Artin–Schreier extensions. However, he concentrates only on small primes like p = 2, 3 in
his work.

The decomposition attack is mentioned in [25]. Nagao [54] proposes a decomposition
attack for hyperelliptic curves over an extension field. For the decomposition of the Jacobian
of a genus-g hyperelliptic curve defined over Fq = Fpd , we need exactly dg divisors. The

complexity of this algorithm is O(q2− 2
ng ). In our case, q ≥ 2100 at all security levels, so this

attack is not feasible. The cover decomposition attack on the ECDLP proposed by Joux and
Vitse [38] for elliptic curves defined over Fp6 is also not applicable to our family.

Shor’s polynomial-time quantum algorithms solve the integer-factoring and the finite-
field discrete-logarithm problems [64]. Proos [58] show that Shor’s algorithm can solve
ECDLP with O(l) qubits and O(l3) Toffoli gates for a curve over an l-bit field. Huang [37]
proposes a quantum algorithm for solving HECDLP over l-bit prime fields using O(l)
qubits and O(l3) Toffoli gates. Replacing the prime-field arithmetic by the extension-field
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arithmetic makes Huang’s algorithm applicable to our curves as well. We conclude that,
like other elliptic and hyperelliptic curves, our family of curves is not considered quantum-
safe.

3.5 Mathematical Library

In order to put the performance of our subfield curves to test, we implement a mathematical
library. Since these curves use a very specific type of finite fields of the form Fp5 for odd
single-precision primes p, we plan to make efficient implementations of the arithmetic in
these finite fields. The available general-purpose libraries lack custom-made optimizations
tailored to our context.

Our library consists of the following components.

• A multiple-precision integer library: Cryptographic primitives require arithmetic
modulo the order n of G. This library is also useful for the arithmetic of divisors
over prime fields. The multiple-precision integer library caters to this requirement.
The arithmetic of G however is not straightaway linked to multiple-precision integers
(scalar multiplication involves multiple-precision multipliers though).

• Arithmetic of prime fields: The starting point of the Jacobian arithmetic is the arith-
metic of GF(p) = Fp, where p is a single-precision prime.

• Polynomials over prime fields: Polynomial arithmetic over Fp is needed to imple-
ment the arithmetic of Jp and the extension field Fq.

• Arithmetic of extension fields: We define Fq in the standard polynomial-basis repre-
sentation GF(q) = Fq = Fp[t]/〈 f (t)〉, where f (t) ∈ Fp[t] is an irreducible polynomial
of degree five, called the defining polynomial. Binomials or trinomials with small non-
zero coefficients are chosen as f (t).

• Polynomials over extension fields: Polynomials over Fq are instrumental in imple-
menting the arithmetic of Jq. The elements are bivariate polynomials. The coefficients
are elements of Fq, which are polynomials in t over Fp. The variable in a polynomial
over Fq is denoted by x.

• Jacobian arithmetic over extension fields: The library continues with the Mumford
representation of elements of Jq as pairs of polynomials over Fq.

3.5.1 Multiple-Precision Integers

The size of the subgroup G over which cryptographic schemes are to be built is a prime n =
|Jq|/|Jp|. At the highest security level, the bits length of n is |n| = 256. Index arithmetic calls
for an availability of 256-bit multiple-precision arithmetic. Although this can fit in eight
32-bit words, an additional word is used for some functions to work. That is, the multiple-
precision integers can accommodate at most 32× 9 = 288 bits in an integer. Another word
is used to store the information related to the (actual) word size of the stored integer. In
total, an array of ten 32-bit words is used to represent a multiple-precision integer. The
array cells have indices 0, 1, 2. . . . , 9. The data type is called hecui (unsigned integer to be
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used in hyperelliptic-curve cryptosystems). It is important to highlight that hecui is an
unsigned integer data type, and cannot store negative integers (of any bit length).

Let a be a positive integer of bit length s. The binary representation of a is

a = (as−1as−2 . . . a2a1a0)2,

where each ai is a bit, and as−1 = 1. Let k = ds/32e. The bits of a are stored in an array
hecui of ten 32-bit unsigned integer words as follows.

9 k− 1 1 0
k− 1 · · · 0 . . . 0as−1 . . . a32(k−1) · · · a63 . . . a34a33a32 a31 . . . a2a1a0

In terms of the radix R = 232, this translates to

a = (0 . . . 0as−1 . . . a32(k−1))2 × Rk−1 + · · ·+ (a63 . . . a34a33a32)2 × R + (a31 . . . a2a1a0)2.

If k words are needed to represent a, then its maximum radix degree is k − 1, so k − 1
(instead of k) is stored in the cell at index 9. Let us call 9 the degree index (DEGIDX) of a (not
its size index). An integer in this representation is said to be compact. Since DEGIDX stores
the exact degree of a, the unused cells at indices k, k + 1, . . . , 8 may have any contents and
are not needed to be set to zero.

While it is preferable to store integers in the compact representation, the library allows
one or more leading zero words. For example, one may store k + 1 at DEGIDX. In that
case, it is the onus of the programmer to set the k-th and (k + 1)-st cell of the array to zero.
Most of the library functions convert a non-compact representation to the compact one. All
results are output by the functions in the compact representation.

As a specific example, consider the 150-bit integer (so s = 150 and k = 5):

a = 1264457234680113638065998229755637130018186384.

The hexadecimal representation if a (in groups of eight hexadecimal digits) is

a = 38b341 d72ec03c e6ba740c 8b f 07644 4b086490.

The compact representation of a follows. The cells marked by ? may contain any value.

9 8 7 6 5 4 3 2 1 0
4 ? ? ? ? 0038b341 d72ec03c e6ba740c 8b f 07644 4b086490

Here is a non-compact representation of the same integer, which uses three leading zero
words.

9 8 7 6 5 4 3 2 1 0
7 ? 0 0 0 0038b341 d72ec03c e6ba740c 8b f 07644 4b086490

The integer zero requires special attention. It is the zero polynomial in the radix R = 232.
In mathematics, the degree of the zero polynomial is taken as−∞. This not being an integer
value, −1 is taken as MINUSINF. This still poses a problem, because the hecui array has
unsigned integer cells. In a 2’s complement machine, the 32-bit signed integer −1 has the
same representation as the 32-bit unsigned integer 232 − 1 = 4294967295. This integer is
taken as MINUSINF. Clearly, this big value cannot be the degree of any integer that can be
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stored in hecui. This is called the compact representation of zero. In this representation,
cells at indices 0, 1, 2, . . . , 8 can store any values, whereas the cell at index DEGIDX = 9 is
required to store the special value MINUSINF.

Zero may have non-compact representations too. For example, one may store 0 at in-
dices 0 and 9 in the hecui array.

Multiplying two hecui integers introduces a fresh problem. The product can have a bit
length of 576 and cannot fit in the hecui data type. To get around this problem, a doubly
multiple-precision integer data type hecui2 is introduced. The representation mechanism
for hecui2 is the same as that for hecui. The sole difference is that the size of a hecui2 array
is 20 (in 32-bit unsigned words), and the degree is stored in the cell at index DEGIDX2 = 19.
It follows that hecui2 can store integers of bit length up to 32× 19 = 608. This is slightly
larger than the requirement of 576. But then, having an additional word is always safe for
all the functions to work appropriately.

3.5.2 Prime-Field Arithmetic

This data structure is rather trivial. Since we eventually work in quintic extensions, we
restrict the base field to GF(p) = Fp, where p is a single-precision prime (that is, |p| ≤ 32).
We have the standard representation of Fp as the set

Fp = {0, 1, 2, . . . , p− 1}.

Therefore each element in Fp fits in a 32-bit unsigned integer data type. The arithmetic of
Fp is integer arithmetic modulo the prime p. So we rename ui or unsigned long int as
GFpel.

3.5.3 Prime-Field Polynomial Arithmetic

Polynomial arithmetic over Fp is needed for two purposes: Jacobian arithmetic over Fp,
and arithmetic over Fp5 . For both these purposes, we need to deal only with polynomials
of degrees at most eight. Such a polynomial has at most nine coefficients. We also need to
store the degree of the polynomial. Moreover, p is in our library always a single-precision
prime. Consequently, an array of ten 32-bit unsigned integers suffices to store a polynomial
over Fp.

Consider a non-zero polynomial of degree d ≥ 0

a(t) = adxd + ad−1td−1 + · · ·+ a2t2 + a1t + a0,

where a0, a1, a2, . . . , ad ∈ Fp = {0, 1, 2, . . . , p− 1}, and ad 6= 0. The compact representation of
this polynomial stores the coefficients a0, a1, a2, . . . , ad at indices 0, 1, 2, . . . , d in the polyno-
mial array. The degree index (DEGIDX) in the array is nine. We store the degree d at this
index. The array elements ad+1, ad+2, · · · , a8 can store any value, and need not be initialized
to 0.

9 d 2 1 0
d · · · ad · · · a2 a1 a0

The library also allows non-compact representations of polynomials, where one or more
leading zero coefficients are stored. For example, for the above polynomial, one can store
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any d′ ∈ [d + 1, 8] at DEGIDX. In that case, the array elements ad+1, ad+2, . . . , ad′ must be set
to zero.

As a specific example, consider the polynomial

a(t) = 994042t4 + 1041076t3 + 861038t2 + 926874t + 1008193

over F1048571. The compact representation of this polynomial is given first. Here, a cell
marked by ? is allowed to contain any value.

9 8 7 6 5 4 3 2 1 0
4 ? ? ? ? 994042 1041076 861038 926874 100819

A non-compact representation of the same polynomial with two leading zero coefficients is
given next.

9 8 7 6 5 4 3 2 1 0
6 ? ? 0 0 994042 1041076 861038 926874 100819

Let us now look at the representation of the zero polynomial. Conventionally, the degree
of the zero polynomial is −∞. In the compact representation of the zero polynomial, we
simply store MINUSINF (which is defined as 232 − 1 = 4294967295 ) at DEGIDX. All other
cells in the array may contain any value.

9 8 7 6 5 4 3 2 1 0
MINUSINF ? ? ? ? ? ? ? ? ?

Non-compact representations of the zero polynomial are also allowed. Here is an example
where the zero polynomial is treated as a polynomial of degree bounded by four.

9 8 7 6 5 4 3 2 1 0
4 ? ? ? ? 0 0 0 0 0

We name this data structure as polyp. Clearly, polyp consists of an array of ten GFpel

elements.

3.5.4 Extension-Field Arithmetic

The arithmetic of extension fields is needed to implement the arithmetic of polynomials
over these fields, which in turn leads to our eventual goal of implementing the Mumford
arithmetic over extension fields. Elements of Fq are represented as polynomials over Fp
with degrees ≤ 4. More precisely, we have

Fq = {a0 + a1θ + a2θ2 + a3θ3 + a4θ4 | ai ∈ Fp}

Here, θ is a root of the defining polynomial f (t), that is, f (θ) = 0. We carry out arithmetic
in Fq as the polynomial arithmetic over Fp modulo the defining polynomial f (t).

Elements of Fq are polynomials over Fp with degrees ≤ 4. We can therefore store an
element of Fq in a polyp array which consists of ten unsigned integer variables. An element
a0 + a1θ + a2θ2 + a3θ3 + a4θ4 ∈ Fq can always be stored in a polyp array as shown below.
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Here, an array cell marked by ? can store any value. Notice however that as a polynomial,
this representation is not necessarily compact.

9 8 7 6 5 4 3 2 1 0
4 ? ? ? ? a4 a3 a2 a1 a0

As a specific example, take p = 1048571, define the quintic extension Fq = Fp[t]/〈 f (t)〉
by the irreducible polynomial f (t) = t5 + 2, and consider the element α = 2812t4 + 499743t3 +
463157t2 + 1042895t + 268065 ∈ Fq. A compact representation of α is given first. Since the
degree of α is four, we store 4 at the cell at index DEGIDX = 9.

9 8 7 6 5 4 3 2 1 0
4 ? ? ? ? 2812 499743 463157 1042895 268065

Non-compact representations are allowed too. The above α can also be represented as fol-
lows. But since some functions may assume α to have degree ≤ 4, this non-compact repre-
sentation is avoided.

9 8 7 6 5 4 3 2 1 0
6 ? ? 0 0 2812 499743 463157 1042895 268065

An element of Fq can always be assumed to have formal degree four even if its actual degree
is less than four. Therefore a non-compact representation of β = 463157t2 + 1042895t can
be as shown now. This non-compact representation does not have the technical problem of
the non-compact representation of α demonstrated above.

9 8 7 6 5 4 3 2 1 0
4 ? ? ? ? 0 0 463157 1042895 0

The element 0 of Fq is the zero polynomial whose degree is −∞. We define the spe-
cial value MINUSINF = 232 − 1 = 4294967295 to stand for −∞. Therefore the compact
representation of 0 is as follows.

9 8 7 6 5 4 3 2 1 0
MINUSINF ? ? ? ? ? ? ? ? ?

One may also go for a non-compact representation too. For example, if 0 is again treated as
a polynomial of formal degree four, we have the following representation.

9 8 7 6 5 4 3 2 1 0
4 ? ? ? ? 0 0 0 0 0

We rename polyp as GFqel.

3.5.5 Extension-Field Polynomial Arithmetic

Polynomial arithmetic over Fq is at the heart of Jacobian arithmetic over Fq. Elements from
Fq are themselves polynomials over Fp, and are represented by arrays of elements from
Fp. Therefore polynomials over Fq are bivariate polynomials, and are represented by two-
dimensional arrays. We have the quintic extension Fq = Fp(θ). We use t in the text mode
(in place of θ) for representing elements of Fq. The polynomials over Fq have the variable
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x. As far as storage is concerned, we do not need to store the variables t or x. It suffices to
store only the coefficients.

Consider the non-zero polynomial

a(x) = adxd + ad−1xd−1 + · · ·+ a1x + a0 ∈ Fq[x]

of degree d. Here, ai ∈ Fq, and ad 6= 0. Each ai can be written as

ai = ai,0 + ai,1θ + ai,2θ2 + ai,3θ3 + ai,4θ4

with ai,j ∈ Fp. We store the coefficients ai,j in a two-dimensional array.

Each ai is of data type GFqel which is a renaming of polyp. This data type has been
defined as an array of ten 32-bit unsigned integers. The array index DEGIDX = 9 stores the
degree of the polynomial (or an upper bound of the degree). The two-dimensional array
for a(x) stores the coefficients ai ∈ Fq in its rows. We again consider polynomials a(x) with
deg a(x) ≤ 8. For the purpose of Jacobian arithmetic arithmetic over Fq, we do not require
polynomials of larger degrees. A polynomial of degree eight has nine coefficients, so nine
rows suffice to store a(x). In addition, we need to store the degree of a(x). This can be done
externally. However, we prefer to add a row to the two-dimensional array, and store the
degree of a(x) at the zeroth index of the extra row. The following figure demonstrates this
storage format.

j
→

0 1 2 3 4 5 6 7 8 DEGIDX
0 a0,0 a0,1 a0,2 a0,3 a0,4 ? ? ? ? 4
1 a1,0 a1,1 a1,2 a1,3 a1,4 ? ? ? ? 4
2 a2,0 a2,1 a2,2 a2,3 a2,4 ? ? ? ? 4

i ↓
...

d ad,0 ad,1 ad,2 ad,3 ad,4 ? ? ? ? 4
d + 1 ? ? ? ? ? ? ? ? ? ?

...
8 ? ? ? ? ? ? ? ? ? ?

DEGIDX d ? ? ? ? ? ? ? ? ?

Here, cells marked by “?” can be left uninitialized. Each row is not necessarily in the
compact format, since not all ai are needed to be polynomials of degree four in θ.

As a specific example, take

a(x) = (920890θ2 + 1048263)x3 +

(472979θ4 + 903930θ3 + 108403θ2 + 801667θ + 426057)x2 +

(989173θ3 + 805031θ2 + 919240θ + 1022862).
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The compact representation of this polynomial is given below.

j
→

0 1 2 3 4 5 6 7 8 DEGIDX
0 1022862 919240 805031 989173 ? ? ? ? ? 3
1 ? ? ? ? ? ? ? ? ? MINUSINF
2 426057 801667 108403 903930 472979 ? ? ? ? 4
3 1048263 0 920890 ? ? ? ? ? ? 2

i ↓ 4 ? ? ? ? ? ? ? ? ? ?
5 ? ? ? ? ? ? ? ? ? ?
6 ? ? ? ? ? ? ? ? ? ?
7 ? ? ? ? ? ? ? ? ? ?
8 ? ? ? ? ? ? ? ? ? ?

DEGIDX 3 ? ? ? ? ? ? ? ? ?

Let us now consider the zero polynomial. Formally, this polynomial has degree −∞. In
the compact representation, we simply store MINUSINF at the (DEGIDX, 0)-th cell of the
two-dimensional array.

0 1 2 3 4 5 6 7 8 DEGIDX
0 ? ? ? ? ? ? ? ? ? ?
1 ? ? ? ? ? ? ? ? ? ?
2 ? ? ? ? ? ? ? ? ? ?
3 ? ? ? ? ? ? ? ? ? ?
4 ? ? ? ? ? ? ? ? ? ?
5 ? ? ? ? ? ? ? ? ? ?
6 ? ? ? ? ? ? ? ? ? ?
7 ? ? ? ? ? ? ? ? ? ?
8 ? ? ? ? ? ? ? ? ? ?

DEGIDX MINUSINF ? ? ? ? ? ? ? ? ?

A non-compact representation of the zero polynomial is now given. Here, the zero poly-
nomial is treated as a polynomial in x having degree bound three. Each row, on the other
hand, is treated as a polynomial in θ of formal degree four.

0 1 2 3 4 5 6 7 8 DEGIDX
0 0 0 0 0 0 ? ? ? ? 4
1 0 0 0 0 0 ? ? ? ? 4
2 0 0 0 0 0 ? ? ? ? 4
3 0 0 0 0 0 ? ? ? ? 4
4 ? ? ? ? ? ? ? ? ? ?
5 ? ? ? ? ? ? ? ? ? ?
6 ? ? ? ? ? ? ? ? ? ?
7 ? ? ? ? ? ? ? ? ? ?
8 ? ? ? ? ? ? ? ? ? ?

DEGIDX 3 ? ? ? ? ? ? ? ? ?

3.5.6 Jacobian Arithmetic over Extension Fields

A reduced divisor in the Mumford representation is a pair of univariate polynomials u(x)
and v(x) with coefficients from Fq. We define a data type Mumq for this representation. This
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is an array of two polynomials over Fq. Therefore, it is an array of two elements of the polyq
data type.

The polyq at index zero stores u(x), whereas the polyq at index one stores v(x).

0 1
u(x) v(x)

Here, Mumq actually uses 2× 10× 10 = 200 single-precision unsigned integers. As an
example, consider a reduced divisor corresponding to two distinct and non-opposite finite
rational points (x1, y1) and (x2, y2) on C. In this case, u(x) = u2x2 + u1x + u0 and v(x) =
v1x + v0. We have u2 = 1. Suppose that v1 is non-zero. When the Mumq array is viewed as
an array of two polyq arrays, we have the following (compact) representation. The empty
cells are not used in the storage, and can be left uninitialized.

Index D[0] = u(x) D[1] = v(x)

0 u0 = x1x2 v0 =
x1y2 − x2y1

x1 − x2

1 u1 = −(x1 + x2) v1 =
y1 − y2

x1 − x2

2 u2 = 1
3
4
5
6
7
8
9 2 1

Now, each coefficient of u(x) and v(x) is an array of ten unsigned integers. We can write
ui = ui4t2 + ui3t3 + ui2t2 + ui1t + ui0 for i = 0, 1, 2, and vi = vi4t2 + vi3t3 + vi2t2 + vi1t + vi0
for i = 0, 1. Here, uij and vij are elements of Fp (and so single-precision unsigned integers).
Therefore the Mumq data type has the following representation shown at the level of 32-bit
words. The empty cells are not used, and may contain any values. We assume that all ui
and vi have degree four. If not, the entry 4 at DEGIDX position of each polyp array is to be
set appropriately. Otherwise, the representation is correct but not compact.

D[0] = u(x) D[1] = v(x)
Index 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0 u00 u01 u02 u03 u04 4 v00 v01 v02 v03 v04 4
1 u10 u11 u12 u13 u14 4 v10 v11 v12 v13 v14 4
2 u20 u21 u22 u23 u24 4
3
4
5
6
7
8
9 2 1
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This may look somewhat wasteful of space, because at most 32 of the 200 cells contain
useful values. But this representation is favored for time efficiency. First, a Mumq data type is
an array, so passing it to a function is the same as passing a pointer. Second, the individual
polynomials u(x) and v(x) are readily available in Mumq as polyq data types, so we do not
need any conversion between Mumq and polyq.

Table 3.2 summarizes the user-defined data types used in our library.

Definition Construction
ui renamed unsigned integer data type

hecui ui data structure array of size 10
hecui2 ui data structure array of size 20
GFpel renamed ui data type
polyp GFpel array of size 10
GFqel renamed polyp data type
polyq GFqel array of size 10
Mumq polyq array of size 2

Table 3.2: Defined data structure

3.6 Performance Analysis

Since the arithmetic of hyperelliptic curves is somewhat inefficient in comparison with the
elliptic-curve point arithmetic, reducing the performance gap is a point of concern. In
this section, we analyze the practical performances of hyperelliptic and elliptic curves [48].
However, the entire computation depends on the underlying field operation. Therefore, the
construction of an efficient finite field plays a vital role in the Jacobian arithmetic. Since we
work with subfield curves, we focused on the construction of the quintic extension fields.
We prefer to have only small integers (positive or negative) as the non-zero coefficients of
f (x). Table 3.3 lists some l-bit primes and some corresponding monic irreducible polyno-
mials (the defining polynomials) used to represent the extension field Fq = Fp5 .

Prime length l Prime p Extending polynomial f (x)
20 1048571 x5 − 2 or x5 + 2
24 16777199 x5 + x− 3 or x5 − 4x− 1
28 268435399 x5 − x− 2
32 4294836163 x5 + 2x− 1

Table 3.3: Construction of efficient extension field

We consider two hyperelliptic-curve families: the first is over large prime fields, and the
second is that of subfield curves defined over quintic extensions. This comparative study
is based on point addition, point doubling, and scalar multiplication. Scalar multiplication
uses the 4-bit windowed multiplication method for both elliptic and hyperelliptic curves.
All the curves used in our experiments offer 128-bit security. The parameters of these curves
are listed now.
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1. Elliptic Curve: Curve P-256 [48]

⊕ Prime p = 2256 − 2224 + 2192 + 296 − 1 of size 256 bits

⊕ Curve E : y2 ≡ x3 − 3x + b (mod p),
where b = 2455155546008943817740293915197451784769108058161191238065

⊕ Group order n =
115792089210356248762697446949407573529996955224135760342422259061068
512044369

2. Hyperelliptic curve: Generic-1271 [4]

⊕ Prime p = 2127 − 1 of size 128 bits

⊕ Curve C1 : y2 = x5 + f3x3 + f2x2 + f1x + f0 (mod p), where

f0 = 6667986622173728337823560857179992816,
f1 = 90907655901711006083734360528442376758,
f2 = 132713617209345335075125059444256188021,
f3 = 34744234758245218589390329770704207149.

⊕ Group order n =
2894802230932904884816923999565902513845117797309155137410147573289258
0332259

3. Subfield curve

⊕ Base prime p = 4294836163 of size 32 bits

⊕ Monic irreducible polynomial f (x) = x5 + 2x− 1

⊕ Curve C : y2 = x5 + x + a, where a ∈ Fp. As a sample, we take a = 23.

⊕ Group order n =
1157643261432762193010464109587902557945749684746506164802945703526927
70626891

We run our codes in the Linux environment on an Intel core-i7 3.10 GHz desktop machine.
The codes are complied by the GNU C compiler (gcc) version 5.5.0. We use three math-
ematical libraries for three sets of implementations. As mentioned in the previous sec-
tion, we ourselves have developed a mathematical library explicitly suited to the subfield
curves. This library can easily handle elliptic and hyperelliptic curves over prime fields. A
trendy and commonly available library for multiple-precision integer arithmetic is the GNU
multiple-precision library GMP [31]. This library does not support polynomial arithmetic,
so the arithmetic of subfield curves cannot be straightaway implemented using GMP. More-
over, despite its popularity, GMP is known to be not one of the fastest available libraries.
The number theory library NTL [65] is a public-domain and fast library, popular among
number theorists. We have used NTL version 11.3.2. NTL supports the arithmetic of both
multiple-precision integers and polynomials, and is thus suitable for all of the three curves.

We first compare the performance of Cantor’s algorithm for hyperelliptic curves with
that of elliptic curves in Table 3.4. The table illustrates that Cantor’s algorithm is signifi-
cantly inefficient compared to the elliptic-curve arithmetic. For the hyperelliptic curve over
prime fields, NTL is the fastest library, whereas our library is the slowest. Our library is
not optimized for multiple-precision integer arithmetic which is very infrequently needed
in cryptographic protocols involving subfield curves.
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Curve (Library) Doubling Addition Scalar multiplication
P-256 (NTL) 0.000003 0.000003 0.001375

Generic-1271 (Our library) 0.000191 0.000201 0.038537
Generic-1271 (NTL) 0.000020 0.000022 0.007514
Generic-1271 (GMP) 0.000054 0.000058 0.033367

Subfield curve C (Our library) 0.000034 0.000038 0.011614
Subfield curve C (NTL) 0.000100 0.000102 0.034476

Table 3.4: Comparison of Cantor’s algorithm with elliptic-curve arithmetic (all times are in
milliseconds)

Coordinate Curve (Library) Doubling Addition Scalar multiplication
Affine Generic-1271 (NTL) 0.000007 0.000009 0.002439
Affine Subfield curve C (Our library) 0.000009 0.0000010 0.003021
Affine Subfield curve C (NTL) 0.000028 0.000026 0.008442

Projective Generic-1271 (NTL) 0.000007 0.000007 0.002466
Projective Subfield curve C (Our library) 0.000011 0.000012 0.003167
Projective Subfield curve C (NTL) 0.000026 0.000028 0.008604
Weighted Generic-1271 (NTL) 0.000007 0.000009 0.002576
Weighted Subfield curve C (Our library) 0.000008 0.000012 0.002944
Weighted Subfield curve C (NTL) 0.000025 0.000031 0.008507

Table 3.5: Comparison with different coordinates (all times are in milliseconds)

Table 3.5 illustrates the performance of the subfield curve and generic-1271 in different
coordinates systems. For affine coordinates, Lange’s explicit formula is implemented. NTL
being the most efficient multiple-precision integer library, we report the timings of P-256
and Generic-1271 for this library only. For subfield curves, algorithms are implemented us-
ing both our mathematical library and NTL. The first inference we draw from these figures
is that the performance gap between elliptic and hyperelliptic curves is now significantly
reduced. Second, there is a stiff competition between hyperelliptic curves over prime fields
and hyperelliptic curves over extension fields. This, in turn, boosts interest in furthering
work on our proposed family of subfield curves.

3.7 Conclusion

Our experiments reported in this chapter have been able to narrow the gap between the
performances of elliptic and hyperelliptic curves. We have also established our proposed
family of subfield curves to be nearly as efficient and practical as curves over prime fields.
Possibilities of further performance enhancements of our family of curves are worth inves-
tigating.
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CHAPTER

FOUR

CRYPTOGRAPHIC PRIMITIVES

4.1 Introduction

The most common cryptographic primitives that can be built on the arithmetic of hyperel-
liptic curves are listed now. These are well-known techniques, and can be found in many
references like [9].

• Diffie–Hellman key exchange.

• ElGamal encryption.

• HECDSA signatures.

• Challenge-response authentication schemes based on encryption and signatures.

• Schnorr’s zero-knowledge identification scheme.

All these schemes are more or less straightforward to implement using the hyperelliptic-
curve library. Moreover, the performances of these implementations depend solely on the
efficiency of scalar multiplication, justifying the practical study reported in the last chapter.

Only an implementation of the ElGamal scheme introduces some problem. Let G be the
subgroup of Jq of prime order n, that we use in our cryptographic protocols. Encoding mes-
sages to the members of this group can be done. For example, if γ is a generator of G, then
an integer k modulo n can be mapped to kγ. But then, decoding the message becomes very
problematic, because retrieving k from kγ is equivalent to solving the discrete logarithm
problem in G. In this chapter, we explain how we can get around this difficulty by map-
ping messages to divisors in Jq. Since the encoded messages now belong to a group larger
than G, this encoding scheme raises some security concerns. We deal with these issues, and
establish that this leads to no information leakage.

45
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4.2 ElGamal encryption

In 1985, Taher ElGamal proposes this scheme [12]. A few years later, Tsiounis and Yung
give a concrete proof for the security of ElGamal encryption [67]. They establish that the
DDH assumption directly implies the security of ElGamal encryption, and conversely. At
present, proving the IND-CCA1 security of ElGamal encryption is a major open problem.
Lipmaa shows that ElGamal encryption is IND-CCA1 secure based on some non-standard
assumptions [47]. Wu and Stinson also show that ElGamal encryption is OW-CCA1 secure
under the delay-target discrete logarithm assumption (DTDLA), and the strong generalized
knowledge of exponent assumption (SGKEA) [71]. However, ElGamal encryption is not
IND-CCA2 secure because it is a homomorphic encryption. The bit-security analysis of the
hyperelliptic-curve Diffie–Hellman problem is provided by Zhang [72].

In our context, the ElGamal scheme raises an issue. The scheme needs a mapping of
messages (bit strings) to the elements of the group, in which we are working. Fouque, Joux
and Tibouchi propose an injective encoding for elliptic curves. This construction uses the
existence of a covering curve of genus two, for which a bijective encoding is known [16].
Later, Fouque and Tibouchi propose a “nearly bijection” encoding map. However, they use
a curve defined over prime fields [17]. No such map exists for subfield curves. In our case of
subfield hyperelliptic curves, the group G in which the ElGamal scheme works is a proper
subgroup of the Jacobian Jq over the quintic extension. This is because the Jacobian Jq is
the internal direct sum of G with the Jacobian Jp over the ground field. An efficient and
reversible encoding of messages to elements of G is not straightforward.

We work around this difficulty by mapping messages to the strictly larger group Jq,
that is, each encoded message now has a component in a cryptographically small group
Jp which plays no role in the security of the ElGamal scheme. The question that our en-
coding scheme raises is whether this component has any potential of leaking important
cryptographic secrets.

In what follows, we elaborate our adaptation of the ElGamal scheme for subfield curves
along with our message encoding and decoding techniques. We denote our encoding scheme
by the function θ.

— Public parameters

1. Field sizes p and q = p5, the element a ∈ Fp defining the curve y2 = x5 + x + a, the
size n of the group G, a base point P ∈ G, the message length l, and the padding
length l′.

— Key pair of the recipient

2. (x, Y), where x ∈U Zn (private key), and Y = xP ∈ G (public key).

— Encoding

3. Let the message be m ∈ {0, 1}l .

4. Break m into two l
2 -bit chunks: m = m0 || m1. For each b ∈ {0, 1}, generate rb ∈U

{0, 1}l′ such that x5
b + xb + a is a square in Fq, where xb = 0 || b || mb || rb. Let yb be a

square root of x5
b + xb + a in Fq.
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5. Take the divisor (u2, u1, u0, v1, v0) with the two rational points (x0, y0) and (x1, y1)
as the message representative M. Notice that M ∈ Jq (we do not, in general, have
M ∈ G).

— Encryption

6. Generate k ∈U Zn, and set R = kP ∈ G.

7. Compute S = M + kY ∈ Jq.

8. Send (R, S) to the recipient.

— Decryption

9. Recover M = S− xR ∈ Jq.

— Decoding

10. Let M = (u2, u1, u0, v1, v0). We have x0 + x1 = −u1, and x0x1 = u0. Solve these
equations (quadratic) to obtain x0, x1. Notice that xb has second msb b.

11. Recover m0, m1 from x0, x1 after removing the paddings. Output m = m0 || m1.

The encoding map θ used in our variant of ElGamal encryption has some desirable
properties.

• The encoding map is efficiently computable in polynomial time. The inverse of the
map is also efficiently computable.

• This map can be applied for all forms of subfield hyperelliptic curves.

• Our encoding scheme is a probabilistic map due to the concatenated pseudorandom
bits.

• This map does not preserve arithmetic operation. Let D1 = θ(k1) and D2 = θ(k2).
Then, any correlation between k1 and k2 does not reflect on D1 and D2.

• This is a well-distributed map.

Now we prove that our point-encoding scheme is well-distributed. To that effect, we
use character sums. Similar types of results can be found in [15, 17]. Using this result, we
obtain a bound on statistical distance. Later, we prove that our encoding map terminates in
polynomial time.

Theorem 4.2.1 Let χ be any character of the Abelian group GF(q). The character sum is defined as

T(χ) = ∑
u∈Fq

χ(θ(u)).

Then, for a non trivial character, we have T(χ) ≤ 2
√

q + 11.
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Proof Let χ be a non-trivial character of Jq. Then, χ is an unramified, non-trivial Artin
character of C. Applying Riemann’s hypothesis for the L-function, we have [15]∣∣∣∣∣∣ ∑

P∈Cq

χ(P)

∣∣∣∣∣∣ ≤ 2
√

q

Now,

∑
u∈Fq

χ(θ(u)) = |R|χ((0, 0)) + ∑
P∈Cp−Wei

χ(P)

= |R|χ((0, 0))− ∑
P∈Wei

χ(P) + ∑
P∈Cq

χ(P)

Here, R denotes the set of all zeros of the curve polynomial f (x). Therefore, |R| = 2g + 1 =
5. The set of all Weierstrass points is denoted by Wei. The cardinality of this set is 2g+ 2 = 6.
It therefore follows that θ is a (2 + 11√

q ) well-distributed map.

Since θ is (2 + 11√
q ) well-distributed to the curve C, for all D ∈ Jq, we have∣∣∣∣N(D)

q2 − 1
|Jq|

∣∣∣∣ < (2
√

q + 11)2,

where N(D) be the number of preimages of D under θ.

The statistical distance between the distribution defined by the point-encoding map on
Jq and the uniform distribution is

∑
D∈Jq

∣∣∣∣N(D)

q2 − 1
|Jq|

∣∣∣∣ ≤ (2 +
11
√

q

)2

.

Therefore, the bound on the statistical distance is c√
q +O( 1

q ) (where c is a positive constant).
The proof of this statement can be found in [17].

Now, we prove that our encoding map is efficiently computable and is expected to ter-
minate on any input m in polynomial time. To establish the statement, we prove the follow-
ing theorem. Similar results for elliptic curves can be found in [16].

Theorem 4.2.2 For large enough q, the expected number of iterations in θ on any input message m
is less than three.

Proof Let x ∈ GF(q) be a random element. Suppose that m ∈ {0, 1}k is the message, and
the k least significant bits of x coincide with m. Pr(m) denotes the probability that the k least
significant bits of a random element x ∈ GF(q) coincide with the message m. For each x,
we have at most two y, that is, at most two points.

Pr(m) ≥ 1
2
|{(x, y) ∈ Cq | lsbk(x) = m}|
|{(x, y) ∈ Fq | lsbk(x) = m}| (4.1)

Here, “lsbk(x) = m” means that the k least significant bits of x coincide with m.
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Now, we obtain tight bounds on the numerator and the denominator. We apply the one-
dimensional Erdös–Turán–Koksma inequality to obtain a tight bound for the numerator.
For any interval I ∈ R− Z of length l and any positive integer K with |K| ≤ |q|, we have∣∣∣∣∣ |(x, y) ∈ Cq −O | x

q ∈ I |
N

− l

∣∣∣∣∣ ≤ 3
K + 1

+
3
N

K

∑
j=1

T(χj)

j
, (4.2)

where N is the cardinality of set of rational points, and χj denotes the additive character
x 7→ e2iπ jx/q. Clearly, the length l ≥ 2−k(1− 2

q ). Putting K =
√

q − 1, and using Theo-
rem 4.2.1, we get∣∣∣∣{(x, y) ∈ Cq −O |

x
q
∈ I}

∣∣∣∣ ≥ lN − 3N
√

q
− 3
(
(2g− 2)

√
q + 4g + 3

)
log
√

q

≥ (l − 3
√

q
)
(
(q + 1)− 2g

√
q
)
− 3(2g− 2)

√
q log

√
q− (12g + 9) log

√
q

≥ l(q + 1)− 6
√

q log
√

q.

For genus-two curves, the Hasse–Weil bound states that |N − (q + 1)| ≤ 4
√

q.

A bound for the denominator is

|{x ∈ GF(q) | lsbk(x) = m}| ≤ 2−l .q

From the inequality (4.2), we then have

Pr(m) ≥ 1
2

2−k(1− 2
q )(1 + q)− 6

√
q log

√
q

2−k.q

≥ 1
2

1
q

(
1− 2

q

)
(1 + q)−

3 log
√

q.2k

√
q

≥ 1
2
− 1

q
− 3 log q

qε

Therefore, the expected number of iterations is at most 3, when q is large enough.

Given a random padding, the function θ can be computed in deterministic polynomial
time. Moreover, the image of the encoding map covers almost all reduced divisors of Jq.

4.3 Formal Security

Now we define the Diffie–Hellman problems. Let P be a generator of an additive cyclic
group G of order n. Let a, b ∈ Zn. A triple [aP, bP, abP] is called a Diffie–Hellman triple. Two
important problems associated with these triples go as follows.

DDH Problem: Let [aP, bP, X] be a given triple. The decisional Diffie–Hellman problem
deals with deciding whether the given triple is a Diffie–Hellman triple, that is, whether
X = abP. The DDH assumption is that it is computationally infeasible to solve the DDH
problem. Let O be an oracle that, given a triple, identifies whether the triplet is a Diffie–
Hellman triple. Under the DDH assumption, no such oracle having polynomial running
time can exist.
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CDH Problem: Let aP, bP be supplied as inputs. The computational Diffie–Hellman prob-
lem deals with the determination of the group element abP. The CDH assumption is that it
is computationally infeasible to solve the CDH problem. In other words, an oracle O that,
given aP, bP, returns abP in polynomial time cannot exist.

The security of the original ElGamal encryption scheme is equivalent to the DH prob-
lems. Here, we establish that our adaptation of the ElGamal scheme is also secure under
the DH assumptions.

First, we note that the divisor kY = kxP ∈ G masks the encoded message M. Therefore
the knowledge of M is equivalent to the knowledge of the mask. The sender can calculate it
from k and the recipient’s public key Y = xP, whereas the recipient can compute the mask
from R = kP and his private key x. To a passive eavesdropper, the challenge is to compute
the mask kxP from the knowledge of kP and xP alone. Consequently, ElGamal decryption
is as difficult as solving the CDH to the eavesdropper.

What remains is to justify that our encoding of messages to divisors in Jq (not in G)
does not lead to some information leakage. Since Jq is the internal direct sum of G and Jp,
the encoded message can be uniquely decomposed as M = MG + Mp, where MG ∈ G, and
Mp ∈ Jp. The n-th multiple of any element of G is zero, and therefore nS = nM = nMp. The
size e of the small group Jp can be easily computed, and is coprime to n. If η ≡ n−1 (mod e),
then Mp = ηnMp = ηnS, that is, Mp can be determined by any passive eavesdropper. The
relevant concern is therefore whether Mp reveals some partial information about m.

This is where the random padding strings r0, r1 play a crucial role. If the padding length
l′ is somewhat larger than the bit size of p, then for each message m, we expect each element
of Jp to appear as Mp. Moreover, the different elements of Jp are expected to appear as Mp
with nearly equal probabilities. So we expect that the padding destroys all correlations
between m and Mp. What the eavesdropper sees in S is a random element of the group Jp.
Moreover, Mp has nothing to do with the key pair (in particular, the private key x) of the
recipient, because it is generated independently before the application of any key-related
quantity.

4.4 Conclusion

A new encoding scheme for ElGamal encryption is proposed. This encoding is well dis-
tributed which implies that our variant of ElGamal encryption is equivalent to the original
ElGamal scheme in terms of formal security. In particular, our scheme is IND-CPA secure
under the DDH assumption. Moreover, proving the IND-CCA1 security of our scheme is
an open problem (like original ElGamal encryption). One can however furnish IND-CCA1
security proofs based on non-standard assumptions as in Lipmaa’s work [47].
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CONCLUSION AND FUTURE SCOPE

5.1 Work reported in the Dissertation

In this dissertation, a new family of hyperelliptic curves is proposed. To the best of our
knowledge, we are the first to report an explicitly constructed family of cryptographically
suitable subfield hyperelliptic curves. The main technical novelties of the work include the
following.

• We use subfield curves over quintic extensions.

• Since the base field is a single-precision prime, point counting in the extension field is
very efficient, and many curves in the family can be generated with little effort.

• We have developed a library which is optimized for the Jacobian arithmetic of our
family of curves.

In this work, we initially focus on constructing cryptographically suitable hyperelliptic
curves. An efficient point-counting algorithm plays a vital role in choosing suitable curves.
Point-counting algorithms over large prime fields are more complicated and practically
more inefficient for hyperelliptic curves than for elliptic curves. So we come up with the
idea of using subfield curves. Point-counting algorithms are efficient for curves defined
over small prime fields. If we treat these curves as those over the quintic extensions, the
point-counting problem reduces to lifting the curve size over the ground field to the curve
size over the extension. This lifting can be done very efficiently using the concept of L-
functions of the curve. We nevertheless require the cofactor to be a prime. This requirement
decreases the yield of cryptographically suitable curves, but the same search pertains to the
case of curves over large prime fields. To sum up, members of our family can be generated
much faster than other families in use in the literature.

Our experiments reported in this work have been able to narrow the gap between the
performances of elliptic and hyperelliptic curves. We have also established our proposed
family of subfield curves to be nearly as efficient and practical as curves over prime fields.
We have investigated the security issues for our family of curves. All existing algorithms
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for solving the discrete logarithm problem have been found to be inefficient for our family.
However, like all other curves, our family of curves is not quantum secure.

Various public-key cryptographic primitives can be implemented using our curves, like
encryption, signature, and authentication schemes. In order to adopt ElGamal encryption
to the subfield curves, one “almost bijective” point-encoding map is required. No such
map exists for our family of curves in the literature. We have designed an encoding scheme
which differs from the existing schemes in that the messages are encoded to a strictly larger
group than the group where we use the Diffie–Hellman assumptions. We have justified
that ciphertexts produced by this scheme are not expected to leak any information about
the plaintext messages, in the statistical sense.

5.2 Future Scopes

Hyperelliptic-curve cryptography is an active area of contemporary research. This area is
less explored compared to elliptic-curve cryptography. Although this work opens a new
direction of research in this area, we envisage some extensions of our study.

• Enhance the performance: Our experimental observations suggest that the subfield
hyperelliptic curves are a viable substitute of elliptic curves. To improve the perfor-
mance of the subfield family of curves, more attention may be put on

1. more efficient point-counting algorithms,

2. optimized quintic extension fields,

3. dedicated addition and scalar multiplication formulas.

• CCA for ElGamal encryption: Our adaptation of ElGamal encryption is secure in the
sense of indistinguishability under the DDH assumption. But the CCA1 security of El-
Gamal encryption requires non-standard assumptions. Our scheme uses sufficiently
long random paddings, and therefore the CCA1 security of our scheme differs subtly
from that of original ElGamal encryption. It remains open whether our adaptation of
ElGamal encryption can be proved to be CCA1 secure under standard assumptions
only.

• Post-quantum cryptography: Elliptic and hyperelliptic curves are not quantum safe.
Isogeny-based cryptography is a popular part of curve-based cryptography relevant
for the post-quantum era. It is interesting to investigate whether our family of subfield
hyperelliptic curves can play any role in isogeny-based cryptography.
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APPENDIX

A

A DATABASE OF SUBFIELD

HYPERELLIPTIC CURVES

This appendix lists some curves of our family at various security levels. These curves are
of the special form y2 = x5 + x + a, a ∈ Fp, where p is a single-precision prime. The curves
are naturally defined over the quintic extension Fq = Fp5 . We represent Fq as Fp[t]/〈 f (t)〉,
where f (t) ∈ Fp[t] is a monic irreducible polynomial of degree 5. The Jacobian of a curve
over Fp and Fq are denoted by Jp and Jq, and their sizes by np = |Jp| and nq = |Jq|. We have
Jq = Jp ⊕ G. For all the curves listed here, G is a group of prime order n = |G| = nq/np. At
all security levels, it is recommended to use the curves with n = 2··· − · · · . The curves with
n = 2··· + · · · should work well, but would be slightly (and unnecessarily) inefficient.

• Security level 80

p = 220 − 5 = 1048571
Group size: n ≈ 2160

f (t) = t5 + 2 or t5 − 2

Curve 1: y2 = x5 + x + 47
np = 1099928953312
nq = 1606861421126112580388908685296656425664857224973157020278432
n = 1460877465119621059080883122151454896336021166011

= 2160 − 624172211281859122801710564828123319911376965
Curve 2: y2 = x5 + x + 52

np = 1101226502688
nq = 1606861421126113461086479300845938085559612360640338474575648
n = 1459156147444600848921990361604654440813312450921

= 2160 − 2345489886302069281694471111628578842620092055
Curve 3: y2 = x5 + x + 60

np = 1098401972048
nq = 1606861421126117326279311266898329713697223055120690303050128
n = 1462908354152060576672027642006156546558828957461

= 2160 + 1406716821157658468342809289873526902896414485
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Curve 4: y2 = x5 + x + 125
np = 1099905028412
nq = 1606861421126112664264329356881888234950517280688763783588852
n = 1460909241815210664385164137239675033477318704371

= 2160 − 592395515692253818520695476607986178613838605
Curve 5: y2 = x5 + x + 128

np = 1098862311784
nq = 1606861421126115007639651529082548438333685298910613718483384
n = 1462295506811385516979046962482432086750728993651

= 2160 + 793869480482598775362129766149067094796450675
Curve 6: y2 = x5 + x + 135

np = 1100360173512
nq = 1606861421126111913860894023889193743946630991364868722113752
n = 1460304961781305559328768597218998239924941278771

= 2160 − 1196675549597358874916235497284779730991264205
Curve 7: y2 = x5 + x + 148

np = 1098893705344
nq = 1606861421126119834450206209018830850253025931056419779327104
n = 1462253731468144638088689800544741093830940632041

= 2160 + 752094137241719885004967828458074175008089065
Curve 8: y2 = x5 + x + 343

np = 1101309318912
nq = 1606861421126115639306162861717792372727421177077000367346432
n = 1459046421865891542892103065453400964536213519461

= 2160 − 2455215465011375311581767262882055119719023515
Curve 9: y2 = x5 + x + 360

np = 1099970144812
nq = 1606861421126117231030132592235323832858772868149439974394412
n = 1460822758422004180498434689942452533171210700801

= 2160 − 678878908898737705250142773830486484721842175
Curve 10: y2 = x5 + x + 385

np = 1099461685888
nq = 1606861421126115742738304958065295704462515816163847011118208
n = 1461498333003123454030625297220885364941452791141

= 2160 − 3304327779464173059535495397654714479751835
Curve 11: y2 = x5 + x + 436

np = 1099799414512
nq = 1606861421126115338867183146480213815242192344440909236166352
n = 1461049533145194036170711943988005525451510665571

= 2160 − 452104185708882032972888728277494204421877405
Curve 12: y2 = x5 + x + 488

np = 1099481205214
nq = 1606861421126115557527156151050826324869375615982353266621454
n = 1461472386709293922647242752643794739359463213161

= 2160 − 29250621608995556442080072488280296469329815
Curve 13: y2 = x5 + x + 523

np = 1100056630044
nq = 1606861421126114123550377839447918438496106934464574655532204
n = 1460707910157173431610936437387807239751869334141

= 2160 − 793727173729486592748395328475779904063208835
Curve 14: y2 = x5 + x + 577

np = 1098568824086
nq = 1606861421126114707650818530840847414520145566111950667084106
n = 1462686165760265282564978119696084963927833309071

= 2160 + 1184528429362364361293286979801944271900766095
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Curve 15: y2 = x5 + x + 646
np = 1098710175364
nq = 1606861421126116376993080869870404215677603366997459169801284
n = 1462497988237677974789453539962932560564569191281

= 2160 + 996350906775056585768707246649540908636648305
Curve 16: y2 = x5 + x + 673

np = 1100032022354
nq = 1606861421126111820155195562644361578706177659012396993250154
n = 1460740586158145178663909994246819699165815270701

= 2160 − 761051172757739539774838469463320490117272275
Curve 17: y2 = x5 + x + 693

np = 1098025206412
nq = 1606861421126110621794121470203316417504777617093838423172252
n = 1463410322224593420706581649157701374345139259821

= 2160 + 1908684893690502502896816441418354689206716845
Curve 18: y2 = x5 + x + 718

np = 1101093783528
nq = 1606861421126112025660284680033077115489920655383651518334008
n = 1459332025268173470668564375610569699463592243411

= 2160 − 2169612062729447535120457105713320192340299565
Curve 19: y2 = x5 + x + 732

np = 1098917189692
nq = 1606861421126118535083575286515181795493240549966445319349012
n = 1462222482457011214539591232159518675832500447211

= 2160 + 720845126108296335906399443235656176567904235
Curve 20: y2 = x5 + x + 755

np = 1099900264232
nq = 1606861421126112297242981868150444155527852891237473834616552
n = 1460915569693126180642662882606005417563259748761

= 2160 − 586067637776737561021950110277602092672794215
Curve 21: y2 = x5 + x + 769

np = 1100170674704
nq = 1606861421126110825226757400366076592663106907954646078212944
n = 1460556491890165629824887331044561101987468439061

= 2160 − 945145440737288378797501671721917668464103915
Curve 22: y2 = x5 + x + 840

np = 1098848394466
nq = 1606861421126117268086730979417750166196268372103142166068706
n = 1462314027320386593162214538399878838337661376641

= 2160 + 812389989483674958529705683595818681728833665
Curve 23: y2 = x5 + x + 842

np = 1098537038976
nq = 1606861421126120277776367891050984864166029916766247057410176
n = 1462728487174136839885420718352524262412685476201

= 2160 + 1226849843233921681735885636241242756752933225
Curve 24: y2 = x5 + x + 894

np = 1099382490234
nq = 1606861421126114232400408871710249326594175550969338476155994
n = 1461603614210827558909979749564061244231918974641

= 2160 + 101976879924640706294916847778224575986431665
Curve 25: y2 = x5 + x + 925

np = 1100277362644
nq = 1606861421126111558685451957622613824541615138891652010177884
n = 1460414869633211977910042144308469997955806765211

= 2160 − 1086767697690940293642688407813021700125777765
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• Security level 96

p = 224 − 17 = 16777199
Group size: n ≈ 2192

f (t) = t5 + t− 3 or t5 − 4t− 1

Curve 1: y2 = x5 + x + 8
np = 281405073717438
nq = 1766829161770434166957255033723286569895571241304785288893503449734184998
n = 6278597391404986546431038561358469633956007268066042812621

= 2192 + 1495656018305782595249138150803217853651823602008299725
Curve 2: y2 = x5 + x + 36

np = 281393693383592
nq = 1766829161770434168216884428148876763294620088602430264488795231689851752
n = 6278851315128505863648161463591691840628978958927409107481

= 2192 + 1749579741825099812372040384025424526623514463374594585
Curve 3: y2 = x5 + x + 182

np = 281541581675196
nq = 1766829161770434163587554797062952451467097562619621151021438808266205996
n = 6275553157219806100489897430946712150776766808252566107301

= 2192 − 1548578166874663345891992260954265325588636211468405595
Curve 4: y2 = x5 + x + 268

np = 281498912176744
nq = 1766829161770434162429223601115712019598725263744696446011536199745203224
n = 6276504403189663724852583713468729015000271911237398982671

= 2192 − 597332197017038983205709738937401102083533226635530225
Curve 5: y2 = x5 + x + 341

np = 281373604787448
nq = 1766829161770434166541188443349370421721554172247390232834849780934101528
n = 6279299592103217547509161491915838072840021317229391306461

= 2192 + 2197856716536783673372068708171656737665872765356793565
Curve 6: y2 = x5 + x + 484

np = 281461060324438
nq = 1766829161770434164183411502907892843489623402464302812164433756773126598
n = 6277348489108311377332584394689850978480780008104693089321

= 2192 + 246753721630613496794971482184562378424563640658576425
Curve 7: y2 = x5 + x + 497

np = 281472323762384
nq = 1766829161770434162610011233530716659599331873478697370943768486197875504
n = 6277097293807020661737458262824179268788650263928546282431

= 2192 − 4441579660102098331160383487147313705180535488230465
Curve 8: y2 = x5 + x + 577

np = 281658747071408
nq = 1766829161770434162932093310996743258492031272008478468936729247001408048
n = 6272942630546090853589070519168555808633356729466625553081

= 2192 − 4159104840589910246718904039110607468998714997408959815
Curve 9: y2 = x5 + x + 639

np = 281345919749546
nq = 1766829161770434162218234826812058807817981753245158656257112288959615166
n = 6279917488560931030733533463657106518284532824131919311971

= 2192 + 2815753174250266897744040449440102182177379667884799075
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Curve 10: y2 = x5 + x + 710
np = 281367351409064
nq = 1766829161770434165137314060817504934375737452456130903969735541316268824
n = 6279439149291140282198850613695098927576588318329589633591

= 2192 + 2337413904459518363061190487432511474232873865555120695
Curve 11: y2 = x5 + x + 742

np = 281581471305832
nq = 1766829161770434158612726772799655812254278829603469236943254295865498152
n = 6274664144543236205903547387447812955193842629974136180761

= 2192 − 2437590843444557932242035759853460908512814489898332135
Curve 12: y2 = x5 + x + 745

np = 281409926501296
nq = 1766829161770434164284647948819033756546430841117745951513349958303933776
n = 6278489119900670036901689324208004322769535521396885171631

= 2192 + 1387384513989273065899901000337906667180076932850658735
Curve 13: y2 = x5 + x + 761

np = 281466285920208
nq = 1766829161770434161388665600912416725779740992657559883747804004259338288
n = 6277231946249175479736780307647836373865313135943467664511

= 2192 + 130210862494715900990884440169957762957691479433151615
Curve 14: y2 = x5 + x + 790

np = 281393486225372
nq = 1766829161770434165095800181583754247390290853872393634594903202912106852
n = 6278855937537075199890001965554187435630306392840665196591

= 2192 + 1754202150394436054212542346521019527950948376630683695
Curve 15: y2 = x5 + x + 799

np = 281453652678516
nq = 1766829161770434164417156779787322399666388397086261802314049352445461996
n = 6277513704142807413054976686217991722631836823396409183031

= 2192 + 411968756126649219187263010325306529481378932374670135
Curve 16: y2 = x5 + x + 802

np = 281374584594426
nq = 1766829161770434165236850838217529196809002396551515614730710121324368766
n = 6279277726227995857458284763388689072382306946428361226091

= 2192 + 2175990841315093622495340181022656279951501964326713195
Curve 17: y2 = x5 + x + 805

np = 281479888558072
nq = 1766829161770434161916909564402999796808525455071424324975536552604612552
n = 6276928596289110596522096937812907309844462659626699011591

= 2192 − 173139097570167313692485394759106257892784837335501305
Curve 18: y2 = x5 + x + 814

np = 281465240556912
nq = 1766829161770434162915125826595856074881035210446024370045167919203165872
n = 6277255259919680958127321387334554229210590783955758925581

= 2192 + 153524533000194291531964126887813108235339491724412685
Curve 19: y2 = x5 + x + 966

np = 281479745017032
nq = 1766829161770434162598285558697364251196425744830493494380111507226657272
n = 6276931797218750003585713809127873032567085107100018514071

= 2192 − 169938167930760250075614079793383535270337364015998825
Curve 20: y2 = x5 + x + 967

np = 281469398660424
nq = 1766829161770434160863540587500517824564683119195308684077061502330508024
n = 6277162527007093595757105383855005290975273642032852766151

= 2192 + 60791620412831921315960647338874872918197568818253255
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• Security level 112

p = 228 − 57 = 268435399
Group size: n ≈ 2224

f (t) = t5 − t− 2

Curve 1: y2 = x5 + x + 10
np = 72066946475789318
nq = 19426647671364916683012083899672713893728562795562865259575337640774679869469

00119638
n = 26956390719136744219764874022896708536295057384944311723768844333241

= 2224 − 3555948013895574902141064122922137342087037596260757334765915975
Curve 2: y2 = x5 + x + 167

np = 72063113090196194
nq = 19426647671364916683008093512655001061618780782383162257441236025589016464341

68946274
n = 26957824659961587913263335366774193287115584173003202002286485072321

= 2224 − 2122007189051881403679720245437386521560249537370478817125176895
Curve 3: y2 = x5 + x + 170

np = 72057584612233888
nq = 19426647671364916683004842922884775150704843518700003588105132774556121025477

52490848
n = 26959892946601312493893583196586674573668140866926818613849397254671

= 2224 − 53720549327300773431890432956099969003555613753867254212994545
Curve 4: y2 = x5 + x + 192

np = 72054687534662708
nq = 19426647671364916683057076572620489735254797925338736417082413901527540789004

27906948
n = 26960976913569310784338817648515394148503441246058977367724242879781

= 2224 + 1030246418670989671802561495763474866296823518404886620632630565
Curve 5: y2 = x5 + x + 194

np = 72065702524247044
nq = 19426647671364916682996549532824745531414917182413839450485699563953234175285

99211924
n = 26956856022916970721409704649083823230449348588317118674536016546021

= 2224 − 3090644233669073257310437935807443187795834223453806567593703195
Curve 6: y2 = x5 + x + 303

np = 72058964178983856
nq = 19426647671364916682983943236039483872887227198337825527367475066754118858720

08604496
n = 26959376800243734467703823617755739178250334761685809190920095898191

= 2224 − 569866906905326963191469263891495386809660854763290183514351025
Curve 7: y2 = x5 + x + 331

np = 72062728784482448
nq = 19426647671364916682947230511629856466870985351919765711860236226058976099970

84833648
n = 26957968424237819663750944138016925018219284336097681375537986433151

= 2224 − 1978242912820130916070949002705655417860086442891105565623816065
Curve 8: y2 = x5 + x + 368

np = 72058605715813268
nq = 19426647671364916682982750896674997329332552560320620752679753540373101122264

46748388
n = 26959510912520663678199108970356769828864446083972930018413621718341

= 2224 − 435754629976116467906116662860844772698338567642462689988530875
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Curve 9: y2 = x5 + x + 381
np = 72055042711573672
nq = 19426647671364916682999842802040689696347925770268035243651088542525472558692

96329352
n = 26960844016326642226968759789629310560145347537453405737009096532941

= 2224 + 897349176002432301744702609679886508203114912833255905486283725
Curve 10: y2 = x5 + x + 421

np = 72059845979911296
nq = 19426647671364916682968292360184943618158928468376626770093951170935926063673

04954496
n = 26959046896631779944761242763715305724748725716283730363523215916701

= 2224 − 899770518859849905772323304324948888418706256842117580394332515
Curve 11: y2 = x5 + x + 502

np = 72058998505993204
nq = 19426647671364916682979738906092320154005768688245563951856695406406348302865

29377004
n = 26959363957506552084406082782718124266504473769477169696891414460951

= 2224 − 582709644087710260932304301506407132670653063402784212195788265
Curve 12: y2 = x5 + x + 622

np = 72061885460545938
nq = 19426647671364916682942144012250468019704059963641103452800691347794326042277

06086578
n = 26958283907241165275700558583979650848538668165721358602084674731281

= 2224 − 1662759909474518966456503039979825098476256819213879018935517935
Curve 13: y2 = x5 + x + 623

np = 72067207730517258
nq = 19426647671364916683006686780486296165066947136977676544776343787538203620876

85938478
n = 26956292998068517092761153839618342149329189908302972020309817546091

= 2224 − 3653669082122701905861247401288524307954514237600460793792703125
Curve 14: y2 = x5 + x + 668

np = 72061111483533016
nq = 19426647671364916682973413249329669991187997988520173271197341795366648884352

72542616
n = 26958573454427192203859062430904065619685843354585700425481269950601

= 2224 − 1373212723447590807952656115565053951301067954872055622340298615
Curve 15: y2 = x5 + x + 837

np = 72058372429019606
nq = 19426647671364916682995817265498855824656315640168777832851967334671387466423

78507166
n = 26959598193118982393459624497024447122455876288365548775732355065261

= 2224 − 348474031657401207390589995183551181268134175023705371255183955
Curve 16: y2 = x5 + x + 844

np = 72059654226424944
nq = 19426647671364916682986354146768295734382393685837493269582663441551785357172

70359824
n = 26959118635683079201639488925356810418846909665673960373650713675271

= 2224 − 828031467560593027526161662820254790234756866612107452896573945
Curve 17: y2 = x5 + x + 902

np = 72060405252059136
nq = 19426647671364916682950110973077744496285041627777005599416450772790840205036

01852416
n = 26958837663225322413025257859141824244201878164857970755649783065981

= 2224 − 1109003925317381641757227877806429435266257682601725453827183235
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Curve 18: y2 = x5 + x + 911
np = 72065341732055666
nq = 19426647671364916682997718485832680028658983543628851652699976857391091785675

17826266
n = 26956990981316159762796056940425752195755266143100626359004078694101

= 2224 − 2955685834480031870958146593878477881878279439946122099531555115
Curve 19: y2 = x5 + x + 921

np = 72056858044997272
nq = 19426647671364916682999190570814031790685002832871294270300764171375470724042

00528552
n = 26960164789912957349366841098005472322992065344855636209753047431991

= 2224 + 218122762317554699826010985841649354920922315063728649437182775
Curve 20: y2 = x5 + x + 992

np = 72058657767456704
nq = 19426647671364916682980833392391258236466985868268622324365643020920312501730

69362624
n = 26959491438291019322647634927190765837192795005589393164783338197481

= 2224 − 455228859620472019380159828864836444349416951179316320272051735
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• Security level 128

p = 232 − 217 − 61 = 4294836163
Group size: n ≈ 2256

f (t) = t5 + 2t− 1

Curve 1: y2 = x5 + x + 23
np = 18445535354239713704
nq = 213533497063553826791577751975894882657637374597822842788391027115720960416886

3254025408443614264
n = 115764326143276219301046410958790255794574968474650616480294570352692770626891

= 2256 − 27763094039976122524574049897652058695016190989947559163013655220359013045
Curve 2: y2 = x5 + x + 43

np = 18445935166209787132
nq = 213533497063553826791577478549269391719914136635668953897344616185247601410660

2055674233935464572
n = 115761816974568722624207617592602021364593396721538100841934645291061073413921

= 2256 − 30272262747472799363367416085886488676587944102463197522938716852056226015
Curve 3: y2 = x5 + x + 64

np = 18445136678282565974
nq = 213533497063553826791577927299986471973783108535876892759037407439292131106707

8683138031459039214
n = 115766828290825121600808965133278786068804110238629464232457576772583391180261

= 2256 − 25260946491073822762019875409121784465874427011099807000007235329738459675
Curve 4: y2 = x5 + x + 67

np = 18445849105501231246
nq = 213533497063553826791577494758595899255452449565784643595386022355044460879170

4402014490590898726
n = 115762357071364243789903763107428811808666214309177997352893769468004599239381

= 2256 − 29732165951951633667221901259096044603770356462566686563814539908530400555
Curve 5: y2 = x5 + x + 144

np = 18445751928370191294
nq = 213533497063553826791577358319326204780007028763799697182371337562929654689077

8703885905717792514
n = 115762966938274863770444522116442477573504794680143182491891682931308313769631

= 2256 − 29122299041331653126462892245430279765189985497381547565901076604815870305
Curve 6: y2 = x5 + x + 155

np = 18445736313288916512
nq = 213533497063553826791577505280922939869229554823222726069816461787870728596545

2936424107501827872
n = 115763064936430461862469326194654235446846367020431430306912776494012703774281

= 2256 − 29024300885733561101658814033672406423617645209133732544807513900425865655
Curve 7: y2 = x5 + x + 212

np = 18445853801712721228
nq = 213533497063553826791577084731880266774837197633500239089812441237348177006256

2602676664888065868
n = 115762327598913836779646429232968065163059452075031798522829493653929570538881

= 2256 − 29761638402358643924555775719842690210532590608765516628090353983559101055
Curve 8: y2 = x5 + x + 269

np = 18445638320520338292
nq = 213533497063553826791577814638708930083720633652190896152807434704649656879696

1048754326284996132
n = 115763679929689849433496246176159801040351951047553251832443111527351971301021

= 2256 − 28409307626345990074738832528106812918033618087312207014472480561158338915
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Curve 9: y2 = x5 + x + 363
np = 18445472663011544842
nq = 213533497063553826791577751709435707192179228466793046818077864870984950492907

6701572750263679842
n = 115764719595258537751837709756544018053011988870033506126216439008197634717501

= 2256 − 27369642057657671733275252143889800257995795607057913241144999715494922435
Curve 10: y2 = x5 + x + 412

np = 18444841786540635846
nq = 213533497063553826791577777756339848004727604219024671834868290230884414632034

3379429764008679646
n = 115768679143331610365639605662206494055149530250898676990418382535528492615301

= 2256 − 23410093984585057931379346481413798120454414741887049039201472384637024635
Curve 11: y2 = x5 + x + 417

np = 18445562932204446376
nq = 213533497063553826791577939895769152632609484515270141677188870864447466795978

3668096889632729336
n = 115764153064009654500856918009184629667803727666803682929806490557803197794211

= 2256 − 27936173306540922714066999503278185466256998836881109651093450109931845725
Curve 12: y2 = x5 + x + 503

np = 18445576946900352966
nq = 213533497063553826791577829934677446715227015954289098705840929750477513795833

6223385029597963466
n = 115764065107996852815794608899917699510184747009159742813975339771105214121751

= 2256 − 28024129319342607776376108770208343085237656480821225482244236807915518185
Curve 13: y2 = x5 + x + 620

np = 18445292073373061752
nq = 213533497063553826791577971814922451791345706867578566009416031811681620654848

2018665458721330472
n = 115765852996062257364250427465477973799305798406633153808169733357404393425611

= 2256 − 26236241253938059320557543209934053964186259007410231287850650508736214325


