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1 Introduction

Cryptographic primitives are extensively used to secure the modern digital era. Traditionally, cryptography
deals with three principal characters: the sender (Alice), the receiver (Bob), and the attacker (Malice). Alice
sends an encrypted message via an insecure channel to Bob. Bob decrypts the ciphertext using a predefined
secret key, and recovers the message. Malice listens to the channel, and reads the encrypted message. His goal
is to figure out the plaintext message from the ciphertext. Cryptographic protocols should ensure that Malice
can succeed only with negligible probability.

Public-key cryptography originates from the seminal discoveries of the Diffie–Hellman key-agreement pro-
tocol [4] and the RSA cryptosystem [18]. Since then, quite a few cryptographic schemes are proposed based on
the difficulty of factoring large integers or computing discrete logarithms in large groups. Protocols based on
the hardness of DLP are defined over cyclic groups G, like the multiplicative groups of integers modulo n.

Two popular families of groups are the multiplicative groups of finite fields, and the sets of rational points
on elliptic curves defined over finite fields. Proposed by Koblitz [12] and Miller [21], elliptic curves have been
used extensively in several cryptographic protocols. The main advantage of ECC is that it provides the same
level of security as the traditional multiplicative groups (like F∗q), but the elliptic-curve groups are much smaller
than finite-field groups.

Later in 1989, Koblitz [13] proposes the use of hyperelliptic curves over finite fields for cryptographic
purposes. However, these curves are studied less extensively by the cryptographic community than the schemes
based on RSA, finite-field, and elliptic-curve discrete logarithms. Genus-two hyperelliptic curves offer the
same level of security as elliptic curves, but with half field sizes. To achieve 128 bits of security, elliptic curves
need 256-bit fields, whereas hyperelliptic curves require only 128-bit fields.

In this work, we successfully generate a family of subfield hyperelliptic curves, and propose a variant of
the ElGamal scheme, that can be implemented using our subfield curves. The security of the adopted scheme
is analyzed. The organization of the report is as follows. Section 2 provides the necessary backdrop for our
research. Section 3 describes the contributions of the thesis. This section starts with a brief discussion about the
proposed family of subfield hyperelliptic curves, and the implementation issues. Subsequently, we elaborate
the adopted ElGamal scheme and its security issues. In Section 4, the organization of the thesis is presented.
The report ends with a conclusion, and a mention of some directions for further research.

2 Motivation and Objectives

Genus-one hyperelliptic curves are known as elliptic curves. Higher-genus curves (g > 1) are also considered
for cryptographic purposes. For hyperelliptic curves of genus g > 1, the Jacobians of the curves provide the
underlying Abelian group structure. For large-genus hyperelliptic curves, there exist algorithms faster than the
generic square-root methods and having subexponential running times, to solve the DLP. But for g ≤ 3, no
such subexponential algorithm is known.

In hyperelliptic-curve cryptography, generating suitable cryptographically secure curves over finite fields is
an important issue. Literature suggests that point-counting algorithms over large prime finite fields are not very
efficient. Subfield hyperelliptic curves are especially attractive from an efficiency point of view. Moreover,
subfield hyperelliptic curves offer faster Jacobian arithmetic than hyperelliptic curves over large prime fields.

Furukawa et al. [8] propose an algorithm for the order computation of the Jacobian of the hyperelliptic curve
of the form y2 = x5 + ax over large prime fields. They also present the new family y2 = x5 + a. Satoh [19]
develops a probabilistic polynomial-time algorithm to identify whether the curve y2 = x5+ax3+bx is suitable,
that is, whether the order of the Jacobian has a large prime divisor. Buhler and Koblitz [3] propose an algorithm
for particular types of curves y2 + y = xn over Fp, where n is odd, and p is any prime with n|(p − 1). To the
best of our knowledge, no families of subfield hyperelliptic curves are explicitly proposed in the literature.
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There exist software implementations of elliptic- and hyperelliptic-curve cryptography. Gaudry [9] writes a
library for finite-field arithmetic. The mpFq library is practically used for curve-based public-key cryptography.
A HECC software implementation is done by Pelzl et al. [17]. They put execution times in tabulated manner
for curves of genus two and three. Avanzi [1] implements a prime-field library nuMONGO which includes
elliptic- and hyperelliptic-curve arithmetic. These implementations use large prime fields. We are not aware of
any reported implementation that includes subfield curves for cryptographic purposes.

An efficient addition algorithm for the divisor group is required for the hyperelliptic curves. Cantor proposes
a fast algorithm for addition using Mumford representation of divisors. This addition of the divisor group in the
hyperelliptic curve is not so efficient as elliptic-curve point addition. The performance gap was narrowed by
Harley [11]. Later, Lange provides an explicit version of Harley’s formula [14]. Lange’s explicit version gives a
potentially powerful speedup for hyperelliptic-curve addition. To enhance the performance further, Lange [15]
also proposes an inversion-free addition algorithm. Several researchers try to improve the performance of
divisor-class arithmetic.

In this backdrop, our work is mostly motivated by the need of narrowing the performance gap between
elliptic- and hyperelliptic-curve cryptography. The process involves looking for new families of hyperelliptic
curves, and going for and tuning software implementations of the Jacobian arithmetic. Curves that can be
efficiently generated are suitable in this context. Eventually, the study should investigate the effectiveness of
using these curves in practical cryptographic schemes.

3 Contributions of the Thesis

In this thesis, a new family of hyperelliptic curves is proposed. The point-counting algorithm for this family
is detailed. Existing algorithms for Jacobian arithmetic are compared. Implementation details of the finite-
field arithmetic is also presented. The performance for the proposed family is analyzed. Finally, the discrete
logarithm problem defined over the Jacobian of the curves is scrutinized.

ElGamal encryption is a popular public-key cryptographic primitive. This can be implemented using the
proposed family of hyperelliptic curves. For this purpose, an encoding map is proposed. It is proved that
the encoding map is well distributed and efficiently computable. It is established that this variant of ElGamal
encryption is no less secure than original ElGamal encryption.

3.1 A new family of subfield hyperelliptic curves

Let C be a hyperelliptic curve of genus two defined over a finite field Fq. A suitably large subgroup G of the
Jacobian Jq is to be used to build cryptographic schemes. For cryptographic reasons, the group order n should
be a prime. The bit length of n is dictated by the security level l. Since the square-root attacks are the only
attacks known for hyperelliptic curves of genus two, we take l ≈ |n|/2. Since 64-bit security is not considered
safe given the available computing powers, and we require l ≥ 80. Security level l = 128 is prescribed
for long-term use. We target achieving several security levels depending upon the needs of the cryptographic
applications. More specifically, we take l = 80, 96, 112, 128.

For achieving l-bit security, we need a field Fq of bit size |q| ≥ l. Moreover, the size of the Jacobian Jq
should be a prime (around 2l-bits). One option is to take an l-bit prime as q. But point-counting algorithms
over such large prime fields are mathematically complicated and practically inefficient.

To work around this problem, we have devised a modified approach. We use quintic extensions Fp5 for a
prime p. For l ≤ 128, this prime p fits in a 32-bit unsigned integer. We generate a curve over Fp, and compute
the order of Jp. Since p is now small, simple and practical point-counting algorithms can be used. We then
consider the quintic extension Fq = Fp5 . The curve C is naturally defined over Fq. Moreover, given the group
size |Jp|, the group size |Jq| can be calculated using simple formulas. We require n = |Jq|/|Jp| to be a prime.
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This approach helps us generate many suitable curves of security level l fairly quickly. On the flip side, we now
have to work in a field of bit size |q| = 5l/4. For efficiency reasons, we take C of the form

C : y2 = x5 + x+ a, a ∈ Fp.

To compute the orders of the curves over Fp, the baby-step-giant-step method is used. This algorithm may
fail on a few occasions, but given that we have a large domain for varying a, many curves with known orders
can be generated fairly efficiently. We have |Jp| ≈ p2.

Since Fp ⊆ Fq, C is naturally defined over the extension field Fq = Fp5 , and the order of Jq can be computed
by the Newton–Girard formulas. We have |Jp| ≈ q2 = p10. Since Jp is a subgroup of Jq, the order of Jp must
divide the order of Jq. We use the cofactor

n =
|Jq|
|Jp|

.

If n is prime, Jq contains a subgroup G of this order. The bit length of n is

|n| = |Jq| − |Jp| ≈ (10− 2)|p| = 8|p|,

that is, the security level is |n|/2 ≈ 4|p| = l, as planned.

Indeed, we have |n| = 2l or |n| = 2l + 1 if p ≈ 2l/4. In terms of efficiency of Jacobian arithmetic over
Fq, there is hardly any difference in the running times between these two cases. However, for index arithmetic
(modulo n), the case |n| = 2l + 1 introduces some inefficiency. If we use 32-bit words to pack fragments of
multiple-precision integers, then for the stated values of l, we need an extra word compared to the case |n| = 2l.
This may be an issue for some cryptographic algorithms.

Being subfield curves, the members of our family of curves are easy to generate.

3.2 Software implementations

In order to compare the practical performances of hyperelliptic and elliptic curves [16], we have made extensive
software implementations. We have developed a mathematical library in order to implement the Jacobian
arithmetic over Fq. Our library is specifically tuned to deal with subfield hyperelliptic curves of our family, and
consists of the following components.

• Arithmetic of multiple-precision integers.

• Arithmetic of prime files Fp (|p| 6 32).

• Polynomial arithmetic over Fp.

• Arithmetic of extension fields Fq = Fp5 .

• Polynomial arithmetic over Fq.

• Jacobian arithmetic over Fq.

We compare the performances of elliptic and hyperelliptic curves at the 128-bit security level. The curve
P-256 [16] is used as a representative elliptic curve. We consider two hyperelliptic curves. The first is Generic-
1271 [2] defined over the prime field F2127−1. The second is the subfield curve y2 = x5 + x + 23 of our
proposed family, defined over the quintic extension Fp5 for the 32-bit prime p = 4294836163. Our mathemat-
ical library is used alongside two popular and efficient public-domain libraries: the GNU multiple-precision
library (GMP) [10], and the number theory library (NTL) [20]. GMP does not provide support for polynomial
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Curve (Library) Doubling Addition Scalar multiplication
P-256 (NTL) 0.000003 0.000003 0.001375

Generic-1271 (Our library) 0.000191 0.000201 0.038537
Generic-1271 (NTL) 0.000020 0.000022 0.007514
Generic-1271 (GMP) 0.000054 0.000058 0.033367

Subfield curve C (Our library) 0.000034 0.000038 0.011614
Subfield curve C (NTL) 0.000100 0.000102 0.034476

Table 1: Comparison of Cantor’s original algorithm with elliptic-curve arithmetic (all times are in milliseconds)

Coordinate Curve (Library) Doubling Addition Scalar multiplication
Affine Generic-1271 (NTL) 0.000007 0.000009 0.002439
Affine Subfield curve C (Our library) 0.000009 0.0000010 0.003021
Affine Subfield curve C (NTL) 0.000028 0.000026 0.008442

Projective Generic-1271 (NTL) 0.000007 0.000007 0.002466
Projective Subfield curve C (Our library) 0.000011 0.000012 0.003167
Projective Subfield curve C (NTL) 0.000026 0.000028 0.008604
Weighted Generic-1271 (NTL) 0.000007 0.000009 0.002576
Weighted Subfield curve C (Our library) 0.000008 0.000012 0.002944
Weighted Subfield curve C (NTL) 0.000025 0.000031 0.008507

Table 2: Performance comparison of elliptic and hyperelliptic curves (all times are in milliseconds)

arithmetic, and so is used for curves defined over prime fields only. NTL supports both integer and polynomial
arithmetic, and so is used to implement the basic operations of all the three curves.

We first compare the performance of Cantor’s algorithm for hyperelliptic curves with that of elliptic curves
in Table 1. The figures illustrate that Cantor’s algorithm is significantly inefficient compared to the elliptic-curve
arithmetic. We therefore go for the implementations of the formulas supplied by Harley [11] and Lange [14, 15].

Table 2 illustrates the performance of the subfield curve and generic-1271 in different coordinates sys-
tems. For affine coordinates, Lange’s explicit formula is implemented. NTL being the most efficient multiple-
precision integer library, we report the timings of P-256 and Generic-1271 for this library only. For subfield
curves, algorithms are implemented using both our mathematical library and NTL. The first inference we draw
from these figures is that the performance gap between elliptic and hyperelliptic curves is now significantly
reduced. Second, for our family of subfield curves, our specially tuned library runs much faster than NTL
(whereas GMP is not straightaway applicable for these curves). Finally, there is a stiff competition between
hyperelliptic curves over prime fields and hyperelliptic curves over extension fields.

3.3 Cryptographic primitives

Given the Jacobian arithmetic, encryption, signature, and authentication primitives can be developed. The
ElGamal encryption scheme calls for a map to encode messages to divisors. To that effect, we propose an
encoding scheme. We show that this map is well-distributed, and renders the adapted encryption scheme the
same security guarantees as in the original ElGamal encryption.

Fouque, Joux and Tibouchi propose an injective encoding for elliptic curves. This construction uses the
existence of a covering curve of genus two, for which a bijective encoding is known [6]. Later, Fouque and
Tibouchi propose a “nearly bijection” encoding map. However, they use a curve defined over prime fields [7].
No such map exists for subfield curves. In our case of subfield hyperelliptic curves, the group G in which the
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ElGamal scheme works is a proper subgroup of the Jacobian Jq over the quintic extension. This is because
the Jacobian Jq is the internal direct sum of G with the Jacobian Jp over the ground field. An efficient and
reversible encoding of messages to elements of G is not straightforward.

We work around this difficulty by mapping messages to the strictly larger group Jq, that is, each encoded
message now has a component in a cryptographically small group Jp which plays no role in the security of the
ElGamal scheme. The question that our encoding scheme raises is whether this component has any potential of
leaking important cryptographic secrets.

To start with, we elaborate our adaptation of the ElGamal scheme for subfield curves along with our message
encoding and decoding techniques. We denote our encoding scheme by the function θ.

— Public parameters

1. Field sizes p and q = p5, the element a ∈ Fp defining the curve y2 = x5 + x+ a, the size n of the group
G, a base point P ∈ G, the message length l, and the padding length l′.

— Key pair of the recipient

2. (x, Y ), where x ∈U Zn (private key), and Y = xP ∈ G (public key).

— Encoding

3. Let the message be m ∈ {0, 1}l.

4. Break m into two l
2 -bit chunks: m = m0 || m1. For each b ∈ {0, 1}, generate rb ∈U {0, 1}l

′
such that

x5b + xb + a is a square in Fq, where xb = 0 || b || mb || rb. Let yb be a square root of x5b + xb + a in Fq.

5. Take the divisor (u2, u1, u0, v1, v0) with the two rational points (x0, y0) and (x1, y1) as the message
representative M . Notice that M ∈ Jq (we do not, in general, have M ∈ G).

— Encryption

6. Generate k ∈U Zn, and set R = kP ∈ G.

7. Compute S =M + kY ∈ Jq.

8. Send (R,S) to the recipient.

— Decryption

9. Recover M = S − xR ∈ Jq.

— Decoding

10. LetM = (u2, u1, u0, v1, v0). We have x0+x1 = −u1, and x0x1 = u0. Solve these equations (quadratic)
to obtain x0, x1. Notice that xb has second msb b.

11. Recover m0,m1 from x0, x1 after removing the paddings. Output m = m0 || m1.

The encoding map θ used in our variant of ElGamal encryption has some desirable properties.

• The encoding map is efficiently computable in polynomial time. The inverse of the map is also efficiently
computable.
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• This map can be applied for all forms of subfield hyperelliptic curves.

• Our encoding scheme is a probabilistic map due to the concatenated pseudorandom bits.

• This map does not preserve arithmetic operation. LetD1 = θ(k1) andD2 = θ(k2). Then, any correlation
between k1 and k2 does not reflect on D1 and D2.

• This is a well-distributed map.

The following theorem establishes that our point-encoding scheme is well-distributed. To that effect, we
use character sums. Similar types of results can be found in [5, 7]. Using this result, we obtain a bound on
statistical distance, which in turn ensures that our encoding map terminates in expected polynomial time.

Theorem 3.1 Let χ be any character of the Abelian group GF(q). The character sum is defined as

T (χ) =
∑
u∈Fq

χ(θ(u)).

Then, for a non trivial character, we have T (χ) ≤ 2
√
q + 11.

This theorem implies that for all D ∈ Jq, we have

∣∣∣∣∣N(D)

q2
− 1

|Jq|

∣∣∣∣∣ < (2
√
q + 11)2,

whereN(D) be the number of preimages ofD under θ. The statistical distance between the distribution defined
by the point-encoding map on Jq and the uniform distribution is

∑
D∈Jq

∣∣∣∣∣N(D)

q2
− 1

|Jq|

∣∣∣∣∣ ≤
(
2 +

11
√
q

)2

.

Therefore, the bound on the statistical distance is c√
q + O(1q ) (where c is a positive constant). The proof of

this statement can be found in [7]. The following theorem establishes that our randomized encoding scheme is
efficiently computable. Similar results for elliptic curves can be found in [6].

Theorem 3.2 For large enough q, the expected number of iterations in θ on any input message m is < 3.

3.3.1 Security issues

Now we define the Diffie–Hellman problems. Let P be a generator of an additive cyclic group G of order n.
Let a, b ∈ Zn. A triple [aP, bP, abP ] is called a Diffie–Hellman triple. Two important problems associated
with these triples go as follows.

DDH Problem: Let [aP, bP,X] be a given triple. The decisional Diffie–Hellman problem deals with deciding
whether the given triple is a Diffie–Hellman triple, that is, whether X = abP . The DDH assumption is that it is
computationally infeasible to solve the DDH problem. LetO be an oracle that, given a triple, identifies whether
the triplet is a Diffie–Hellman triple. Under the DDH assumption, no such oracle having polynomial running
time can exist.

CDH Problem: Let aP, bP be supplied as inputs. The computational Diffie–Hellman problem deals with the
determination of the group element abP . The CDH assumption is that it is computationally infeasible to solve
the CDH problem. In other words, an oracleO that, given aP, bP , returns abP in polynomial time cannot exist.
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The security of the original ElGamal encryption scheme is equivalent to the DH problems. Here, we
establish that our adaptation of the ElGamal scheme is also secure under the DH assumptions.

First, we note that the divisor kY = kxP ∈ G masks the encoded message M . Therefore the knowledge
of M is equivalent to the knowledge of the mask. The sender can calculate it from k and the recipient’s
public key Y = xP , whereas the recipient can compute the mask from R = kP and his private key x. To
a passive eavesdropper, the challenge is to compute the mask kxP from the knowledge of kP and xP alone.
Consequently, ElGamal decryption is as difficult as solving the CDH to the eavesdropper.

What remains is to justify that our encoding of messages to divisors in Jq (not in G) does not lead to some
information leakage. Since Jq is the internal direct sum of G and Jp, the encoded message can be uniquely
decomposed as M =MG+Mp, where MG ∈ G, and Mp ∈ Jp. The n-th multiple of any element of G is zero,
and therefore nS = nM = nMp. The size e of the small group Jp can be easily computed, and is coprime to
n. If η ≡ n−1 (mod e), then Mp = ηnMp = ηnS, that is, Mp can be determined by any passive eavesdropper.
The relevant concern is therefore whether Mp reveals some partial information about m.

This is where the random padding strings r0, r1 play a crucial role. If the padding length l′ is somewhat
larger than the bit size of p, then for each messagem, we expect each element of Jp to appear asMp. Moreover,
the different elements of Jp are expected to appear as Mp with nearly equal probabilities. So we expect that the
padding destroys all correlations between m and Mp. What the eavesdropper sees in S is a random element of
the group Jp. Moreover,Mp has nothing to do with the key pair (in particular, the private key x) of the recipient,
because it is generated independently before the application of any key-related quantity.

4 Organization of the Thesis

Chapter 1 provides the objectives and motivation behind our work, and summarizes the contributions reported
in the thesis.

Chapter 2 deals with the mathematical preliminaries about hyperelliptic curves. More precisely, the concepts
of divisors, divisor classes, and the Jacobians are introduced. The discussion also sets up the notations
we use in the rest of the thesis.

Chapter 3 starts by pointing out the difficulties for computing the orders of Jacobians. Subsequently, an
algorithm is described for computing the order of Jacobians for subfield curves. It also deals with Jaco-
bian arithmetic. To start with, Cantor’s algorithm is introduced for computing the sum of two reduced
divisors. This is followed by Harley’s algorithm and Lange’s algorithm. Inversion-free divisor-class ad-
dition is also described. The chapter presents the performance analysis of the proposed subfield curves
alongside elliptic curves. The use of Lange’s formulas and inversion-free arithmetic leads to comparable
performances between subfield hyperelliptic curves and elliptic curves.

Chapter 4 is a discussion of the use of our curves in cryptographic schemes. An adaptation of the ElGamal
scheme to the case of our curves raises some security issues which are identified in this chapter. A
security analysis is also presented for the adapted scheme.

Chapter 5 concludes the thesis after summarizing the reported work and identifying some directions for further
research.

Appendix A provides a list of some curves of our family at several security levels.

5 Conclusion and Future Scopes

In this work, a new family of hyperelliptic curves is proposed. To the best of our knowledge, we are the
first to report an explicitly constructed family of cryptographically suitable subfield hyperelliptic curves. Our
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experiments reported in this work have been able to narrow the gap between the performances of elliptic and
hyperelliptic curves. We have also established our proposed family of subfield curves to be nearly as efficient
and practical as curves over prime fields. Possibilities of further performance enhancements of our family of
curves are worth investigating. We have investigated the security issues for our family of curves. All existing
algorithms for solving the discrete logarithm problem have been found to be inefficient for our family. However,
like all other curves, our family of curves is not quantum secure.

A new encoding scheme for ElGamal encryption is proposed. This encoding is well distributed which
implies that our variant of ElGamal encryption is equivalent to the original ElGamal scheme in terms of formal
security. In particular, our scheme is IND-CPA secure under the DDH assumption. Moreover, proving the
IND-CCA1 security of our scheme is an open problem (like original ElGamal encryption).

Publication from this Thesis

ANINDYA GANGULY, ABHIJIT DAS, DIPANWITA ROY CHOWDHURY, AND DEVAL MEHTA, A Family
of Subfield Hyperelliptic Curve for Use in Cryptography, 22nd International Conference on Information
and Communications Security (ICICS 2020), Copenhagen, Denmark, 2020.
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