
A Study of Hyperelliptic-Curve Cryptography

Synopsis Seminar

Anindya Ganguly

Under the supervision of

Prof. Abhijit Das

Prof. Dipanwita Roy Chowdhury

Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur

December 24, 2020

[~]$ [1/48]



>>> Outline

1. Introduction

2. Hyperelliptic Curve

Order Computation

Discrete Logarithm Problem

3. Performance Analysis

4. Cryptographic Primitives

5. Organization of the Thesis

6. Conclusion and Future Plans

[~]$ [2/48]



>>> Motivation

* Curve based cryptography takes a lot of attention from
Crypto community

* Elliptic curve cryptography proposed by Koblitz and Miller

* Hyperelliptic curves cryptography proposed by Koblitz

* Hyperelliptic curves are less frequently studied than

schemes based on RSA, DSA and ECDSA

* Lesser bit required to achieve the same security level as

elliptic curve

* Arithmetic of hyperelliptic curve is less efficient than

elliptic curve

* Although subfield curve admit faster Jacobian arithmetic

* Faster algorithm exist for large-genus curve

* For genus g ≤ 3, no such subexponential algorithm exist
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>>> Overview

* Generating a cryptographically suitable hyperelliptic

curves is a major issue

* Subfield curves over Fq to be considered, q = p5, p is a

single-precision prime

* Choose a curve C over Fp and compute the order of Jp
using Baby steps Giant steps method

* Using Newton-Girard formula derive the order of Jq
* Implement the Jacobian arithmetic over Fq

* Set the security levels 80, 96, 112, and 128 bits

* Comparative performance analysis is tabulated

* A variant of ElGamal encryption scheme is proposed

* Strong mathematical proof has been established for

adopted scheme
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>>> Cryptography

* Cryptography is a science that applies mathematics and

logic to design strong encryption methods.

* Symbol replacement, the most basic form of cryptography,

appears in ancient time.

* Thomas Jefferson’s wheel cipher is the basis for American

military cryptography until as late as the World War-II.

* In computer age, 128-bit mathematical encryption, far

stronger than any ancient or medieval cipher.

* In 1970, Whitfield Diffie and Martin Hellman introduced

the first Public Key Cryptography Standard(PKCS).

* In digital era, it helps to secure e-business, e-mail,

smart card system, AADHAR, electronic voting machine.

* Five primary functions are privacy, authentication,

integrity, non-repudiation, and key exchange.
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>>> Public Key Cryptography

Modern cryptographic algorithms are designed around

computational hardness assumptions.

* Discrete logarithm problem (DLP)

Let (G, ·) be an Abelian group. Given a, b ∈ G, find x (if

it exists) such that ax = b.
e.g. DSA, ElGamal encryption, DH key exchange etc.

* Integer factorization problem (IFP)

Let p and q be two large prime. It is infeasible to

factorize N = pq in polynomial time.

e.g. RSA, Rabin Cryptosystem, BBS generator etc.

⇒ It is theoretically possible to break such a system, but

it is infeasible to do so by any known practical means.

⇒ These schemes are therefore termed computationally secure.

⇒ These problems are used as a trapdoor one-way function.

⇒ For DLP, Group G: fast group arithmetic, large order,

cyclic, infeasible DLP
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>>> Discrete Log Crypto

Discrete Logarithm Problem

Let (G, ·) be an Abelian group. Given a, b ∈ G, find x (if it

exists) such that ax = b.

Groups must satisfy the following properties.

For practicality:

− Compact group elements

− Fast group operations

For security:

− Large order

− Cyclic or almost cyclic (some other restrictions on the

order)

− Infeasible discrete logarithm problem (DLP)
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>>> Proposed Groups

Difficulty of DLP depends on the group G.

* Very easy: Polynomial time algorithm exists

e.g. G = (Zn,+).

* Hard: Sub-exponential time algorithm exists

e.g. G = (Fp, · ) proposed by Diffie-Hellman, 1976.

* Very hard: Exponential time algorithm exists
e.g.

* Elliptic curves over finite fields proposed by Koblitz

1985, Miller 1985.

* Hyperelliptic curves over finite fields proposed by

Koblitz 1989.

DLP on curve based cryptography

Given a group G =< P > and some Q ∈ G, it is hard to

determine the integer k such that Q = [k]P (where P,Q are the

points for elliptic curves and divisors for hyperelliptic

curves with genus g ≥ 2).
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>>> Why Hyperelliptic Curves?

Advantages

* Lesser bit required to achieve same security

* Abelian group structure

* Field arithmetic cost: O((log q)2) (over Fq)

* Cryptographic protocols can be implemented based on the

hardness of DLP

But

Limitations

* Implementation of the arithmetic isn’t efficient as

elliptic curves, takes O(g2) field operations

* Few hyperelliptic curves are used for cryptographic

purpose
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>>> Hyperelliptic Curves

* Let GF(q) be a finite field.

* C : y2 = x5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0 with ai ∈ GF(q) is a

hyperelliptic curve defined over GF(q).

* The Jacobian Jq is an Abelian group associated with C.
* The elements of Jq has a unique representation (Mumford

representation) as a reduced divisor (u, v).

* Let (x1, y1) and (x2, y2) be two points on C. Then

* u(x) = (x− x1)(x− x2) and v(x) =
(

x−x2

x1−x2

)
y1 +

(
x−x1

x2−x1

)
y2.

* Divisor with single point (x1, y1) on C
* u(x) = (x− x1) and v(x) = y1.

* The inverse of (u(x), v(x)) is (u(x),−v(x)).
* The additive identity is (1, 0).

* The Jacobian arithmetic follows Cantor’s addition

algorithm.
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>>> Optimized formulas for Jacobian Arithmetic

Algorithms Addition Doubling

Elliptic Curve Arithmetic I + 2M + S I + 2M + 2S

Cantor’s Algorithm 2I + 44M + 4S 2I + 42M + 8S

Harley’s Formula 2I + 24M + 3S 2I + 24M + 6S

Matsuo’s Improvement 2I + 22M + S 2I + 23M + 2S

Lange’s Explicit Version I + 22M + 3S I + 22M + 5S

Projective Coordinate 47M + 4S 38M + 6S

Weighted Coordinate 47M + 7S 34M + 7S

Costello and Lauter 43M + 4S 30M + 9S

Hisil and Costello 41M + 7S 28M + 8S

Table : Divisor-Class Addition Algorithms

0I: Inversion, M: Multiplication, S: Squaring
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>>> Related Work

Curve-based cryptographic library

* Gaudry: mpFq library used for curve-based public key

cryptography

* Pelzl: includes genus two and three HECC

* Avanzi: nuMONGO includes ECC and HECC

No implementation of subfield curve is reported

Existing hyperelliptic curves

* Furukawa: y2 = x5 + ax and y2 = x5 + a over prime field

* Satoh: y2 = x5 + ax3 + bx over Fp, |Jp| has large prime

divisor

* Buhler and Koblitz: y2 + y = xn over Fp, n is an odd

prime with n|(p− 1)

All curves are defined over large prime field.
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>>> Our Curve

* Fix a prime field Fp and extension field Fq. Start with

the simple hyperelliptic curve :

y2 = x5 + x+ a.

Vary a to generate different curves.

* Set the security levels l to 80, 96, 112, and 128 bits

* The curves offer groups of prime orders of size 160, 192,

224, 256 bits

* Consider quintic extension

* Take a prime of size l/4

* Size of extension field is 5l/4

* Order of Jp ≈ p2, Jq ≈ q2

* n = |G| = |Jq|/|Jp|
* If n is a prime then store the curve
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>>> Example

l-size p-size q-size |Jp|-size |Jq|-size |G|-size

80 20 100 40 200 160

96 24 120 48 240 192

112 28 140 56 280 224

128 32 160 64 320 256

Table : Relation between security level and group size (in bits)
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>>> Why Quintic Extension?

* Best choice is to work over prime fields at the desired

security level

* Point counting algorithms over large prime fields are

difficult and inefficient

* Point counting is efficient for prime fields of size ≤ 32
bits

* Curves C defined over Fp are also defined over Fq, q = pd

* It is easy to derive |Jq| from |Jp|
* Jp is a subgroup of Jq, so |Jp| divides |Jq|
* A curve is suitable if the cofactor n = |Jq|/|Jp| is a prime

* d should be small and prime to avoid intermediate

subgroups

* For d = 5, point counting is doable over Fp

* Loss of efficiency: Theoretically no more than 50%
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>>> Construction of quintic extension

Group size l Prime p Irreducible polynomial f(x)

20 1048571 x5 − 2 or x5 + 2

24 16777199 x5 + x− 3 or x5 − 4x− 1

28 268435399 x5 − x− 2

32 4294836163 x5 + 2x− 1

Table : Constructing a suitable extended fields
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>>> The Algorithm at a Glance

* Choose a curve C : y2 = x5 + x+ a over a medium-sized prime

field Fp

* Count |Jp| using the baby-step-giant-step method

* Exhaustively enumerate the number of rational points on C
over Fp

* Use the Newton-Girard formula to compute |Jq|, q = p5

* Compute n = |Jq|/|Jp|
* If n is not prime, repeat

* Implement Fq arithmetic

* Implement Jq arithmetic (in Mumford representation)

* Choose a random point Q ∈ Jq and compute P = (|Jq|/n)Q
* If P 6= O, it is a point of order n

* Use P as the base point for designing cryptosystems
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>>> The Order-Finding Procedure

1. Set wl =
⌈
(
√
p− 1)4

⌉
, wh =

⌊
(
√
p+ 1)4

⌋
, W = wh − wl, and

S =
⌈√

W
⌉
.

2. Precompute −jP for j = 0, 1, 2, . . . , S − 1, and store the pairs

(−jP, j) in a list L.
3. If some j > 0 is found such that −jP = (1, 0), return j as

the order of P.
4. Sort the list L with respect to −jP.
5. Compute Q = wlP and SP = −[−(S − 1)P + (−P )].
6. For i = 0, 1, 2, . . . , S − 1, repeat

6.1 Search the list for Q using the binary search algorithm.

6.2 If some entry (Q, j) is found in the list, store

k = wl + iS + j.
6.3 Update Q = Q+ SP.

7. If there is only one match k, then return this k as the

order of P.
8. If there are multiple matches, return the difference

between any two consecutive matches as the order of P.
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>>> The Order-Lifting Procedure

* Zeta function of a curve

ZC(T ) = 1 +N1T + 1
2(N

2
1 +N2)T

2 + · · ·
* Alternative expression ZC(T ) =

L(T )
(1−T )(1−pT )

* L-function L(T ) = 1 + s1T + s2T
2 + s1pT

3 + p2T 4

* L(T ) is related to Jacobian L(1) = |Jp|, and L(−1) = |J̃p|
* ZC(T ) = 1 + (p+ s1 + 1)T + (p2 + s2 + 1 + s1 + s1p+ p)T 2 + · · ·
* N1 = p+ s1 + 1, and N2 = p2 − s21 + 2s2 + 1

* L(opp)(T ) = T 4 + s1T
3 + s2T

2 + s3T + s4, , αi are roots

* Define Ld(T ) = (1− αd
1T )(1− αd

2T )(1− αd
3T )(1− αd

4T )

* Connection between L-polynomials and the Jacobian orders:

|Jpd | = Ld(1) = (1− αd
1)(1− αd

2)(1− αd
3)(1− αd

4)

* If we can compute α1, α2, α3, α4 with sufficient precision,

we readily obtain the Jacobian orders in extension

fields.
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>>> The Order-Lifting Procedure

* The elementary symmetric polynomials in four variables
α1, α2, α3, α4 are

* e0 = 1,
* e1 = α1 + α2 + α3 + α4,
* e2 = α1α2 + α1α3 + α1α4 + α2α3 + α2α4 + α3α4,

* e3 = α1α2α3 + α1α2α4 + α1α3α4 + α2α3α4,
* e4 = α1α2α3α4,
* ek = 0 for k ≥ 5

* L(opp)(T ) = T 4 + s1T
3 + s2T

2 + s3T + s4 =
(T − α1)(T − α2)(T − α3)(T − α4)

* e0 = 1, e1 = −s1, e2 = s2, e3 = −s3, e4 = s4, ek = 0 for k ≥ 5

* Define pk = αk
1 + αk

2 + αk
3 + αk

4 for all k ≥ 1

* By Newton--Girard formula kek =
∑k

i=1(−1)i−1ek−ipi
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>>> The Order-Lifting Procedure

* We know ek values so compute pks

* p1 = e1,
* p2 = e1p1 − 2e2,
* p3 = e1p2 − e2p1 + 3e3,
* p4 = e1p3 − e2p2 + e3p1 − 4e4,
* pk = e1pk−1 − e2pk−2 + e3pk−3 − e4pk−4 for all k ≥ 5

* Put βi = αd
i ; L

(opp)
d (T ) = (T − β1)(T − β2)(T − β3)(T − β4)

* Power sum Pk = βk1 + βk2 + βk3 + βk4 = αdk
1 + αdk

2 + αdk
3 + αdk

4 = pdk

* Using N-G formula compute Ei’s

* Ld(T ) = E0 − E1T + E2T
2 − E3T

3 + E4T
4

* |Jpd | = Ld(1) = E0 − E1 + E2 − E3 + E4
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>>> The Order-Lifting Procedure

1. Compute |Jp| and the count N1 of rational points over Fp.

2. Compute s1 = N1 − p− 1 and s2 = |Jp| − 1− s1 − s1p− p2.
3. Take e0 = 1, e1 = −s1, e2 = s2, e3 = −s1p, and e4 = p2.

4. Compute p1 = e1, p2 = e1p1 − 2e2, p3 = e1p2 − e2p1 + 3e3,
p4 = e1p3 − e2p2 + e3p1 − 4e4, and

pk = e1pk−1 − e2pk−2 + e3pk−3 − e4pk−4 for 5 ≤ k ≤ 20.

5. Take Pi = p5i for i = 1, 2, 3, 4.

6. Compute E0 = 1, E1 = P1, E2 =
1
2(E1P1 − P2),

E3 =
1
3(E2P1−E1P2+P3), and E4 =

1
4(E3P1−E2P2+E1P3−P4).

7. Then, |Jq| = E0 − E1 + E2 − E3 + E4.

8. Compute the cofactor n = |Jq|/|Jp|.
9. If n is prime, store the curve.
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>>> Successful Attempt

* C1 : y2 = x5 + x+ 47

* |Jp| = 1099928953312 = 240 + 417325536

* Count of rational points on C1 over Fp is 1048979

* This gives

|Jq|
= 1606861421126112580388908685296656425664857224973157020278432

= 2200 − 76623132877695153053407044506176857345768809635815022944

* The cofactor

n = |Jq|/|Jp|
= 1460877465119621059080883122151454896336021166011

= 2160 − 624172211281859122801710564828123319911376965

is prime
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>>> An Unsuccessful Attempt

* C2 : y2 = x5 + x+ 46

* |Jp| = 1097744558000 = 240 − 1767069776

* Count of rational points on C2 over Fp is 1046895

* This gives:

|Jq|
= 1606861421126118518527811084904153739543257852153511445450000

= 2200 − 76623132871757014151007437008862978945141629281389851376

* The cofactor

n = |Jq|/|Jp|
= 1463784456425534398803014685411133451998636874275

= 2160 + 2282819094631480599329852694850432342704331299

is not prime
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>>> Another ‘‘Successful’’ Attempt

* C3 : y2 = x5 + x+ 60

* |Jp| = 1098401972048 = 240 − 1109655728

* Count of rational points on C3 over Fp is 1047522

* This gives

|Jq|
= 1606861421126117326279311266898329713697223055120690303050128

= 2200 − 76623132872949262650825442832888824979938662102532251248

* The cofactor

n = |Jq|/|Jp|
= 1462908354152060576672027642006156546558828957461

= 2160 + 1406716821157658468342809289873526902896414485

is prime but larger than 2160
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>>> Some Good Curves

We take curves y2 = x5 + x+ a with 1 ≤ a ≤ 1000.

* p20 = 220 − 5
a = 47, 52, 125, 135, 343, 360, 385, 436, 488, 523, 673, 718,
755, 769, 925

* p24 = 16777199 = 224 − 17
a = 182, 268, 497, 577, 742, 805, 966

* p28 = 268435399 = 228 − 57
a = 10, 167, 170, 194, 303, 331, 368, 421, 502, 622, 623, 668,
837, 844, 902, 911, 992

* p32 = 4294836163 = 232 − 217 − 61
a = 23, 43, 64, 67, 144, 155, 212, 269, 363, 412, 417, 503, 620
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>>> Discrete Logarithm Problem

Generic Square Roots Attack

* Pollard Rho, Lambda, Pohlig-Hellman are example of such

attacks

* Possess a complexity of O(
√
|G|)

* For 128 bit security we choose |G| ≈ 256

Transfer Discrete log to Fq vector space

* Jq be the Jacobian of a genus g hyperelliptic curve over

Fpd with p | |Jq|
* There exist a morphism from Jq to the Fq vector space of

holomorphic differentials of the curve.

* This vector space is isomorphic to F2g−1
q .

* Time complexity is O((2g − 1) log qk) for small constant k.

* For our family p | |Jq| does not hold
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>>> Discrete Logarithm Problem

Transfer DL via Weil descent technique

* It reduces DLP from EF
pd

to Jp of curve Cp.

* Gaudry, Hess and Smart develop Weil descent method for

elliptic curves over F2d

* Galbraith generalizes this to hyperelliptic curves over

even binary extension fields

* Diem studies elliptic and hyperelliptic curves over

finite extension fields of odd characteristics

* He shows that for d = 5, there exist potentially

vulnerable elliptic curves

* Not for our family of hyperelliptic curve

* Hess generalizes this attack to arbitrary Artin-Schreier

extensions

* Concentrates only on small prime p = 2, 3
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>>> Discrete Logarithm Problem

Cover Decomposition Attack

* Gaudry invented for elliptic curves

* Nagao generalizes to hyperelliptic curves over extension

fields

* Time complexity is O(q
2− 2

dg ), d : degree of the extension

* Joux and Vitse proposed this attack for elliptic curve

over Fp6

Quantum Attack

* Proos shows that Shor’s algorithm can solve ECDLP with

O(l) qubits and O(l3) Toffoli gates

* Huang extends this algorithm for HECDLP

* Replacing prime field arithmetic to extension field

arithmetic makes our curve is vulnerable against quantum

attacks.
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>>> Performance Analysis

Software Implementation

* Arithmetic of multiple-precision integers.

* Arithmetic of prime files Fp (|p| ≤ 32).

* Polynomial arithmetic over Fp.

* Arithmetic of extension fields Fq = Fp5.

* Polynomial arithmetic over Fq.

* Jacobian arithmetic over Fq.
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>>> Curve Parameters

System Parameters

* Compiler: GNU C compiler (gcc) version 5.5.0

* System: Linux environment on an intel core i− 7 3.10 GHz

* Other Library: NTL-11.3.2, GNU multiple precision

library (GMP)

Elliptic Curve:

Curve P-256

⊕ Prime p = 2256 − 2224 + 2192 + 296 − 1 of size 256 bits

⊕ Curve E : y2 ≡ x3 − 3x+ b (mod p),
where b = 24551555460089438177402939151974517847691080581
61191238065

⊕ Group order:

n = 11579208921035624876269744694940757352999695522413576
0342422259061068512044369
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>>> Curve Parameters

Hyperelliptic Curve:

Generic-1271

⊕ Prime p = 2127 − 1 of size 128 bits

⊕ Curve C1 : y2 = x5 + f3x
3 + f2x

2 + f1x+ f0 (mod p), where

f3 = 34744234758245218589390329770704207149,
f2 = 132713617209345335075125059444256188021,
f1 = 90907655901711006083734360528442376758,
f0 = 6667986622173728337823560857179992816.

⊕ Group order:

n = 289480223093290488481692399956590251384511779
73091551374101475732892580332259
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>>> Curve Parameters

Subfield Curve

⊕ Base prime p = 4294836163 of size 32 bits

⊕ Monic irreducible polynomial f(x) = x5 + 2x− 1 over Fp

⊕ Curve C : y2 = x5 + x+ a, where a ∈ Fp.

As a sample, we take a = 23.

⊕ Group order:

n = 1157643261432762193010464109587902557945749
68474650616480294570352692770626891
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>>> Performance Analysis I

Curve (Library) Doubling Addition Scalar Mul

P-256 (NTL) 0.000003 0.000003 0.001375

Generic-1271 (Our work) 0.000191 0.000201 0.038537

Generic-1271 (NTL) 0.000020 0.000022 0.007514

Generic-1271 (GMP) 0.000054 0.000058 0.033367

Subfield curve C (Our work) 0.000034 0.000038 0.011614

Subfield curve C (NTL) 0.000100 0.000102 0.034476

Table : Comparison of Cantor’s algorithm with elliptic-curve

arithmetic

0All times are in milliseconds
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>>> Performance Analysis II

Coordinate Curve (Library) Doubling Addition Scalar Mul

Affine Generic-1271 (NTL) 0.000007 0.000009 0.002439

Affine C (Our work) 0.000009 0.0000010 0.003021

Affine C (NTL) 0.000028 0.000026 0.008442

Projective Generic-1271 (NTL) 0.000007 0.000007 0.002466

Projective C (Our work) 0.000011 0.000012 0.003167

Projective C (NTL) 0.000026 0.000028 0.008604

Weighted Generic-1271 (NTL) 0.000007 0.000009 0.002576

Weighted C (Our work) 0.000008 0.000012 0.002944

Weighted C (NTL) 0.000025 0.000031 0.008507

Table : Comparison with different coordinates

0C : y2 = x5 + x+ a is the subfield hyperelliptic curve
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>>> ElGamal Encryption

* Taher ElGamal proposed the scheme in 1985

* ElGamal scheme raises an issue, a mapping is required to

map a message to a group element

* Virat proposes a new apporach

* In 2006, Mames, Paillier and Pointcheval proposed an

encoding free ElGamal

* Joye and Libert modifies and proposes an encoding free

ElGamal encryption using elliptic curves

* Fouque, Joux and Tibouchi proposed an injective encoding

for elliptic curves.

* Fouque and Tibouchi proposed a nearly bijection encoding

map

* Tsiounis and Yung give a IND-CPA proof for the security

of ElGamal encryption

* Lipmaa shows that ElGamal encryption is IND-CCA1 secure

based on some non standard assumption

* Wu and Stinson also show that ElGamal encryption OW-CCA1

secure under DT-DLA
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>>> Encoding based ElGamal Encryption Scheme

Key Generation

* Choose x ∈U [1, n− 1]

* Compute Y = xP ∈ G, P is a base point of G

x is private key and Y is public key

Encoding Scheme

* Break m ∈ {0, 1}l into two l
2-bit chunks: m = m0 || m1.

* For each b ∈ {0, 1}, pad mb as xb = b || mb || rb with

rb ∈U {0, 1}l
′
.

* Repeat until x5b + xb + a is a square in Fq.

* Let yb be a square root of x5b + xb + a in Fq.

* Take the divisor (u2, u1, u0, v1, v0) with the two rational

points (x0, y0) and (x1, y1) as M.

* M is a divisor from Jq.
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>>> Encoding based ElGamal Encryption Scheme

Encryption

* Generate k ∈U Zn and set R = kP ∈ G
* Compute S =M + kY ∈ Jq
* Send (R,S) to the recipient

Decryption

* Recover M = S − xR ∈ Jq

Decoding Scheme

* Form the equations x0 + x1 = −u1, and x0x1 = u0.

* Solve these equations (quadratic) to obtain x0, x1.
Notice that xb has msb b.

* Recover m0,m1 from x0, x1 after removing the padding.

* Output m = m0 || m1.
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>>> Issue

* Jacobian Jq is the internal direct sum of G with the

Jacobian Jp over the ground field.

* Every divisor D can be split as D = DG ⊕Dp, where

DG ∈ G, Dp ∈ Jp.
* DG = (ε−1 (mod n))(εD), Dp = (n−1 (mod ε))(nD)

* Similarly, encoded message M =MG ⊕Mp.

* Eavesdropper can compute nS = n(MG ⊕Mp) + nkY = nMp

* Random padding strings r0, r1 destroy all correlations

between m and Mp.

* Mp is fully independent from any other variable like

private key x.

* Is this intuitive reason enough for formal security

proof?

0ε = |Jp|, n = |G|
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>>> Desirable Properties

1. Map is efficiently computable in polynomial time. The

inverse of the map is also efficiently computable.

2. It can be applied for all forms of subfield hyperelliptic

curves.

3. It is a probabilistic map due to the concatenated

pseudorandom bits.

4. It does not preserve arithmetic operation. Let D1 = θ(k1)
and D2 = θ(k2). Then, any correlation between k1 and k2
does not reflect on D1 and D2.

5. Map is well-distributed.
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>>> Two theorems

Theorem 1 Let χ be any character of the Abelian group GF(q).
The character sum is defined as

T (χ) =
∑
u∈Fq

χ(θ(u)).

Then, for a non trivial character, we have

T (χ) ≤ 2
√
q + 11.

Theorem 2 For large enough q, the expected number of

iterations in θ on any input message m is less

than three.

The image of the encoding map covers almost all reduced

divisors of Jq.
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>>> Well-distributed

* Character: A multiplicative mapping of the group G into

the multiplicative group of all the roots of unity

* θ is B-well distributed if |T (χ)| ≤ B
√

(q)

* Applying Riemann’s hypothesis for the L-function∣∣∣∑P∈Cq χ(P )
∣∣∣ ≤ 2

√
q

* Now,
∑

u∈Fq
χ(θ(u)) = |R|χ((0, 0)) +

∑
P∈Cp−Wei χ(P )

= |R|χ((0, 0))−
∑

P∈Wei χ(P ) +
∑

P∈Cq χ(P )

* R denotes the set of all zeros of the curve polynomial

f(x)

* So, we have θ is (2 + 11√
q ) well-distributed

*
∣∣∣N(D)

q2
− 1
|Jq |

∣∣∣ < (2
√
q + 11)2, where N(D) be the number of

preimages of D under θ.

*
∑

D∈Jq

∣∣∣N(D)
q2
− 1
|Jq |

∣∣∣ ≤ (2 + 11√
q

)2
* The bound on the statistical distance is c√

q +O(1q )
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>>> Organization of the Thesis

Chapter 1 Introduction

Chapter 2 Mathematical Background

* Briefly introduced notation and terminology

Chapter 3 Jacobian Arithmetic

* Order Computation

* Arithmetic of Divisors

* Discrete Logarithm Problem

* Mathematical Library

* Performance Analysis

Chapter 4 Cryptographic Primitives

* Proposed variant of ElGamal Encryption

* Security Analysis

Chapter 5 Conclusion and Future Scope

Appendix A A list of several cryptographically suitable

hyperelliptic curves.
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>>> Conclusion and Future Plans

Conclusion

* Narrow the gap between the performances of EC and HEC

* Proposed family of curves are as efficient and practical

* All existing algorithms for solving the discrete

logarithm problem have been found to be inefficient

* Designed an encoding scheme

* Security analysis has been established

Future Scope

* Enhance the performance

1. more efficient point-counting algorithms,

2. optimized quintic extension fields,

3. dedicated addition and scalar multiplication formulas

* CCA for ElGamal encryption

* Post-quantum cryptography
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>>> Conference

* Anindya Ganguly, Abhijit Das, Dipanwita Roy Chowdhury,

and Deval Mehta, A Family of Subfield Hyperelliptic Curve

for Use in Cryptography, 22nd International Conference on

Information and Communications Security (ICICS 2020),

Copenhagen, Denmark, 2020.

Thank You

Any Suggestions & Questions
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