
Compact domain-specific co-processor for
accelerating module lattice-based key

encapsulation mechanism
-author’s version-

Jose Maria Bermudo Mera1, Furkan Turan1, Angshuman Karmakar1, Sujoy
Sinha Roy2, Ingrid Verbauwhede1

1 imec-COSIC, KU Leuven
Kasteelpark Arenberg 10, Bus 2452, B-3001 Leuven-Heverlee, Belgium

Jose.Bermudo,Furkan.Turan,Angshuman.Karmakar,Ingrid.Verbauwhede@esat.kuleuven.be
2 School of Computer Science, University of Birmingham, United Kingdom

s.sinharoy@cs.bham.ac.uk

Abstract. We present a domain-specific co-processor to speed up Saber,
a post-quantum key encapsulation mechanism competing on the NIST
Post-Quantum Cryptography standardization process. Contrary to most
lattice-based schemes, Saber doesn’t use NTT-based polynomial multi-
plication. We follow a hardware-software co-design approach: the execu-
tion is performed on an ARM core and only the most computationally
expensive operation, i.e., polynomial multiplication, is offloaded to the
co-processor to obtain a compact design. We exploit the idea of dis-
tributed computing at micro-architectural level together with novel al-
gorithmic optimizations to achieve approximately a 6 times speedup with
respect to optimized software at a small area cost.

Keywords: Domain-specific co-processor, post-quantum cryptography, lattice-
based cryptography, Saber

1 Introduction

Currently deployed public key cryptography is based on number theoretic prob-
lems that can be easily solved by a quantum computer using Shor’s algorithm [Sho97]
thus putting our privacy at risk. Fortunately, there are computational problems
that will remain hard to solve even by a quantum computer and, therefore, they
can be used to construct secure post-quantum cryptography (PQC). In order
to anticipate the threat of a quantum computer powerful enough to break the
existing protocols, the National Institute of Standards and Technology (NIST)
has launched a standardization process for quantum-resistant public-key cryp-
tography [CJL+16]. Among the submissions that have advanced to the second
round of the standardization process [AASA+19], cryptosystems based on lattice
problems are a popular solution for KEMs.

State of the art: Over the last decade, the theory of lattice-based cryptog-
raphy has shown significant developments [Pei16]. In addition to the theoret-
ical developments, significant effort has been devoted for efficient implemen-
tations [How18] [NDR+19]. In the most recent literature we can find hard-
ware implementations of FrodoKEM [HOKG18], NewHope [KLC+17] and Ky-
ber [BUC19]. All of them are KEMs in the second round of the standardization
contest run by NIST. However, we can observe a certain bias towards implement-
ing schemes that can perform the polynomial multiplication using the Number
Theoretic Transform (NTT) due to its efficiency. When it comes to hardware im-
plementations, non NTT versions as used in the module Learning With Rounding
(module-LWR) KEM Saber have received little attention in literature. This is
the focus of our paper.

Our contributions in this paper can be summarized as follows:

1. We provide the first hardware implementation of a polynomial multiplier us-
ing Toom-Cook algorithm. In the existing literature, only NTT-based mul-
tipliers and systolic array implementations are considered.

2. We illustrate the efficiency of Toom-Cook by showing a very compact and
fast co-processor for accelerating Saber. Saber is a lattice-based KEM and a
strong candidate for the NIST post-quantum standard. Benchmarking it on
hardware platforms is important for the standardization effort.

3. We show that polynomial multipliers based on generic algorithms can be
competitive with NTT-based polynomial multiplication when implemented
on hardware platforms. This can impact the design considerations of lattice-
based schemes.

2 Preliminaries

In this section, we provide the necessary background for understanding the rest
of the paper.

2.1 From LWE to module-LWR

The LWE problem [Reg05] states that, given a randomly selected a ∈ Znq , it is
hard to distinguish between n uniformly random samples drawn from Znq × Zq
and the same number of samples drawn as in Equation 1 where s ∈ Znq is the
fixed secret and e ∈ Zq is the freshly generated error term.(

a, b = 〈a, s〉+ e
)
∈ Znq × Zq (1)

Instantiations of LWE schemes differ in the dimension of the problem n, the
modulus q, the way of generating the public matrix A and the statistic distri-
butions, e.g., uniform, binomial, discrete Gaussian, from where the vectors s, e
are sampled. Notwithstanding the design choices, the most complex operation
of LWE schemes, and hence the bottleneck, remains the matrix vector multipli-
cation.

In the algebraic version of LWE, ring-LWE [LPR13], the samples are drawn
as polynomials in the ring Rq = Zq[x]/(xn+1) as shown in Equation 2. Thus, the
core operation becomes a convolution, which can be implemented more efficiently
utilizing the Fast Fourier Transform (FFT) with the proper choice of parameters.
Moreover, n is usually taken as a power of 2 and q as a prime such that q ≡ 1
mod 2n so that a variant of the FFT that requires exclusively integer arithmetic,
namely the Number Theoretic Transform (NTT), can be used to carry out the
convolution. However, ring-LWE raises some concerns about its security when
compared to LWE. (

a, t = a ∗ s+ e
)
∈ Rq ×Rq (2)

To benefit from the increased efficiency of ring-LWE while providing a higher
confidence in the security level, module-LWE [BDK+17] drafts a small matrix
of dimension l × l composed by ring polynomials. These polynomials have a
lower degree than in the ring-LWE setting and, additionally, the convolution
operations can be parallelized. Last but not least, the efficiency of the scheme
can be improved by introducing the error term with a rounding operation instead
of drawing it from a random distribution. This variant is called Learning With
Rounding [AKPW13]. The samples for this problem are as shown in Equation
3. Modulo-LWR combines modulo-LWE with the use of rounding to introduce
errors.

(
a, b =

⌊p
q
〈a, s〉

⌉
p

)
∈ Znq × Zp (3)

2.2 Parameter choices

Not only for ring-LWE but for module-LWE and module-LWR schemes, system
parameters can be grouped into two classes:

1. Parameters that allow the use of the NTT for the polynomial multiplica-
tion. Straightforward polynomial multiplication algorithm has a complexity
O(n2) while using the NTT one can change the domain, perform a point-
wise multiplication and reverse the NTT to get the result with a complexity
O(n log n).

2. Parameters that do not allow the use of the NTT for the polynomial mul-
tiplication. The main reason to select parameters belonging to this set is to
avoid the expensive modular reduction by a prime. Hence, the modulus q is
chosen as a power of 2 for a free reduction since modular reduction by 2k is
equivalent to keep only the k least significant bits.

Software implementations [KMRV18] have proven that NTT can be outper-
formed by theoretically costlier multiplication algorithms due to the penaliza-
tion suffered by non-uniform memory accesses, non-trivial modular reduction
and the inversion of the NTT. However, all these issues could be overcome with
custom memory accesses and dedicated circuitry in hardware, so it remains an

Algorithm 1: Saber.KeyGen()

1 seedA ← U({0, 1}256)

2 A← gen(seedA) ∈ Rl×lq

3 s← βµ(Rl×1
q)

4 b = bits(As+ h, εq, εp) ∈ Rl×1
p

5 return (pk := (b, seedA), sk := s)

Algorithm 2: Saber.Encaps(pk = (b, seedA))

1 m← U({0, 1}256); (K̂, r) = G(pk,m)

2 A← gen(seedA) ∈ Rl×lq

3 s′ ← βµ(Rl×1
q)

4 b′ = bits(AT s′ + h, εq, εp) ∈ Rl×1
p

5 v′ = bT bits(s′, εp, εp) + h1 ∈ Rp
6 cm = bits(v′ + 2εp−1m, εp, εt + 1) ∈ R2t

7 return (c := (cm, b
′),K := H(K̂, c))

open challenge if schemes that pick parameters from this set can be competi-
tive with NTT-friendly schemes on hardware platforms. Furthermore, a generic
polynomial multiplier could still be adapted to accelerate cryptosystems with
NTT-friendly parameters.

2.3 Saber

Saber is an IND-CCA KEM with three operations: key generation, encapsulation
and decapsulation [DKRV18]. During key generation, summarized in Alg. 1, the
public matrix A is constructed from a 256-bit seed using the extendable out-
put function SHAKE-128. The seed is publicly known but it must be randomly
sampled from an uniform distribution to preserve the security. The secret vector
s is sampled from a centered binomial distribution βµ with parameter µ = 8.
Matrix-vector multiplication A · s is followed by the rounding operation to gen-
erate the vector b. The seed used to generate A and the vector b constitute the
public key, while s constitutes the secret key.

Encapsulation is described in Alg. 2. G and H are two secure hash functions
implemented using Keccak. First, G is used to generate the session key from a
random seed. Then, similarly to key generation, A is regenerated from the public
seed, another secret vector s′ is sampled and the vector b′ is calculated using
AT ·s′. Subsequently, a vector-vector multiplication is performed between bT and
s′. The ciphertext consists of b′,reconciliation information cm [DKRV18] and the
hash of the session key and the ciphertext.

Decapsulation is described in Alg. 3. Vector-vector multiplication followed
by the bit selection function named bits is used to recover the message. Then,
this message is encrypted again. If the resulting ciphertext is the same as the

Algorithm 3: Saber.Decaps(sk = s, c,K, pk)

1 v = b′T bits(s, εp, εp) + h1 ∈ Rp
2 m′ = bits(v − 2εp−εt−1cm + h2, εp, 1) ∈ R2

3 (K̂′, r′) = G(pk,m′)
4 c′ = Saber.Enc(pk,m′; r′)
5 if c = c′ then

6 return K := H(K̂′, c) else K := H(z, c)

received one, the key will be established correctly. Otherwise, a random value is
output without disclosing information about the failure.

In Saber, the ring-dimension n = 256 and the two moduli to p = 210 and
q = 213 are fixed. The dimension of the matrices and vectors, l, is used to tune
the security level. The specifications define l = 2 for lightweight cryptography,
l = 3 as the standard security level and l = 4 for a long-term high security level.
Our co-processor supports all security levels, but for concretion we refer to the
case l = 3 in the rest of the paper. The number of polynomial multiplications is
l2 for key generation, l2 + l for encapsulation and l2 + 2l for decapsulation.

3 Algorithmic optimizations

In this section, we describe the rationale behind the partition between software
and hardware in our system as well as the selected polynomial multiplication
algorithm and the optimizations to achieve our goal.

3.1 HW/SW boundaries

The domain-specific accelerator is designed following a hardware-software co-
design approach in order to: (1) take advantage of the custom logic that can be
implemented in an FPGA to accelerate the scheme, (2) maintain the flexibil-
ity offered by a micro-controller for controlling the execution flow and (3) keep
the resource utilization low by offloading to hardware only the most computa-
tionally expensive operations. As explained in Section 2.3, the most expensive
operation is the multiplication of polynomials with 256 coefficients, which has
to be executed l2 times during matrix-vector multiplication, so its computation
is offloaded to hardware. Polynomials are generated from a seed using a hash
function, which could also be accelerated in hardware. However, Keccak is costly
in terms of area. Instead, we exploit parallelism at system level by generating
the polynomials needed for the next multiplication in software while the hard-
ware performs the arithmetic on the previous operands. This approach pipelines
the generation of the polynomials with the arithmetic operations, improving the
performance as well as the utilization of the available resources.

3.2 Polynomial multiplication

The polynomial arithmetic in Saber is performed in the ring Rq = Zq[x]/(xn+1)
where n = 256 and q = 213. This choice does not allow the use of the NTT to
perform polynomial multiplication which makes accelerating this operation a
challenging task. Instead, we apply Toom-Cook 4-way to divide a multiplication
of polynomials with 256 coefficients into seven multiplications of polynomials
with 64 coefficients. These seven multiplications are independent and, hence,
can be run in parallel by small multipliers in a distributed computing fashion.

Toom-Cook k-way is a generalization of Karatsuba where a polynomial a(x)
with n coefficients is split into k polynomials a1 · · · ak−1 each with n/k coeffi-
cients such that a(y) = a0 + a1y + ... + ak−1y

k−1 where y = xn/k. It works in
three steps: evaluation, multiplication and interpolation. First, these k polynomi-
als are used to generate the so-called weighted polynomials, which represent the
evaluation of the original polynomial in 2k−1 different points. Then, point-wise
multiplication is computed as the product between the weighted polynomials.
Lastly, interpolation is opposite of evaluation step which combines the results
from these multiplications to get the final result. During evaluation and inter-
polation steps, a number of additions and subtractions are required creating a
trade-off between the reduction obtained in the number of multiplications that
must be performed and the overhead introduced by these operations.

Polynomials are evaluated on
{

0, 1,−1, 12 ,−
1
2 , 2,∞

}
. This choice will simplify

the hardware for the evaluation since scaling a coefficient by a power of 2 with
positive or negative exponent means shifting the bits to the left or to the right
that many positions, respectively. To improve the memory access pattern of
the evaluation, we use a vertical coefficient scanning to generate all weighted
polynomials in-place as shown in Alg. 4.

Both evaluation and interpolation are linear transformations that are in-
verse of each other. Hence, they are additively homomorphic. Let’s assume
we want to compute s = s1 + s2 where s1 = a1 ∗ b1 and s2 = a2 ∗ b2 and
ai,bi are polynomials of a certain degree. Denoting evaluation as TC and in-
terpolation TC−1, we can write si = TC−1(TC(ai) ∗ TC(bi)). Using the ad-
ditive homomorphic property of linear transformations we can also write s as
s = TC−1((TC(a1) ∗ TC(b1)) + (TC(a2) ∗ TC(b2))) In Saber, due to module
structure, we need to add results of multiple polynomial multiplications dur-
ing matrix-vector and vector-vector multiplication. Hence, this method can be
used to reduce the number of interpolations and evaluations as has been shown
recently in [MKV20]. We also apply this method in our implementation. The ma-
trix equation for interpolation is shown in (4). Every division by an odd number
is equivalent to a multiplication by the inverse modulo q = 213. However, divi-
sions by powers of 2 become shift operations that could cause a loss of precision
that leads to a wrong result. Since the highest division is by 8 = 23, three extra
bits of precision are required and, therefore, the data width of the co-processor

Algorithm 4: Evaluation for Toom-Cook-4 with vertical scan-
ning [KMRV18]

Input: a(x) with n = 256 coefficients
Output: {aw1, ..., aw7} with 64 coefficients each

1 for ai0 to 63 do
2 r0 = a0[i]; r1 = a1[i]; r2 = a2[i]; r3 = a3[i];
3 r4 = r0 + r2;
4 r5 = r1 + r3;
5 r6 = r4 + r5;
6 r7 = r4 − r5;
7 aw3[i] = r6; aw4[i] = r7;
8 r4 = 2 ∗ (r0 ∗ 4 + r2);
9 r5 = r1 ∗ 4 + r3;

10 r6 = r4 + r5;
11 r7 = r4 − r5;
12 aw5[i] = r6; aw6[i] = r7;
13 r4 = 8 ∗ r3 + 4 ∗ r2 + 2 ∗ r1 + r0;
14 aw2[i] = r4; aw7[j] = r0; aw1[i] = r3;

must be of at least 16 bits.

c0
c1
c2
c3
c4
c5
c6

=

1 0 0 0 0 0 0
−2 2

45 −
2
3 −

2
9

1
36

1
60 −2

− 5
4 0 2

3
2
3 − 1

24 −
1
24 4

5
2 −

1
18

3
2 −

7
18 −

1
18 0 5

2
1
4 0 − 1

6 −
1
6

1
24

1
24 −5

− 1
2

1
90 −

1
3

1
9

1
36 −

1
60 −

1
2

0 0 0 0 0 0 1

c(∞)
c(2)
c(1)
c(−1)
c(1

2)
c(−12)
c(0)

(4)

4 Hardware architecture

In this section, we describe the hardware architecture following a bottom-up
approach.

4.1 64-coefficient polynomial multiplier

This unit is responsible for computing the 64-coefficients polynomial multiplica-
tions during Toom-Cook point-wise product. It will be instantiated seven times
in parallel, so it is necessary to keep it simple to lower the area requirements of
the overall design. For this reason, we choose straightforward schoolbook polyno-
mial multiplication. We exploit parallelism once again and propose the generic
architecture depicted in Fig. 1. First, there is a loading stage where nm = 4
coefficients from b are loaded into the rightmost inputs of the multipliers, imple-
mented with fabric DSPs. Then, all 64 coefficients in a are loaded consecutively
into the other register. During this phase, one coefficient of the result is produced

each clock cycle in the leftmost output register, while the rest of the accumu-
lated intermediate values shift to the left. After this, nm additional coefficients
are produced while the datapath is flushed. Then, the next nm coefficients in b
are loaded and the process repeats until the full multiplication has been com-
puted. The pipeline strategy is not trivial due to data dependencies between the
accumulation and the previous result generated in the immediate right MAC.
The critical path is shown in Fig. 1 with a red dashed line. To break it down with-
out altering the dataflow, pipeline registers are included only in the multiplier.
These pipeline registers are represented as green lines.

ai bj bj+1 bj+2 bj+3

+

resk

+

resk+1

+

resk+2

+

resk+3

ci+j+1

0

Fig. 1. Architecture for the 64 × 64 polynomial multiplier utilizing 4 DSP units, in-
cluding the critical path and the pipeline registers that break it down

Since fabric LUTs have a depth of 64 bits, which matches the length of the
polynomials, the distributed memory is implemented as LUT-based memory.
Operand a is accessed sequentially, so a single port RAM is enough to store it.
To halve the latency of the loading stage, operand b is stored in a dual port
RAM. To allow simultaneous read and write operations, the result is stored in
a dual port RAM. The data width is 16 bits as explained in Sec. 3.2.

To conclude the design-space exploration of this module, we show the impact
of changing the number of DSPs, nm. In our design, nm affects the latency
as in (5). The four terms in the equation correspond to (1) loading the nm
coefficients from b, (2) filling up the datapath, (3) performing the computation
and (4) flushing the datapath between iterations. For a compact design we have
chosen nm = 4, i.e., 1168 clock cycles. It is the smallest option that allows our
multiplier to be competitive with NTT, e.g., 1289 clock cycles [BUC19]. For a
high-performance implementation nm = 8, 16 can be considered.

d =
64

nm

(nm
2

+ 4 + 64 + (nm − 1)
)

=
4288

nm
+ 96 (5)

4.2 Toom-Cook multiplier

The three steps of Toom-Cook are implemented on different datapaths with in-
dependent control. The memory requirements of this module depend exclusively

on how evaluation and interpolation are implemented. In particular, the read-
ing throughput of the system memory imposes a performance limitation on the
evaluation hardware while the interpolation hardware must accommodate to the
writing pattern. Sec. 4.3 details the memory requirements, the access pattern,
the address generation and the memory layout. In the following we focus on the
evaluation and interpolation circuits.

Evaluation hardware The evaluation datapath is derived from Alg. 4 as shown
in Fig. 2. The same datapath is used to perform the evaluation for both operands,
a and b, one immediately after the other. The weighted polynomials are directly
stored in the distributed memory of the seven small polynomial multipliers. The
delay introduced by two 16-bit adders is not big enough to require pipeline. The
latency of the entire evaluation step is 128 clock cycles, which corresponds to
reading the two 256-coefficient multiplicands in chunks of four coefficients per
clock cycle.

a0 a1 a2 a3

+ + + + + +

+ + +- -

aw7 aw6 aw5 aw4 aw3 aw2 aw1

4
2

8

4

42

Fig. 2. Datapath for the evaluation step

Interpolation hardware Building the hardware to execute the interpolation
step is a challenging task because a direct mapping of (4) as for evaluation would
result in a very asymmetric datapath with a long critical path. Instead, we iden-
tify certain symmetries in the interpolation matrix together with a trial and
error approach to derive the circuit in Fig. 3. The critical path, indicated with
a red dashed line, is broken down with pipeline registers, represented as hori-
zontal green lines to allow a higher clock frequency. The interpolation hardware
can read seven coefficients in parallel coming from the seven small polynomial
multipliers but write operations can only be done at the clock rate due to the
irregular memory accesses. Thus, memory operations become the bottleneck for
interpolation. Irregular memory accesses are caused by the polynomial indexing.
Interpolation outputs seven coefficients that must be written with offsets equal
to {0, 64, 128, 192, 256, 320, 384}. The six least significant bits of the iteration
counter can be used to generate the base address of the corresponding iteration
while the offsets set the most significant bits of the writing address. However,

the 127 iterations will end up mismatching the offsets and making inefficient a
possible memory alignment to increase the writing throughput.

w7w6w5w4w3w2w1

+ + + - - - -

+ + + +- - ++

+ +

+- -

+-

+

-

w7w6w5w4w3w2w1

w7

inv15

 inv3

5w0 w0

inv5

inv3

inv3

inv3

w0

Fig. 3. Datapath for the interpolation step including the critical path and the pipeline
registers that break it down

4.3 On-chip memory

System memory is implemented using dedicated block RAM primitives called
BRAM36K which can store up to 1024 words of 36 bits. For 64-bit words re-
quired required by the evaluation stage, 2 BRAMs are needed. The memory is
configured as dual port to allow simultaneous read and write operations, and
with asymmetric read and write operations for the same port since read oper-
ations are performed on 64-bit words while write operations are performed on
16-bit words. One of the ports is also multiplexed between the HW/SW interfac-
ing and the accelerator. Regarding the memory layout, the four coefficients that
evaluation reads every clock cycle are not consecutive but offset with 0, 64, 128
and 192. Then, coefficients must be aligned as in Fig. 4. Besides the coefficient
alignment, polynomials are also aligned to 64 words, which is the natural align-
ment for 256-coefficient polynomials but not for 512-coefficient polynomials as
shown in the same figure.

This memory layout can be created with almost no overhead when realizing
the data transfer from software as it just requires a fixed offset on the indexing
of the array. Since the memory is accessed asymmetrically for read and write
operations, address translation is needed for computing the real writing address.
When addressing the memory as a 16-bit word RAM, the least significant word
of figure’s address 0 corresponds to address 0, the next 16-bit word of figure’s
address 0 corresponds to address 1, etc. until the least significant 16-bit of figure’s
address 1, which corresponds to address 4 and so on. Since the memory is aligned
to 256-coefficient polynomials, only the eight least significant bits of address need
to be translated. Rewiring the two most significant bits from the coefficient index,
which has a length of eight bits, to the two least significant bits of the address
and shifting the other six two positions to the left gives the corresponding writing
address for the coefficient.

a0 a64 a128 a192

a1 a65 a129 a193

a2 a66 a130 a194

b0 b64 b128 b192

b1 b65 b129 b193

c0 c64 c128 c192

c1 c65 c129 c193

c319 c383 c447 c511

address 0

address 1

address 2

address 64

address 65

address 128

address 129

address 255

Fig. 4. Coefficient alignment used in the system memory

4.4 HW/SW Interfacing

Fig. 5 shows an overview of the system architecture. We implemented our hard-
ware co-processor on a Xilinx Zynq device which integrates FPGA to ARM
processors. Zynq devices support an AXI based communication interface for the
interaction of ARM cores and any hardware module in FPGA. Additionally,
Xilinx DMA offers the highest performance for bulky data transfers between
memory and the modules. Hence, we tailored our interfacing mechanism for
proficient use of them. We kept the data word size 64-bit for handling the coeffi-
cients both in the ARM side software and in the BRAM. As a result, the software
stores the polynomials as array of 64-bit data words. The BRAM uses also the
same data word length, hence we configured the DMA for transferring polyno-
mial arrays from memory to BRAM directly. When performing these transfers,
the DMA accesses the array with its memory address, and delivers it over (or

Arm

SW domain HW domain

BRAM

data
mem.

schb64
1

schb64
2

schb64
7

Evaluation
datapath

Interpolation
datapath

Toom-Cook-4

cmd

Wrapper

DDR
Mem.

status

DMA

Fig. 5. High-level architecture and interfacing of hardware and software.

receives from) the wrapper as a stream, i.e., one data word at each clock cy-
cle. This stream is free from address information, hence our wrapper associates
data words with an address in the BRAM. For associating the right address, the
wrapper is informed with the transfer’s base address by a command prior to the
transfer’s start. A register unit is used to support the interfacing with command
and status registers. This approach makes the software side the master of our
architecture, responsible of sending commands to the co-processor, observing
its execution status and handling data transfers. Currently, commands for data
transfers, evaluation, multiplication, MAC and interpolation are supported. The
instruction-set architecture (ISA) is quite flexible leaving room for the inclusion
of new commands or even the integration of more modules to accelerate other
operations utilizing the same co-processor.

5 Results

We have implemented our domain-specific co-processor in the Xilinx ZedBoard
Zynq-7000 ARM/FPGA SoC Development Board. Software has been adapted
from [KMRV18] by substituting their custom assembly optimizations by C code
compiled with the GCC version available in the Xilinx SDK development tool.
Hardware has been synthesized, placed and routed using Vivado 2018.1. Al-
though different synthesis and implementation strategies can be explored for
a fine-grained optimized design, all results reported correspond to default con-
figurations where the hardware co-processor runs at 125 MHz and the ARM
processor runs at 666 MHz.

5.1 Performance results

Table 1 presents the performance of key generation, encapsulation, decapsula-
tion and polynomial multiplication measured from software. Columns show the

Table 1. Execution time (measured in million CPU cycles)

only SW SW/HW Improvement

Key Generation 11.761 2.180 5.4
Encapsulation 14.944 2.762 5.4
Decapsulation 17.983 2.560 7.0
Polynomial Mult. 1.097 0.041 26.7

execution time when using only software and the full co-processor. Saber be-
comes between 5.4 and 7 times faster while polynomial multiplication is almost
27 times faster. The execution time of the multiplication includes the overhead
due to data transfers. In practice, many of these transfers are not necessary
because we are performing matrix-vector multiplication instead of a standalone
polynomial multiplication. Arithmetic operations only take 11835 clock cycles,
which is 91 times faster than software even though the hardware is clocked more
than five times slower than the software.

The overhead introduced by the commands sent from software to hardware
is negligible due to the parallel transfer. However, this is not the case for the
data transfers to the BRAM. Sending a polynomial, i.e., 512 bytes, from ARM
to the co-processor takes 1816 clock cycles. Sending two polynomials, i.e., 1024
bytes, takes 2908 clock cycles. Larger data transfers are not of interest in our
use case since polynomials are generated just-in-time on the CPU while the
hardware runs the multiplication with the previous operands. Transfers in the
other direction have almost the same execution times.

5.2 Resource utilization and comparisons with other works

The utilization of a single 64-coefficient polynomial multiplier including the
LUT-based memory is of 342 LUTs, 155 FFs and 4 DSPs. This module is in-
stantiated seven times and constitutes the core of arithmetic operations. The full
hardware co-processor, including Toom-Cook multiplier, system memory and
command decoding is implemented using 2927 LUTs, 1279 FFs, 2 BRAMs and
38 DSPs, which is quite a compact design.

Table 2 shows a comparison of our co-processor with other hardware imple-
mentations of NIST PQC second round candidates. For our work, we report the
utilization of the full system including the processing system and the HW/SW
interfacing. We can observe that module-LWR offers a trade-off between LWE,
e.g., Frodo, and ring-LWE, e.g., NewHope. Comparison to an ASIC implemen-
tation is more difficult but Kyber is a more similar scheme to Saber. The im-
plementation of [DFAG19] is a high-performance implementation of Saber on a
superior FPGA technology.

Table 2. Comparison with state-of-the-art.

Scheme Platform
Time [µs]

KeyGen/Encaps/
Decaps

Freq
[MHz]

BRAM/
DSP

FF/
LUT

Kyber [BUC19] ASIC
1548/2465/
1646

72 - -

Saber [DFAG19] UltraScale+
- /60/
65

322 4 / 256
11619/
12566

Frodo [HOKG18] Artix-7
45454/45454/
47619

167 24 / 1
3559/
7773

NewHope [KLC+17]† Artix-7
51.9/78.6/
21.1

133 14 / 8
9975/
20826

Saber [This] Artix-7
3273/4147/
3844

125 2 / 28
7331/
7400

†
Implements only CPA secure NewHope

6 Conclusions

Domain-specific accelerators and hardware-software co-design approaches are
becoming more important nowadays. In this paper, we have presented a compact
domain-specific accelerator for Saber. Moreover, efficiency on hardware platforms
is a crucial evaluation criteria for NIST PQC standardization. NTT-friendly
lattice-based cryptography has been studied well in the past, but there exists
less research on alternative polynomial multiplication algorithms for hardware
acceleration. We believe our design will rekindle interest in such designs.

Acknowledgment

This work was partly supported by the Research Council KU Leuven: C16/15/058,
and also by the European Commission through the Horizon 2020 research and
innovation programme under agreement Cathedral ERC Advanced Grant 695305
and by EU H2020 project FENTEC Grant 780108.

References

[AASA+19] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh
Dang, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner,
Angela Robinson, and Daniel Smith-Tone. Nistir 8240 - status report
on the first round of the nist post-quantum cryptography standardization
process, jan 2019.

[AKPW13] Joël Alwen, Stephan Krenn, Krzysztof Pietrzak, and Daniel Wichs. Learn-
ing with rounding, revisited - new reduction, properties and applications.

In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Con-
ference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part
I, pages 57–74, 2013.

[BDK+17] Joppe W. Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyuba-
shevsky, John M. Schanck, Peter Schwabe, and Damien Stehlé. CRYSTALS
- kyber: a cca-secure module-lattice-based KEM. IACR Cryptology ePrint
Archive, 2017:634, 2017.

[BUC19] Utsav Banerjee, Tenzin S. Ukyab, and Anantha P. Chandrakasan. Sap-
phire: A configurable crypto-processor for post-quantum lattice-based pro-
tocols. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(4):17–61, 2019.

[CJL+16] Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene Peralta, Ray
Perlner, and Daniel Smith-Tone. Nistir 8105 - report on post-quantum
cryptography, apr 2016.

[DFAG19] Viet B. Dang, Farnoud Farahmand, Michal Andrzejczak, and Kris Gaj. Im-
plementing and benchmarking three lattice-based post-quantum cryptog-
raphy algorithms using software/hardware codesign. In International Con-
ference on Field-Programmable Technology, FPT 2019, Tianjin, China,
December 9-13, 2019, pages 206–214, 2019.

[DKRV18] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Fred-
erik Vercauteren. Saber: Module-lwr based key exchange, cpa-secure en-
cryption and cca-secure KEM. IACR Cryptology ePrint Archive, 2018:230,
2018.

[HOKG18] James Howe, Tobias Oder, Markus Krausz, and Tim Güneysu. Standard
lattice-based key encapsulation on embedded devices. IACR Trans. Cryp-
togr. Hardw. Embed. Syst., 2018(3):372–393, 2018.

[How18] James Howe. PQCzoo, 2018.

[KLC+17] Po-Chun Kuo, Wen-Ding Li, Yu-Wei Chen, Yuan-Che Hsu, Bo-Yuan Peng,
Chen-Mou Cheng, and Bo-Yin Yang. High performance post-quantum key
exchange on fpgas. Cryptology ePrint Archive, Report 2017/690, 2017.
https://eprint.iacr.org/2017/690.

[KMRV18] Angshuman Karmakar, Jose M. Bermudo Mera, Sujoy Sinha Roy, and In-
grid Verbauwhede. Saber on ARM cca-secure module lattice-based key
encapsulation on ARM. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2018(3):243–266, 2018.

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. J. ACM, 60(6):43:1–43:35, 2013.

[MKV20] Jose Maria Bermudo Mera, Angshuman Karmakar, and Ingrid Ver-
bauwhede. Time-memory trade-off in toom-cook multiplication: an appli-
cation to module-lattice based cryptography. Cryptology ePrint Archive,
Report 2020/268, 2020. https://eprint.iacr.org/2020/268.

[NDR+19] Hamid Nejatollahi, Nikil Dutt, Sandip Ray, Francesco Regazzoni, Indranil
Banerjee, and Rosario Cammarota. Post-quantum lattice-based cryptogra-
phy implementations: A survey. ACM Comput. Surv., 51(6):129:1–129:41,
2019.

[Pei16] Chris Peikert. A decade of lattice cryptography. Foundations and Trends
in Theoretical Computer Science, 10(4):283–424, 2016.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Proceedings of the Thirty-seventh Annual ACM Sympo-
sium on Theory of Computing, STOC ’05, pages 84–93, 2005.

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM J. Comput., 26(5):1484–
1509, 1997.

