
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS 1

DPCrypto: Acceleration of Post-Quantum
Cryptography Using Dot-Product

Instructions on GPUs
Wai-Kong Lee , Member, IEEE, Hwajeong Seo , Member, IEEE, Seong Oun Hwang , Senior Member, IEEE,

Ramachandra Achar , Fellow, IEEE, Angshuman Karmakar , and Jose Maria Bermudo Mera

Abstract— Modern NVIDIA GPU architectures offer
dot-product instructions (DP2A and DP4A), with the aim of
accelerating machine learning and scientific computing applica-
tions. These dot-product instructions allow the computation of
multiply-and-add instructions in a single clock cycle, effectively
achieving higher throughput compared to conventional 32-bit
integer units. In this paper, we show that the dot-product
instruction can also be used to accelerate matrix-multiplication
and polynomial convolution operations, which are widely
used in post-quantum lattice-based cryptographic schemes.
In particular, we propose a highly optimized implementation
of FrodoKEM wherein the matrix-multiplication is accelerated
by the dot-product instruction. We also present specially
designed data structures that allow an efficient implementation
of Saber key-encapsulation mechanism, utilizing the dot-product
instruction to speed-up the polynomial convolution. The
proposed FrodoKEM implementation achieves 4.37× higher
throughput than the state-of-the-art implementation on a
V100 GPU. This paper also presents the first implementation
of Saber on GPU platforms, achieving 124,418, 120,463,
and 31,658 key exchanges per second on RTX3080, V100,
and T4 GPUs, respectively. Since matrix-multiplication and
polynomial convolution operations are the most time-consuming
operations in lattice-based cryptographic schemes, we strongly
believe that the proposed methods can be beneficial to other
KEM and signatures schemes based on lattices.

Index Terms— Post-quantum cryptography, dot-product, poly-
nomial convolution, matrix-multiplication, graphics processing
unit, FrodoKEM and Saber.

Manuscript received February 15, 2022; revised April 21, 2022; accepted
May 15, 2022. The work of Wai-Kong Lee was supported by the Brain Pool
Program through the National Research Foundation of Korea (NRF) funded
by the Ministry of Science and Information Communication Technology (ICT)
under Grant 2019H1D3A1A01102607. The work of Seong Oun Hwang was
supported by the NRF funded by the Ministry of Science and ICT under Grant
2020R1A2B5B01002145. The work of Ramachandra Achar was supported in
part by the Natural Science and Engineering Research Council of Canada
(NSERC). The work of Angshuman Karmakar was supported by Research
Foundation– Flanders (FWO) as a Junior Post-Doctoral Fellow under Grant
203056/1241722N LV. This article was recommended by Associate Editor
R. Azarderakhsh. (Corresponding author: Seong Oun Hwang.)

Wai-Kong Lee and Seong Oun Hwang are with the Department of Computer
Engineering, Gachon University, Seongnam 13120, South Korea (e-mail:
bardic@naver.com).

Hwajeong Seo is with the Department of Computer Engineering, Hansung
University, Seoul 02876, South Korea.

Ramachandra Achar is with the Department of Electronics, Carleton Uni-
versity, Ottawa, ON K1S 5B6, Canada.

Angshuman Karmakar and Jose Maria Bermudo Mera are with the COSIC,
KU Leuven, 3000 Leuven, Belgium.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSI.2022.3176966.

Digital Object Identifier 10.1109/TCSI.2022.3176966

I. INTRODUCTION

IN 2016, the National Institute of Standards and Technol-
ogy (NIST) initiated a standardization process to select

public-key encryption algorithms [1], both key-encapsulation
mechanism (KEM) and digital signature schemes, that are
resistant to quantum computing attacks. This is an appro-
priately timed response to the threat of quantum computers
that can break existing public key cryptographic algorithms.
This standardization process has stimulated a lot of inter-
est in the post-quantum cryptography (PQC) with a focus
on improving the security of PQC algorithms and the per-
formance of their implementations. Currently, the standard-
ization process is in the third round, where 15 candidates
have been selected [1] out of 69 submissions from the
first round. Among these 15 third round candidates, seven
of them are based on lattice hard problems. One of the
main performance bottleneck in lattice-based cryptography is
the polynomial convolution or matrix multiplication. Some
schemes, e.g., Kyber [2] and Dilithium [3], are based on
special ring structures that allow the polynomial convolution
to be computed efficiently using Number Theoretic Transform
(NTT). However, other schemes that do not have such a ring
structure, e.g., FrodoKEM [4] and Saber [5], require care-
fully designed implementations in order to achieve reasonably
fast performance.

GPUs are a massivley parallel computing architecture which
are used for dedicated graphics processing. However, such
parallel architecture can also be exploited for speeding up par-
allel non-graphics computation. Due to this reason, GPUs are
widely used to speed-up algorithms in various domains includ-
ing deep learning [6] and healthcare [7]. Recently, there have
been several attempts on utilizing GPUs for implementing
cryptographic algorithms. For instance, attempts to accelerate
homomorphic encryption using GPUs were presented by Al
Badawi et al. [8]. Besides that, GPUs have also been used to
implement symmetric-key cryptographic algorithms [9], [10],
achieving high throughput.

Since the commencement of NIST standardization process,
there have been some research works that explore the possibil-
ity of accelerating PQC with GPUs. One of the most notable
works was presented by Sun et al. [11], where the authors
exploit the parallel architecture of a GPU to implement the
tree structure of the SPHINCS signature scheme. However,
SPHINCS was not selected to the third round of the NIST

1549-8328 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Gachon University. Downloaded on June 13,2022 at 23:51:04 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4659-8979
https://orcid.org/0000-0003-0069-9061
https://orcid.org/0000-0003-4240-6255
https://orcid.org/0000-0003-2594-588X
https://orcid.org/0000-0002-2822-3674
https://Orcid:0000-0003-0457-5728

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

standardization process. Gupta et al. [12] presented a com-
prehensive benchmark of FrodoKEM, NewHope, and Kyber
KEMs on various GPU platforms. Recently, Lee et al. [13]
and Gao et al. [14] also provided high throughput implemen-
tations of Kyber and NewHope KEM on GPUs. These prior
works are able to achieve a high throughput implementation by
using GPU as an accelerator, but they only focus on algorith-
mic parallelization and low level optimization, without using
the advanced features found in modern GPU architectures.

A. Motivations

In a recent work, Lee et al. [15] introduced some tech-
niques to compute polynomial convolution and matrix-
multiplication using tensor core in GPUs. The key idea is
to pack many polynomials into a matrix form and compute
them efficiently using the tensor core in a GPU. Although
performance improvements are impressive, this technique [15]
can only achieve its full benefit if the usage of non-ephemeral
key is permitted. Moreover, it relies on fast tensor core that
supports half precision, which implies that it cannot be used by
lattice-based cryptography schemes that have a large modulus
(q > 2, 048). Note that most of the finalists in NIST PQC [1]
have large modulus q > 2, 048. In particular, FrodoKEM
(q = 32, 768 or q = 65, 536) and Saber (q = 8, 192 and p =
1, 024) cannot benefit from the tensor-core-based solution.
In this paper, we fill this research gap by proposing novel
implementation techniques using dot-product instructions on
GPUs, which can be applicable to larger modulus sizes.

Dot-product is a widely used operation found in many
different algorithms. Due to this reason, many research works
have been devoted to design specific hardware for dot-product
computation [16], [17], aimed towards providing a faster and
more energy efficient implementations. The popular processor
architecture like ARM has released special instructions [18]
to handle dot-product operation. Unsurprisingly, NVIDIA also
introduced DP4A and DP2A dot-product instructions into
its Pascal architecture GPU [19]. The DP2A instruction is
particularly useful in computing polynomial convolution and
matrix-multiplication found in FrodoKEM and Saber KEM,
which are NIST PQC Round-3 candidates. However, utilizing
dot-product instructions to compute these operations in parallel
is not straightforward. Naïve implementations could lead to
serious overhead in loading/storing intermediate results.

B. Contributions
This paper is the first implementation that utilizes the

dot-product instruction in GPU architectures to accelerate
lattice-based cryptography. Proposed techniques can achieve
a higher performance on various modern GPU architectures
compared to other state-of-the-art works that only rely on con-
ventional 32-bit integer units. We summarize our contributions
below:

1) We propose a highly optimized technique for matrix-
multiplication implementation on GPU. We use the
DP2A instruction to speed-up dot-product operations
between two matrices. The proposed technique is able to
accelerate the matrix-multiplication up-to 1.37×, 1.83×,
and 1.58× compared to the existing implementations

with conventional 32-bit integer units, i.e., without dot-
product instructions, on RTX3080, V100, and T4 GPUs,
respectively. This dot-product aided technique has been
applied to FrodoKEM, i.e., DPFrodo, achieving a 4.37×
speed-up compared to the state-of-the-art implementa-
tion of FrodoKEM [12] on a V100 GPU platform.

2) In this paper, we present the first optimized implemen-
tation of Saber on GPUs using 32-bit integer units.
To further improve the performance, we also incor-
porate the dot-product technique. We found that the
polynomial convolution in Saber requires the coefficients
to be read in a cyclic form. A naive implementation
of parallel polynomial convolution using dot-product
instruction introduces excessive conditional statements,
which is far from efficient. To overcome these prob-
lems, we proposed a novel data structure that reduces
conditional statements and allow fully coalesced global
memory access. When applied to the polynomial con-
volution, i.e., matrix-vector multiplication, in Saber,
the proposed technique with dot-product instructions
can achieve up-to 1.63×, 1.28×, and 1.54× higher
throughput compared to the proposed implementation
using 32-bit integer units, i.e., without dot-product
instructions, on RTX3080, V100, and T4 GPUs, respec-
tively. The dot-product aided technique was applied to
Saber (DPSaber) parameter set with N = 256 and l = 3,
and the achieved key exchange throughputs are 124,418,
120,463, and 20,225 on RTX3080, V100, and T4 GPUs,
respectively.

3) The proposed dot-product aided techniques are suitable
to be used in lattice-based cryptographic schemes that
cannot leverage the NTT directly to speed-up the poly-
nomial convolution. It is also beneficial for schemes
that utilize a larger modulus (2, 048 < q ≤ 65, 536),
which cannot be achieved by the tensor-core-based
solution proposed by Lee et . [15]. Proposed DPFrodo
and DPSaber implementations support both ephemeral
and non-ephemeral key usage, which is more flexible
compared to Lee et al. [15]. It supports high throughput
KEM, which is beneficial to conventional client-server
based Internet communication, as well as the emerging
Internet of Things (IoT) applications.

In our implementations, all the computations in encapsula-
tion and decapsulation are executed on the GPU device. All the
implementations discussed in this paper are available publicly
at https://github.com/benlwk/DPCrypto.

II. BACKGROUND

In this section, we provide a brief introduction to the
selected lattice-based cryptographic schemes, i.e., FrodoKEM
and Saber, and the related hard problems. For more details,
we refer to the very detailed specification documents [4], [5] of
these two schemes. Following this, we also present a summary
of key features in modern NVIDIA GPU architectures.

A. FrodoKEM

FrodoKEM is a lattice-based KEM that relies on the hard-
ness of learning with errors (LWE) problem [20]. It was

Authorized licensed use limited to: Gachon University. Downloaded on June 13,2022 at 23:51:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LEE et al.: DPCrypto: ACCELERATION OF PQC USING DOT-PRODUCT INSTRUCTIONS ON GPUs 3

firstly introduced as a key exchange protocol in [21] and
later on developed into a KEM for submission to the NIST
standardization process. FrodoKEM was selected as an alter-
nate candidate in Round-3 of NIST PQC standardization.
The main performance bottleneck in FrodoKEM is the matrix
multiplication [22], wherein the matrix elements are Zq .

B. Saber

Saber [5] is a lattice-based KEM which is based on module-
lattices. Unlike most other lattice-based cryptosystems, the
security of Saber is based on learning with rounding prob-
lem [23] rather than the learning with errors [20]. The
advantage of the former over the later is that the error term
is generated inherently due to rounding in the former case
whereas it needs to be added explicitly in the later case.
This results in lesser requirements of pseudo-random numbers
which leads to better efficiency than other schemes. Saber
is a one of four finalist candidates in the KEM category
of the NIST’s standardization procedure. Similar to other
lattice-based KEM schemes, it has been shown that the poly-
nomial multiplication is the most computationally expensive
component [24]–[27] of Saber. The polynomial multiplication
in Saber is used to compute the matrix-vector multiplication
and inner product. Unlike FrodoKEM, Saber operates over
quotient ring Rq = Zq [X]/(Xn + 1).

C. Overview of NVIDIA GPU Architectures

1) CUDA Programming Model: A GPU hardware has
multiple execution units named Streaming Multiprocessors
(SMs), where each SM hosts hundreds of CUDA cores.
For instance, the RTX3080 is an Ampere architecture GPU
with 68 SMs, each SM consists of 128 cores. CUDA is
the Software Development Kit released by NVIDIA to ease
programming of GPU for general purpose computing. Under
the CUDA programming model, multiple threads are grouped
into a block, where multiple blocks form a GPU grid. This
relationship is illustrated in Figure 1, where each thread and
block can be indexed individually for parallel computing.
NVIDIA GPUs grouped 32 threads into one warp in order
to allow efficient instruction scheduling and memory access.
Warp divergence occurs if threads within a warp do not execute
the same path, which may have serious performance penalty.
In the subsequent presentation, we refer tid as unique the ID
for parallel threads within a block.

2) Memory Hierarchy: There are two types of GPU memory
in general, which has a huge difference in performance: on-
chip and off-chip memory. Global memory is essentially the
DRAM, i.e., off-chip memory, which is large in size but slow
in performance. The use of global memory is unavoidable in
most of the situations, as one needs to share the data between
the CPU and GPU. To achieve a high performance in global
memory, the read/write must be performed in contiguous
memory locations. This allows the memory access to be
performed in burst mode in DRAM. Shared memory is only
accessible by threads within the same block, but it is a user-
managed cache, which has better performance compared to
global memory. Register is the fastest memory in a GPU; it has
a very limited size, e.g., 64K words per SM for the RTX3080.

Fig. 1. Relationship between grid, block, warp, and thread in CUDA.

Fig. 2. Dot-product instructions in NVIDIA GPU.

3) Dot-Product Instructions: Dot-product instructions were
first introduced into Pascal architecture, i.e., compute capabil-
ity 6.1, and they have been supported in the subsequent GPU
architectures. Referring to Figure 2, there are two versions
of dot-product instructions in NVIDIA GPUs. DP4A supports
4-way dot-product operations on four 8-bit inputs, where the
result is accumulated on a 32-bit integer. Similarly, DP2A
allows 2-way dot-product operations on two 16-bit inputs
with another two 8-bit inputs; the result is also accumulated
on a 32-bit integer. The two 8-bit inputs comes from either
the first or the last two bytes (see DP2A (hi) and DP2A
(lo) in Figure 2). Both versions support signed and unsigned
operands.

D. Related Work

Efficient implementation of PQC on various platforms is
an emerging research area in the past decade. For instance,
Seo et al. [28] presented an optimized implementation of
SIKE on ARM processor. Zhu et al. [29] shows that Karat-
suba algorithm can be used to design a high-speed multiplier
hardware architecture for Saber KEM.

The first FrodoKEM implementation on GPU was pre-
sented by Gupta et al. [12]. Authors utilized single mode to
compute FrodoKEM, wherein multiple blocks and multiple
threads cooperatively execute algorithms on a GPU. This
involves the use of atomic instructions to avoid data hazard
introduced by parallel read/write from different blocks. They
also proposed a tiling technique to compute the matrix-matrix
multiplication, efficiently. However, their implementation does
not show high throughput performance, due to high amount of
atomic instructions. Moreover, FrodoKEM can be computed
by using 16-bit coefficients, but Gupta et al. [12] only utilized
the 32-bit integer units, which is not an optimal choice.

Another two notable works published recently are from
Lee et al. [13] and Gao et al. [14]. These works showcased
high throughput implementations of Kyber and NewHope
KEM on GPU platforms, which relies on the use NTT [30].

Authorized licensed use limited to: Gachon University. Downloaded on June 13,2022 at 23:51:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

Fig. 3. Parallel implementation of matrix multiplication in FrodoKEM.

However, these works also do not use advanced features, e.g.,
dot-product instructions, found in modern GPU architectures.

III. GPU IMPLEMENTATION TECHNIQUES

In this section, we present details of our GPU imple-
mentation techniques targeting two selected lattice-based
cryptographic schemes. We believed that our methods are
applicable to other lattice-based cryptographic schemes with
small appropriate changes.

A. Highly Optimized (INT32) and Dot-Product
Aided (DPFrodo) Matrix Multiplication
Implementations of FrodoKEM on GPUs

Matrix multiplication is one of the most time consuming
operations in FrodoKEM. Referring to Figure 3, the matrix
multiplication in key-encapsulation and decapsulation involves
a rectangular matrix, i.e., N × N �, and a square matrix, i.e.,
N × N . This can be implemented on a GPU through the
following steps described in Algorithm 1. The matrices out,
A and s are initially stored in the global memory. Firstly,
N values are loaded in parallel from the matrix A (line 5).
Next, the algorithm executes k loop (lines 6 ∼ 8), wherein
values from public matrix A are multiplied with a value from
secret matrix s, and then added to results in matrix out. Same
steps are repeated for N times to complete the j loop in
lines 4 ∼ 9. This process is also illustrated in Figure 3,
in which highlighted portions represent the parallel execution
of lines 4 and 6 on a GPU. Note that in line 6, the results of
multiplications are accumulated on matrix out, which is stored
in the global memory. This naïve implementation causes a lot
of read/write into the global memory, seriously limiting the
performance of implementation on a GPU.

A closer look into FrodoKEM reveals that the parameter
N � is small, e.g., N � = 8 across all three proposed parameter
sets, compared to parameter N [4]. Hence, it is possible to
fully unroll the k loop in Algorithm 1. Algorithm 2 shows
this improved implementation technique. By doing this, we can
compute eight multiply-and-accumulate (MAC) operations in
one iteration of j loop, and store all the intermediate results
in registers sum0 to sum7. This allows us to exploit the use
of fast registers and avoid excessive read/write to the slow
global memory when computing the MAC operations. This
highly optimized matrix multiplication technique relies on
INT32 to perform the matrix multiplications and accumula-
tions. We applied this technique to the GPU implementation
of FrodoKEM.

Next, we explore how to improve the INT32 version of
matrix multiplication using dot-product instructions. Referring

Algorithm 1 Parallel Matrix Multiplication in FrodoKEM
1: procedure MAT_MUL_AND_ADD(out, A, s)
2: sum = 0;
3: for (j = 0; j < N; j + +) do � N × N � is the size of

matrix
4: load_a = A[j × N + tid];
5: for (k = 0; k < N’; k + +) do
6: out[k × N + tid] += load_a × s[k × N + j];
7: end for
8: end for
9: end procedure

Algorithm 2 Unrolled Parallel Matrix Multiplication in
FrodoKEM
1: procedure MAT_MUL_UNROLL(out, A, s)
2: sum0 = 0, sum1 = 0, sum2 = 0, sum3 = 0;
3: sum4 = 0, sum5 = 0, sum6 = 0, sum7 = 0;
4: for (j = 0; j < N; j + +) do
5: load_a = A[j * N + tid];
6: sum0 += load_a × s[j]; � Unroll 8 times (N’)
7: sum1 += load_a × s[1 × N + j];
8: sum2 += load_a × s[2 × N + j];
9: sum3 += load_a × s[3 × N + j];

10: … � Removed for brevity
11: end for
12: out[tid] = sum0; � Unroll 8 times (N’)
13: out[1 × N + tid] = sum1;
14: out[2 × N + tid] = sum2;
15: out[3 × N + tid] = sum3;
16: … � Removed for brevity
17: end procedure

Algorithm 3 DPFrodo: Packing the Matrix s
1: procedure PACK_MAT_S(spacked , s)
2: for (i = 0; i < N’; i + +) do � N’ is 8 for FrodoKEM
3: spacked [i × N/2 + tid].x = s[i × N + 2 × tid];
4: spacked [i × N/2 + tid].y = s[i × N + 2 × tid + 1];
5: end for
6: end procedure

to Table I, the modulus q is either 32,768 or 65,536. This
implies that the matrix multiplications and accumulations can
be carried out entirely on a 16-bit variable without causing
any errors. Note that the matrix A was originally stored in
column major order after the random sample generation using
AES or SHAKE [4]. To perform matrix-matrix multiplication,
matrix A is read in a row major order; this is illustrated in
Figure 4. When the proposed DPFrodo is used, two matrix
elements are packed into one register, which can be indexed
as x or y component. To access these packed elements in
Matrix A, even-indexed threads load only x components,
while odd-indexed threads load only y components. For the
smaller Matrix s (see Algorithm 3), the packing is more
straightforward.

Authorized licensed use limited to: Gachon University. Downloaded on June 13,2022 at 23:51:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LEE et al.: DPCrypto: ACCELERATION OF PQC USING DOT-PRODUCT INSTRUCTIONS ON GPUs 5

TABLE I

OVERVIEW OF FRODOKEM [4] AND SABER [5] PARAMETERS

Fig. 4. Parallel implementation of matrix multiplication in FrodoKEM.

The proposed parallel matrix-matrix multiplication in
FrodoKEM using the dot-product instruction is detailed in
Algorithm 4. Similar to Algorithm 2, the matrices out, A and s
are initially stored in the global memory. The j (lines 4 ∼ 20)
loop is executed to accumulate the results of matrix multiplica-
tion. In each iteration, even-index threads load x components
of matrix A (lines 5 ∼ 7), while odd-index threads load y
components (lines 8 ∼ 10). This follows by multiplications
between matrix A and s (lines 12 ∼ 19), which is fully unrolled
by N � = 8×. The accumulations are performed on registers
sum0 to sum7 to exploit their fast read/write speed. Finally,
results are stored in the output array (lines 21 ∼ 25). Note that
the j loop in Algorithm 4 is now reduced by half compared to
Algorithm 2, due to the use of dot-product instructions (DP2A)
that computes two 16-bit MACs in one cycle.

B. The First Optimized (INT32) and Dot-Product
Aided (DPSaber) Polynomial Convolution
Implementations of Saber on GPUs

The most time consuming operation in Saber is the polyno-
mial convolution [27], [31], which is detailed in Algorithm 5.
The j loop (lines 2 ∼ 10) iterates through all coefficients in
the polynomial; in each iteration, there is another i loop to
accumulate intermediate results (lines 4 ∼ 9).

Figure 5a shows a simple example of parallel polynomial
convolution on a GPU, where the polynomial length N = 8.
Since each thread can perform the multiplication and accumu-
lation independently, this technique is considered efficient for
the GPU implementation. Recently, Lee et al. [15] proposed
an improved version of this technique, wherein MAC opera-
tions are represented in a matrix form and computed entirely
on tensor cores. However, it only support the polynomial

Algorithm 4 DPFrodo: Parallel Matrix Multiplication in
FrodoKEM With Dot-Product Instruction
1: procedure MAT_MUL_AND_ADD_UNROLL(out, A, s)
2: sum0 = 0, sum1 = 0, sum2 = 0, sum3 = 0;
3: sum4 = 0, sum5 = 0, sum6 = 0, sum7 = 0;
4: for (j = 0; j < N/2; j + +) do
5: if tid%2 == 0 then
6: load_a.x = A[j ∗ N + tid/2].x ;
7: load_a.y = A[j ∗ N + N/2 + tid/2].x ;
8: else
9: load_a.x = A[j ∗ N + tid/2].y;

10: load_a.y = A[j ∗ N + N/2 + tid/2].y;
11: end if
12: sum0 +=load_a.x × s[j].x + load_a.y × s[j].y;
13: sum1 +=load_a.x × s[1 × N + j].x+
14: load_a.y × s[1 × N + j].y;
15: sum2 +=load_a.x × s[2 × N + j].x+
16: load_a.y × s[2 × N + j].y;
17: sum3 +=load_a.x × s[3 × N + j].x+
18: load_a.y × s[3 × N + j].y;
19: … � Unroll 8 times (N’). Removed for brevity
20: end for
21: out[tid] = sum0;
22: out[1 × N + tid] = sum1;
23: out[2 × N + tid] = sum2;
24: out[3 × N + tid] = sum3;
25: … � Unroll 8 times (N’). Removed for brevity
26: end procedure

convolution for lattice-based schemes that utilize small mod-
ulus, q ≤ 211. Hence, it is not suitable to be used in Saber.

Referring to Table I, the modulus q of Saber parameter
sets is always 8,192. Considering the Saber parameter set,
coefficients of small polynomial (b) is in the range of −4 to
+4, which can be conveniently represented in an 8-bit variable.
Coefficients of polynomial (a), range from 0 to 8,191, can
fit into a 16-bit variable. Referring to Figure 2, the DP2A
instruction can be used to compute the dot-product operation
between a pair of 16-bit/8-bit values. Hence, we can pack
two 16-bit and two 8-bit coefficients into the respective 32-bit
registers, then perform a series of dot-products to compute
the polynomial convolution in Saber. Since each polynomial
coefficient is packed into a 32-bit register with x and y
components, loading these coefficients in parallel is a non-
trivial task. In addition, the polynomial a is loaded in a cyclic

Authorized licensed use limited to: Gachon University. Downloaded on June 13,2022 at 23:51:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

Algorithm 5 Nega-Cyclic Polynomial Convolution
1: procedure SCHOOLBOOK_POLY_CONV(out, a, b)
2: for (j = 0; j < N; j++) do � N is the length of

polynomial
3: sum = 0;
4: for (i = 0; i < j+1; i++) do � Accumulation
5: sum = sum + a[j − i] × b[i];
6: end for
7: for (i = 1; i < N-j; i++) do � Subtraction
8: sum = sum − a[j + i] × b[N − i];
9: end for

10: out[j] = sum; � out: array to store the results
11: end for
12: end procedure

Fig. 5. Comparison of the proposed methods for polynomial convolution
in Saber, (a) parallel implementation with int 32-bit integer units, (b) naïve
implementation with DP2A instruction.

form, which is less straightforward compared to the case in a
matrix-multiplication.

A detailed illustration of this problem is shown in Figure 5b.
Considering thread 2 (T2), it is reading the x component from

Fig. 6. Proposed packing method for polynomial convolution in Saber.

a1 in the first iteration (i = 0), but it loads the y component
from a0 in the next iteration (i = 1). This inconsistency in
the array index and component to be loaded exists in all
even-index threads. Odd-index threads, i.e., T1, T3, . . ., also
need to access a different component from even-index threads.
These access patterns cause many conditional statements in a
naïve GPU implementation, since each thread needs to decide
whether to read the x or y component and determine the
index to read the polynomial a. This problem is not found
in polynomial b, because it is always accessed in a sequential
and fixed manner.

In this paper, we propose a novel technique to pack the
polynomial a in order to avoid problems mentioned above.
A closer look into Figure 5b reveals that all even-index threads
are reading a different values, but they exhibit a cyclic pattern.
For instance, when i = 0, 1, T0 reads a0.x and a3.y; the same
pair of values are being read by T2, T4, and T6 at different
time (See bolded parts). Same patterns also apply to odd-index
threads. Due to this reason, we can pack the polynomial a into
two arrays to cater for these two different accessing patterns.
This is illustrated in Figure 6, in which the polynomial a is
packed into two different arrays (ArrayA1 and ArrayA2) for
parallel access. For instance, values a0 and a7 can be accessed
in ArrayA1[0].x and ArrayA1[0].y; values a5 and a4 can be
read from ArrayA2[2].x and ArrayA2[2].y.

Another important aspect in the implementation of parallel
polynomial convolution is that Saber employs a nega-cyclic
convolution, which needs to add or subtract the intermediate
results when the i loop progresses. Referring to Figure 7,
values to be added/subtracted are marked in black/blue colour
respectively. A close look into this pattern reveals that values
to be subtracted can be either the x or y component, depending
on the thread index and index i. For instance, considering
the case of odd-index threads, i.e., T1, T3, . . ., they need to
decide whether an addition or subtraction should be performed.
On the other hand, considering the thread T2, operations to be
performed are different when i = 0, i = 1, and i = 2, 3.
This happens to all other even-index threads, wherein there
is always three different operations to be performed. This is
because the value to be subtracted can be either stored on the
x or y component of the values. This also implies that the
implementation of parallel polynomial convolution in Saber is
more complicated compared to FrodoKEM, as there are more
conditional checking required.

Authorized licensed use limited to: Gachon University. Downloaded on June 13,2022 at 23:51:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LEE et al.: DPCrypto: ACCELERATION OF PQC USING DOT-PRODUCT INSTRUCTIONS ON GPUs 7

Fig. 7. Computing nega-cyclic polynomial convolution in Saber.

Algorithm 6 DPSaber: Parallel Polynomial Convolution in
Saber With Dot-Product Instruction
1: procedure POLY_CONV(out, A1, A2, b)
2: sum1 = 0, sum2 = 0;
3: _shared_ s_A1[tid] = A1[tid];
4: _shared_ s_A2[tid] = A2[tid];
5: _shared_ s_b[tid] = b[tid];
6: for (i = 0; i < N/2; i + +) do � N is the length of

polynomial
7: load_a = s_A2[(tid × (N/2 − 1) + i)%(N/2)];

� Processing the even elements.
8: if i > tid then
9: sum1 -= load_a.x × s_b[i].x + load_a.y ×

s_b[i].y;
10: else if i == tid then
11: sum1 += load_a.x × s_b[i].x + load_a.y ×

s_b[i].y;
12: sum1 -= load_a.y × s_b[i].y + load_a.y ×

s_b[i].y;
13: else
14: sum1 += load_a.x × s_b[i].x + load_a.y ×

s_b[i].y;
15: end if
16: load_a = s_A1[(tid + i × (N/2 − 1))%N/2];

� Processing the odd elements.
17: if i ≤ tid then
18: sum2 += load_a.x × s_b[i].x + load_a.y ×

s_b[i].y;
19: else
20: sum2 -= load_a.x × s_b[i].x + load_a.y ×

s_b[i].y;
21: end if
22: end for
23: out[tid × 2] = sum1;
24: out[tid × 2 + 1] = sum2;
25: end procedure

Detailed implementation steps are presented in Algorithm 6.
Firstly, packed polynomials are loaded into shared memory
to improve the accessing speed (lines 3 ∼ 5). Following
this, the algorithm loads a value from s_A2 and proceeds to

Fig. 8. Parallelization of the random samples generation.

compute the dot-product operation (lines 8 ∼ 15). To process
even-index threads, there are three different conditions, which
should to be checked (lines 8, 10, and 13). This corresponds
to problems explained in Figure 7 for even-index threads.
The computation for odd-index threads is simpler as we only
need to check the condition to perform an addition (line 17)
and subtraction (line 20). Note that each thread computes
one even and one odd element. This process is repeated for
N/2 times (line 6) to complete the entire convolution. Finally,
results of accumulations (sum1 and sum2) are stored into
the output array following respective odd and even positions
(lines 23 ∼ 24). With the proposed technique in Algorithm 6
the schoolbook polynomial convolution is mapped into a
series of parallel dot-product operations. This allows efficient
parallel polynomial convolution to be implemented on GPU,
improving the speed performance against the conventional
method that only uses 32-bit integer units.

IV. EXPERIMENTAL RESULTS

This section presents experimental results of FrodoKEM
and Saber KEM on various GPU platforms, which are com-
pared against the state-of-the-art works. Proposed algorithms
are implemented in C language under CUDA 11.2 SDK.
Performance was evaluated on two different platforms as
described in Table II. Platform A is a workstation equipped
with a Intel Core i9-10900K CPU and a RTX 3080 GPU.
Platform B is the Compute Canada platform (a national
computing grid) [32], which has a module configuration of
four CPU cores (Xeon Gold), 16-GB RAM, and a GPU. The
GPU can be configured as V100 or T4.

Our implementation offloads all the computations in encap-
sulation and decapsulation, including the pack/unpack process,
random sample generations and hashing, onto the GPU plat-
forms. Both FrodoKEM and Saber use SHAKE-128 [33] to
generate random samples, but FrodoKEM uses much more
random samples compared to Saber, so the implementation
strategy is also different. The implementation of SHAKE-128
is illustrated in Figure 8. In our FrodoKEM implementation,
we parallelized the SHAKE-128 algorithm in a coarse-grain
manner. We launched K GPU blocks and N/2 threads, wherein
each thread is performing its own SHAKE-128 to generate ran-
dom samples independently. This strategy does not require any
synchronization between threads, which is good for achieving
high performance in GPU implementation. On the other hand,

Authorized licensed use limited to: Gachon University. Downloaded on June 13,2022 at 23:51:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

TABLE II

EXPERIMENTAL PLATFORMS FOR PROPOSED IMPLEMENTATIONS

Algorithm 7 Encode Function in Saber
1: procedure POLT2BS(bytes, poly)
2: for (i = 0; i < N/2; i + +) do
3: cntb = i ;
4: cntp = 2 × i ;
5: bytes[cntb] = (poly[cntp]&0x0 f)|

((poly[cntp + 1]&0x0 f) � 4);
6: end for
7: end procedure

we do not need to generate a lot of random samples for
Saber, so there may not be sufficient workload to fully exploit
the GPU resources. Hence, we parallelized SHAKE-128 in
a fine-grain manner in our Saber implementation, in which
32 threads cooperatively compute one SHAKE-128. This
strategy requires synchronization between threads to avoid the
potential data hazard [34], but it ensures that the GPU always
has sufficient workload to compute, which is a very important
aspect to ensure high performance on GPUs.

All other functions exhibit rich parallelism since they are
operated on polynomial/matrix. In this case, we follow the
fine-grain parallel approach, wherein one block consists of
multiple threads are used to complete one operation. For
instance, Algorithm 7 shows the encode function in Saber
that converts all the coefficients in a polynomial to bytes.
This operation is highly parallelizable, therefore we instantiate
N/2 threads to parallelize the for loop in line 2. Since these
functions are very lightweight, the fine-grain parallel approach
ensures that there is sufficient workload to fully exploit the
computational resources in a GPU.

We have selected FrodoKEM976 and Saber parameter sets
for performance evaluation, since both belong to the NIST
security category 3. To evaluate the throughput performance
under different batch sizes, many parallel blocks are initiated,
where the number of parallel blocks, K, varies. Each block
is responsible in computing one KEM. In each experiment, K
increases gradually to observe the achieved throughput, until
the performance saturates. We have also compared our results
with the AVX2 implementations of FrodoKEM and Saber on
CPU clock at 3.7 GHz. The source code are obtained from
the respective NIST submission package [4], [5] and compiled
without any modification. Note that these AVX2 implementa-
tions are highly optimized by the authors of FrodoKEM and
Saber. They are executed on a single CPU core throughout
our experiments. The main focus of this paper is to show that
we can exploit the dot-product feature in state-of-the-art GPU
architectures to accelerate many lattice-based cryptographic
schemes. However, dot-product instruction is not found in the
existing x86 processors. Hence, we do not optimize the AVX2

implementation on multiple cores as this is not the focus of
our work.

A. Evaluation of Proposed FrodoKEM Implementations
(INT32 and DPFrodo)

Table III shows the throughput of computing one matrix
multiplication in FrodoKEM using different implementation
techniques. Results show that DPFrodo is at least 1.3× faster
than the conventional implementation using integer unit, across
different K on various GPU platforms. Performance saturates
when K is relatively large (≥512), indicating that further
increasing the number of parallel blocks does not help in
improving performance anymore.

The proposed DPFrodo technique is applied to FrodoKEM
parameter set FrodoKEM976 to speed up the matrix multipli-
cation. Referring to Table IV, DPFrodo is able to produce
1.09× higher throughput for both RTX 3080 and V100,
and 1.07× for T4, against the conventional implementation
utilizing 32-bit integer units. Compared to the implementation
from Gupta et al. [12], which are considered state-of-the-art
results, the proposed implementation is able to achieve 4.37×
higher key exchange throughput on the same GPU (V100).
The DPFrodo key exchange throughput is also higher than
the AVX2 implementation by 6.59×, 3.65×, and 1.66×,
on RTX3080, V100, and T4 GPU platforms, respectively.

B. Evaluation of Proposed Saber Implementations
(INT32 and DPSaber)

In the Saber implementation, the polynomial convolution
is used to perform two types of operations: inner product
and matrix-vector multiplication. Table V shows throughput
achieved in the proposed implementation. Considering the
case of matrix-vector multiplication, when parallel blocks
K ≥ 256, DPSaber is able to achieve at least 1.13 higher
throughput across all GPU platforms. The similar performance
is also observed in the inner product, with exception of
V100, wherein the throughput is only high enough when there
K ≥ 1024. Overall, the speed-up gain by DPSaber in the
matrix-vector multiplication is more significant compared to
inner product. This is because the proposed DPSaber requires
some pre-computations to pack polynomials, which is a non-
trivial overhead. Hence, the memory to compute ratio has to
be large enough in order to capitalize benefits of dot-product
instruction. The matrix-vector multiplication is performing
more computations compared to the inner product, which
explains why it can achieve a more significant speed-up even
with a small K.

Table VI shows results of Saber KEM implementation on
several GPUs across various block sizes (K), compared against
the CPU AVX2 implementation. On RTX 3080 and V100,

Authorized licensed use limited to: Gachon University. Downloaded on June 13,2022 at 23:51:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LEE et al.: DPCrypto: ACCELERATION OF PQC USING DOT-PRODUCT INSTRUCTIONS ON GPUs 9

TABLE III

COMPARISON OF PROPOSED MATRIX-MATRIX MULTIPLICATION IMPLEMENTATIONS IN FRODOKEM976 BASED ON 32-BIT
INTEGER UNITS (INT32) AND DP2A (DPFRODO) INSTRUCTIONS

TABLE IV

COMPARISON OF PROPOSED FRODOKEM976 SCHEME IMPLEMENTATIONS BASED ON INT 32-BIT

INTEGER UNITS (INT32) AND DP2A (DPFRODO) INSTRUCTIONS

TABLE V

COMPARISON OF PROPOSED INNER PRODUCT AND MATRIX-VECTOR MULTIPLICATION IMPLEMENTATIONS IN SABER KEM BASED ON
INT 32-BIT INTEGER UNITS (INT32) AND DP2A (DPSABER) INSTRUCTIONS

DPSaber is able to achieve higher key exchange (KX/s) rate
compared to the conventional implementation using 32-bit
integer (INT32), when parallel blocks (K) are more than
256. On T4, DPSaber is better than INT32 for all cases
starting from K = 64. The best result was achieved when the
K = 768 or K = 512, where DPSaber is 1.09×, 1.02×, and
1.19× faster than INT32 implementation on RTX 3080, V100,

and T4 GPUs, respectively. The key exchange throughput
achieved by DPSaber implementation is 4.17×, 4.04×, and
1.06× higher than AVX2 implementation on RTX 3080, V100,
and T4, respectively.

The performance of our FrodoKEM and Saber implemen-
tation on various GPUs differs, which is mainly due to the
differences in clock frequency, memory bandwidth and the

Authorized licensed use limited to: Gachon University. Downloaded on June 13,2022 at 23:51:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

TABLE VI

COMPARISON OF PROPOSED SABER KEM IMPLEMENTATIONS BASED ON INT 32-BIT INTEGER UNITS (INT32) AND DP2A (DPSABER) INSTRUCTIONS

number of cores. Referring to Table II, RTX 3080 has a
higher number of cores and clock frequency among all GPUs,
so it is the best achieving candidate in our experiments.
Despite having lesser number of cores, the performance of
V100 is not far from RTX 3080, because it has a slightly
higher memory bandwidth. This also means that V100 can
deliver more data for computation compared to RTX 3080,
which can be an advantage. In GPU architecture, the warp
scheduler may stall the computation while it is waiting for
data from the memory. Hence, a higher memory bandwidth
can supply sufficient data for computation and reduce the
chances of stalls, effectively offsetting the disadvantages of
having lower number of cores. The performance in T4 is much
slower than the other two GPUs due to the lowest rank on
all these aspects. Although these three GPUs have a different
architecture, it does not seriously affect their performance in
our experiments. For instance, the matrix multiplication and
polynomial convolution heavily rely on the INT32 unit and
dot-product instructions, which has the same throughput for
Turing, Volta and Ampere architecture [19]. Similarly, these
three architectures also have the same number of warp sched-
ulers (four) [19], so the instruction scheduling performance
is almost similar. In conclusion, the architectural differences
may not be the main reason for the performance differences
in our implementation.

C. Bottleneck Analysis of the Proposed DPFrodo
and DPSaber

The DP2A instruction can perform two multiplications and
one accumulate operation in a clock cycle. Theoretically, the
speed up that we can gain from this should be 2× faster
than using the conventional 32-bit integer. However, there are
several factors that limits this gain, which is discussed in this
subsection.

1) Matrix-Matrix Multiplication in FrodoKEM: The pack-
ing and ordering of data into the format required by DP2A

instruction causes non-negligible overhead. For the case in
FrodoKEM, matrix A was originally stored in a column-major
format. To perform matrix-matrix multiplication, A is accessed
in a row-major manner, which requires additional effort in
packing two matrix elements from different memory locations
(refer to Figure 4). Moreover, the even-indexed threads are
accessing different memory locations compared with the odd-
indexed threads, causing a warp divergence effect. There are
two possible ways to eliminate these undesirable effects, which
we have experimentally verified to be inefficient.

1) Method 1: One can try to reorganize matrix A in a form
that is friendly to matrix-matrix multiplication (row-
major), removing the need to pack the matrix elements
for DP2A instruction. However, due to its large size,
rearranging matrix A is also a non-trivial task, eventually
harming the performance.

2) Method 2: Alternatively, one can also modify
Algorithm 4 to first perform the operations for all
even-indexed threads, then proceed to complete the
operations for odd-indexed threads. The steps are
demonstrated in Algorithm 8. This eliminates the warp
divergence issue, but it introduces significant impact
in performance. The number of parallel threads are
reduced by half, since the GPU kernel is computing
either only the even-indexed or odd-indexed part. This
reduces the parallelism achieved and affected the overall
performance. Besides, the computed values are stored
to the output array (lines 13 ∼ 14 and lines 25 ∼ 26)
twice in a non-coalesced manner.

Referring to Table VII, the matrix reordering in Method 1
takes up too much time, eventually nullifying all the benefits
from removing warp divergence. Similarly, Method 2 elimi-
nated the warp divergence effect through Algorithm 8, but the
performance is still slower than the proposed Algorithm 4.
Through these analysis, we believe that although Algorithm 4
exhibits warp divergence, it is still better than other techniques

Authorized licensed use limited to: Gachon University. Downloaded on June 13,2022 at 23:51:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LEE et al.: DPCrypto: ACCELERATION OF PQC USING DOT-PRODUCT INSTRUCTIONS ON GPUs 11

Algorithm 8 Method 2: Warp Divergence Free Parallel Matrix
Multiplication in FrodoKEM With Dot-Product Instruction
1: procedure MAT_MUL_AND_ADD_UNROLL(out, A, s)
2: sum0 = 0, sum1 = 0, sum2 = 0, sum3 = 0;
3: sum4 = 0, sum5 = 0, sum6 = 0, sum7 = 0;
4: Process even-indexed threads
5: for (j = 0; j < N/2; j + +) do
6: load_a.x = A[j ∗ N + tid/2].x ;
7: load_a.y = A[j ∗ N + N/2 + tid/2].x ;
8: sum0 +=load_a.x × s[j].x + load_a.y × s[j].y;
9: sum1 +=load_a.x × s[1 × N + j].x+

10: load_a.y × s[1 × N + j].y;
11: … � Unroll 8 times (N’). Removed for brevity
12: end for
13: out[2 ∗ tid] = sum0;
14: out[1 × N + 2 ∗ tid] = sum1;
15: … � Unroll 8 times (N’). Removed for brevity
16: Process odd-indexed threads
17: for (j = 0; j < N/2; j + +) do
18: load_a.x = A[j ∗ N + tid/2].y;
19: load_a.y = A[j ∗ N + N/2 + tid/2].y;
20: sum0 +=load_a.x × s[j].x + load_a.y × s[j].y;
21: sum1 +=load_a.x × s[1 × N + j].x+
22: load_a.y × s[1 × N + j].y;
23: … � Unroll 8 times (N’). Removed for brevity
24: end for
25: out[2 ∗ tid + 1] = sum0;
26: out[1 × N + 2 ∗ tid + 1] = sum1;
27: … � Unroll 8 times (N’). Removed for brevity
28: end procedure

TABLE VII

ANALYZING THE BOTTLENECK IN DPFRODO

to implement FrodoKEM matrix-matrix multiplication using
DP2A instruction.

2) Matrix-Vector and Inner Product in Saber: Consider-
ing the case in DPSaber, the main bottleneck of polyno-
mial convolution lies in the multiple conditional statements
(Algorithm 6, lines 8, 10, 13, 17 and 19). This introduces warp
divergence issue on GPU execution and eventually limited the
performance gain. However, these conditional statements are
unavoidable because each thread needs to select a different
components (x or y) from the packed polynomial and decide
to add or subtract from the intermediate results. This implies
that the computational pattern is slightly different for each
thread when it is executed in parallel, mainly caused by the
nega-cyclic convolution used in Saber. Unlike the case in
DPFrodo, we are unaware of any trivial methods to avoid the
warp divergence. Despite the warp divergence issue, DPSaber
can still benefit from the dot-product instruction if the number
of parallel blocks (K) is sufficiently large.

3) Performance Breakdown and Discussions: Table VIII
shows the breakdown of the main computations in FrodoKEM

and Saber when they are implemented on CPU and GPU
platforms. We can observe that majority of the computa-
tions in FrodoKEM (for both GPU and CPU) are attributed
to the random samples generation, which is done through
SHAKE-128 algorithm. After extensive optimization using the
proposed dot-product technique, matrix multiplication is no
longer the main bottleneck. Optimizing the serial algorithm
like SHAKE-128 can significantly improve the throughput of
FrodoKEM. An alternative way is to employ a variant of
FrodoKEM using AES [4] to generate random samples. Many
existing works that optimized the implementation of AES on
GPUs [10] can be leveraged to speed up the random sample
generation in FrodoKEM, but this is out of the scope of this
paper.

Similar to FrodoKEM, random sample generation is also
the main bottleneck (≈40%) in Saber, which is also per-
formed through SHAKE-128. This implies that optimizing
SHAKE-128 implementation on GPUs can also benefit Saber.
After heavy optimization using the proposed dot-product
technique, the proportion of matrix-vector multiplication and
inner product are reduced. However, they are still consuming
noticeable time in Saber. Unlike FrodoKEM, hash operations
contribute to a significant part of the computation in Saber.
However, the hash function used in Saber (SHA3-256) is very
similar to SHAKE-128; optimizing the implementation perfor-
mance of SHAKE-128 is likely to benefit SHA3-256 as well.

D. Applying the Dot-Product Solutions to Toom-Cook
and NTT

The technique proposed in Algorithm 6 can be applied
to other asymptotically faster algorithms like Karatsuba [35]
and k-way Toom-Cook [36]. These algorithms decomposed
the polynomial with length N into sub-polynomials with a
smaller length. This decomposition can be applied recursively
to obtain a smaller sub-polynomials. Karatsuba is a special
case in k-way Toom-Cook, where k = 2. As a concrete
example, the Saber [5] submission package to NIST uses
4-way Toom-Cook to speed up the polynomial convolu-
tion. The polynomial (N = 256) is first decomposed into
four equally sized sub-polynomials (N = 64), and then
perform the evaluation, multiplication and interpolation on
these small sub-polynomials. The multiplication stage involves
sub-polynomials with N = 64, which can be computed
using the proposed dot-product-aided schoolbook multiplica-
tion (Algorithm 6). In this way, we believe that the proposed
technique can provide a better performance. Note that one can
also continue to apply the 4-way Toom-Cook or Karatsuba
algorithm recursively. However, the level of parellelism is
reduced by half for each level of recursion, which may
eventually harm the implementation performance on a GPU
platform. Recall that the smallest instruction scheduling unit
on GPU is a warp (32 threads), it is advisable to have N ≥
32 at the last recursive level. Note that it is non-trivial to
explore the best combination of Toom-Cook, Karatsuba and
schoolbook multiplication to achieve the highest throughput.
Hence, we intend to leave this exploration as a future research
direction.

On the other hand, many lattice-based PQC schemes utilize
the NTT to compute the polynomial convolution on a special

Authorized licensed use limited to: Gachon University. Downloaded on June 13,2022 at 23:51:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

TABLE VIII

PERFORMANCE BREAKDOWN OF FRODOKEM AND SABER IMPLEMENTED ON GPUS AND CPU

Algorithm 9 Pseudocode: Fully Parallel in-Place NTT in
Kyber [13]
1: procedure NTT(r)
2: r : Polynomial with length N = 256
3: zeta and zeta_tb : Precomputed NTT constants
4: for len=128; len≥ 2; len=len/2 do
5: zeta = zeta_tb[level +
tid/ len�];
6: j =
tid/ len� * len + tid;
7: t = fqmul(zeta, r[j + len]);
8: r[j + len] = r[j] - t;
9: r[j] = r[j] + t;

10: level = level × 2;
11: end for
12: end procedure

ring structure. Some representative candidates include Kyber
KEM [2] and Dilithium signature [3]. However, it is non-
trivial to compute the NTT using dot-product instruction.
Algorithm 9 shows an example of the parallel implementation
of NTT in Kyber, which is proposed by Lee et al. [13]. The
core computation in NTT boils down to the butterfly operations
(lines 8 ∼ 10), which usually involves the multiplication
between an input and a constant, e.g., twiddle factor, followed
by a modular operation over the modulus q. This corresponds
to line 8 in Algorithm 9, where the twiddle factor (zeta) is
multiplied with the input from polynomial r and reduced by
modulus q. Note that this modular operation is usually per-
formed through Montgomery or Barrett reduction algorithm,
which is not easily mapped to a dot-product operation. This
is also why the previous implementations of Kyber on various
platforms [37] do not consider using a dot-product instruction
to speed up the performance.

E. Practical Use Cases of the Proposed GPU Implementation
1) Secure Online Transactions: Key exchange is a funda-

mental feature supported by many security protocols such as

SSL/TLS [38] and IPsec (IKE) [39]. KEM can be used to
support the key exchange between the client/server for Internet
communication. Under such communication paradigm, the
server is required to process massive amount of KEM, i.e.,
hundreds of thousands, requests from various clients within
a short period of time. This situation is especially common
for e-commerce, online banking, and transactions. It is chal-
lenging to cope with such a demanding and ever increas-
ing computations, even for a very high performance server,
as the server itself may need to handle other computations
as well. One of the possible solutions is to offload the KEM
computations to hardware accelerators like FPGA and GPU,
which are more specialized in performing batch computation.
Proposed high throughput implementation on various GPU
platforms shows that it is possible to perform thousands to
hundreds of thousands key-encapsulation/decapsulations per
second. By utilizing the proposed solution, we can effectively
offload batch computations of KEMs to GPU, eventually save
a lot of time in CPU, which then allows the server to execute
some other tasks. Note that GPUs are already commonly found
in many major cloud computing services like AWS [40] and
IBM [41], as GPUs are widely used for artificial intelligence.
Hence, the use of GPU in accelerating KEMs is a more natural
choice compared to FPGA or ASIC solution.

2) Secure Internet of Things Communication: Another inter-
esting use case is the IoT applications, wherein the sensor
nodes are actively interacting with the cloud servers. The
scale of IoT system range from hundreds to thousands of
sensor nodes [42]. To secure such communication, symmetric
keys used to encrypt the sensor data, need to be refreshed
frequently, which can be done through one of these ways:

1) New session keys are produced by the IoT sensor and
transmitted to the cloud server via KEM. Typically,
the symmetric key is refreshed in every communication
session using pseudorandom number generator or KDF.

2) The cloud server produced many new session keys and
send them to each sensor node via KEM for update.

Authorized licensed use limited to: Gachon University. Downloaded on June 13,2022 at 23:51:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LEE et al.: DPCrypto: ACCELERATION OF PQC USING DOT-PRODUCT INSTRUCTIONS ON GPUs 13

In such a case, the cloud server can decide the time
interval for refreshing the symmetric keys. In other
words, the symmetric key can be refreshed every com-
munication session, every hour, or every day, depending
on the required level of security.

The first way requires the cloud server to decapsulate
and obtain session keys, while the second way requires the
cloud server to encapsulate many session keys. Regardless
of the chosen method, the cloud server needs to perform a
lot of KEM computations in a timely manner. Hence, a high
throughput KEM proposed in this paper can be very useful
to offload compute-intensive KEM computations on GPU,
leaving the cloud server with more resources to handle the
other important computations.

V. CONCLUSION

In this paper, we are the first to show that the dot-product
instruction (DP2A) offered by modern NVIDIA GPU archi-
tectures can be used to accelerate lattice-based crypto-
graphic schemes. A highly optimized implementation of
matrix-matrix multiplication is presented, which allows the
proposed FrodoKEM implementation to be 4.37× faster
than the state-of-the-art work proposed by Gupta et al. [12].
A novel data structure is also proposed to enable the efficient
computation of the parallel polynomial convolution by using
the DP2A instruction. Note that these two proposed techniques
are generic, i.e., they can be adapted to any parallel processor
architectures that offer dot-product instructions. For instance,
the latest AMD GPU also supports similar dot-product instruc-
tions, e.g., V_DOT2_U32_U16 [43], which is a good candi-
date to adopt the proposed method to speed-up lattice-based
cryptographic schemes. Moreover, the proposed technique can
be used for LAC [44], which is a NIST round 2 candidate.
A more optimized implementation of random sample genera-
tion (through AES or SHAKE) can also help in improving the
performance of lattice-based cryptographic schemes on GPU
platforms.

REFERENCES

[1] Post-Quantum Cryptography: Round 3 Submissions. Accessed:
Jul. 18, 2021. [Online]. Available: https://csrc.nist.gov/projects/post-
quantum-cryptography/round-3-submissions

[2] J. Bos et al., “CRYSTALS-Kyber: A CCA-secure module-lattice-based
KEM,” in Proc. IEEE Eur. Symp. Secur. Privacy (EuroS&P), Apr. 2018,
pp. 353–367.

[3] L. Ducas, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler,
and D. Stehlé, “CRYSTALS-Dilithium: A lattice-based digital sig-
nature scheme,” IACR Trans. Cryptograph. Hardw. Embedded Syst.,
vol. 2018, no. 1, pp. 238–268, Nov. 2018. [Online]. Available:
https://tches.iacr.org/index.php/TCHES/article/view/839/791

[4] E. Alkim et al. (2020). FrodoKEM learning with errors key encapsu-
lation. [Online]. Available: https://csrc.nist.gov/CSRC/media/Projec
ts/post-quantum-cryptography/documents/round-
3/submissions/FrodoKEM-Round3.zip

[5] J.-P. D’Anvers et al. (2020). Saber: Mod-LWR based KEM. [Online].
Available: https://csrc.nist.gov/CSRC/media/Projects/post-quantum-
cryptography/documents/round-3/submissions/SABER-Round3.zip

[6] S. Dong et al., “Spartan: A sparsity-adaptive framework to accelerate
deep neural network training on GPUs,” IEEE Trans. Parallel Distrib.
Syst., vol. 32, no. 10, pp. 2448–2463, Oct. 2021.

[7] N. Tahmasebi, P. Boulanger, J. Yun, G. Fallone, M. Noga, and
K. Punithakumar, “Real-time lung tumor tracking using a CUDA enabled
nonrigid registration algorithm for MRI,” IEEE J. Translational Eng.
Health Med., vol. 8, pp. 1–8, 2020.

[8] A. Al Badawi, Y. Polyakov, K. M. M. Aung, B. Veeravalli, and
K. Rohloff, “Implementation and performance evaluation of RNS vari-
ants of the BFV homomorphic encryption scheme,” IEEE Trans. Emerg.
Topics Comput., vol. 9, no. 2, pp. 941–956, Apr. 2019.

[9] C. Tezcan, “Optimization of advanced encryption standard on graphics
processing units,” IEEE Access, vol. 9, pp. 67315–67326, 2021.

[10] W.-K. Lee, H. J. Seo, S. C. Seo, and S. O. Hwang, “Efficient
implementation of AES-CTR and AES-ECB on GPUs with applica-
tions for high-speed FrodoKEM and exhaustive key search,” IEEE
Trans. Circuits Syst. II, Exp. Briefs, early access, Apr. 4, 2022, doi:
10.1109/TCSII.2022.3164089.

[11] S. Sun, R. Zhang, and H. Ma, “Efficient parallelism of post-quantum sig-
nature scheme SPHINCS,” IEEE Trans. Parallel Distrib. Syst., vol. 31,
no. 11, pp. 2542–2555, Nov. 2020.

[12] N. Gupta, A. Jati, A. K. Chauhan, and A. Chattopadhyay, “PQC
acceleration using GPUs: FrodoKEM, NewHope, and kyber,” IEEE
Trans. Parallel Distrib. Syst., vol. 32, no. 3, pp. 575–586, Mar. 2021.

[13] W. K. Lee and S. O. Hwang, “High throughput implementation of
post-quantum key encapsulation and decapsulation on GPU for Internet
of Things applications,” IEEE Trans. Services Comput., early access,
Aug. 10, 2021, doi: 10.1109/TSC.2021.3103956.

[14] Y. Gao, J. Xu, and H. Wang, “CuNH: Efficient GPU implementations
of post-quantum KEM NewHope,” IEEE Trans. Parallel Distrib. Syst.,
vol. 33, no. 3, pp. 551–568, Mar. 2021.

[15] W.-K. Lee, H. Seo, Z. Zhang, and S. Hwang. (2021). Tensorcrypto.
Cryptology ePrint Archive, Report 2021/173. [Online]. Available:
https://ia.cr/2021/173

[16] A. Biswas and A. P. Chandrakasan, “CONV-SRAM: An energy-efficient
SRAM with in-memory dot-product computation for low-power convo-
lutional neural networks,” IEEE J. Solid-State Circuits, vol. 54, no. 1,
pp. 217–230, Jan. 2018.

[17] J. Vreca et al., “Accelerating deep learning inference in constrained
embedded devices using hardware loops and a dot product unit,” IEEE
Access, vol. 8, pp. 165913–165926, 2020.

[18] A64—SVE Instructions. [Online]. Available: https://developer.arm.com/d
ocumentation/ddi0596/2020-12/SVE-Instructions?lang=en

[19] CUDA C Programming Guide, Version 11.6, NVIDIA Corp., Santa
Clara, CA, USA, 2022.

[20] O. Regev, “New lattice-based cryptographic constructions,” J. ACM,
vols. 6–51, pp. 899–942, Nov. 2004, doi: 10.1145/1039488.1039490.

[21] J. Bos et al., “Frodo: Take off the ring! Practical, quantum-secure key
exchange from LWE,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., 2016, pp. 1006–1018.

[22] J. W. Bos, M. Ofner, J. Renes, T. Schneider, and C. V. Vredendaal, “The
matrix reloaded: Multiplication strategies in FrodoKEM,” in Proc. Int.
Conf. Cryptol. Netw. Secur. Springer, 2021, pp. 72–91.

[23] A. Banerjee, C. Peikert, and A. Rosen, “Pseudorandom func-
tions and lattices,” in Advances in Cryptology. 2012, pp. 719–737,
doi: 10.1007/978-3-642-29011-4_42.

[24] M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen. PQM4:
Post-Quantum Crypto Library for the ARM Cortex-M4. Accessed:
Aug. 31, 2021. [Online]. Available: https://github.com/mupq/pqm4

[25] H. Becker, J. M. B. Mera, A. Karmakar, J. Yiu, and
I. Verbauwhede, “Polynomial multiplication on embedded vector
architectures,” IACR Trans. Cryptograph. Hardw. Embedded Syst.,
vol. 2022, no. 1, pp. 482–505, Nov. 2021. [Online]. Available:
https://tches.iacr.org/index.php/TCHES/article/view/9305

[26] J. M. B. Mera, A. Karmakar, and I. Verbauwhede, “Time-memory
trade-off in Toom–Cook multiplication: An application to module-lattice
based cryptography,” IACR Trans. Cryptograph. Hardw. Embedded
Syst., vol. 2020, no. 2, pp. 222–244, Mar. 2020. [Online]. Available:
https://tches.iacr.org/index.php/TCHES/article/view/8550

[27] J. D’Anvers, A. Karmakar, S. S. Roy, and F. Vercauteren, “Saber:
Module-LWR based key exchange, CPA-secure encryption and CCA-
secure KEM,” in Advances in Cryptology (Lecture Notes in Com-
puter Science), vol. 10831, A. Joux, A. Nitaj, and T. Rachidi,
Eds. Marrakesh, Morocco: Springer, May 2018, pp. 282–305,
doi: 10.1007/978-3-319-89339-6_16.

[28] H. Seo, P. Sanal, A. Jalali, and R. Azarderakhsh, “Optimized imple-
mentation of SIKE round 2 on 64-bit ARM cortex—A processors,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. 8, pp. 2659–2671,
Aug. 2020.

[29] Y. Zhu et al., “LWRpro: An energy-efficient configurable crypto-
processor for module-LWR,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 68, no. 3, pp. 1146–1159, Mar. 2021.

Authorized licensed use limited to: Gachon University. Downloaded on June 13,2022 at 23:51:04 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TCSII.2022.3164089
http://dx.doi.org/10.1109/TSC.2021.3103956
http://dx.doi.org/10.1145/1039488.1039490
http://dx.doi.org/10.1007/978-3-642-29011-4_42
http://dx.doi.org/10.1007/978-3-319-89339-6_16

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

[30] J. M. Pollard, “The fast Fourier transform in a finite field” Math.
Comput., vol. 25, no. 114, pp. 365–374, 1971. [Online]. Available:
http://www.jstor.org/stable/2004932

[31] A. Karmakar, J. M. B. Mera, S. S. Roy, and I. Verbauwhede,
“Saber on ARM: CCA-secure module lattice-based key encapsula-
tion on ARM,” IACR Trans. Cryptograph. Hardw. Embedded Syst.,
vol. 2018, no. 3, pp. 243–266, Aug. 2018. [Online]. Available:
https://tches.iacr.org/index.php/TCHES/article/view/7275

[32] (2021). Compute Canada. Accessed: Oct. 10, 2021. [Online]. Available:
https://www.computecanada.ca/home/

[33] P. Pritzker and P. D. Gallagher, “SHA-3 standard: Permutation-based
hash and extendable-output functions,” Inf. Tech Lab. Nat. Inst. Stan-
dards Technol., Tech. Rep., 2014, pp. 1–35. Accessed: Nov. 1, 2021.
[Online]. Available: https://www.nist.gov/publications/sha-3-standard-
permutation-based-hash-and-extendable-output-functions

[34] W.-K. Lee, X.-F. Wong, B.-M. Goi, and R. C.-W. Phan, “CUDA-SSL:
SSL/TLS accelerated by GPU,” in Proc. Int. Carnahan Conf. Secur.
Technol. (ICCST), Oct. 2017, pp. 1–6.

[35] A. Karatsuba and Y. Ofman, “Multiplication of many-digital numbers
by automatic computers,” Dokl. Akad. Nauk SSSR vol. 145, no. 2,
pp. 293–294, Feb. 1962.

[36] A. L. Toom, “The complexity of a scheme of functional elements
realizing the multiplication of integers,” Soviet Math. Doklady, vol. 3,
no. 4, pp. 714–716, 1963.

[37] E. Alkim, Y. A. Bilgin, M. Cenk, and F. Gérard, “Cortex-M4 opti-
mizations for R,M LWE schemes,” IACR Trans. Cryptograph. Hardw.
Embedded Syst., vol. 2020, no. 3, pp. 336–357, Jun. 2020.

[38] E. Rescorla and T. Dierks, “The transport layer security (TLS) protocol
947 version 1.3,” Tech. Rep., 2018. Accessed: Feb. 1, 2022. [Online].
Available: https://tools.ietf.org/id/draft-ietf-tls-tls13-23.html

[39] C. Kaufman, P. Hoffman, Y. Nir, P. Eronen, and T. Kivinen, “Inter-
net key 949 exchange protocol version 2 (IKEv2),” RFC 5996,
Tech. Rep., Sep. 2010. Accessed: Feb. 1, 2022. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc5996

[40] (2021). Amazon EC2 P4d Instances. Accessed: Oct. 10, 2021. [Online].
Available: https://aws.amazon.com/ec2/instance-types/p4/

[41] (2021). NVIDIA GPUs on IBM Cloud Servers. Accessed: Oct. 10, 2021.
[Online]. Available: https://www.ibm.com/cloud/gpu

[42] F. Cirillo, D. Gomez, L. Diez, I. E. Maestro, T. B. J. Gilbert, and
R. Akhavan, “Smart city IoT services creation through large-scale
collaboration,” IEEE Internet Things J., vol. 7, no. 6, pp. 5267–5275,
Jun. 2020.

[43] RDNA 2 Instruction Set Architecture, Reference Guide, Advanced Micro
Devices. Accessed: Sep. 30, 2021. [Online]. Available: https://devel
oper.amd.com/wp-content/resources/RDNA2_Shader_ISA_Novembe%
r2020.pdf

[44] X. Lu et al., “LAC: Practical Ring-LWE based public-key encryp-
tion with byte-level modulus,” IACR Cryptol. ePrint Arch., vol. 2018,
p. 1009, 2018.

Wai-Kong Lee (Member, IEEE) received the B.Eng.
and M.Sc. degrees in electronics from Multimedia
University in 2006 and 2009, respectively, and the
Ph.D. degree in engineering from the Universiti
Tunku Abdul Rahman, Malaysia, in 2018. He is
currently a Post-Doctoral Researcher with Gachon
University, South Korea. His research interests are
in the areas of cryptography, numerical algorithms,
GPU computing, the Internet of Things, and energy
harvesting.

Hwajeong Seo (Member, IEEE) received the B.S.,
M.S., and Ph.D. degrees in computer engineering
from Pusan National University. He is currently an
Assistant Professor with Hansung University. His
research interest includes cryptographic engineering.

Seong Oun Hwang (Senior Member, IEEE)
received the B.S. degree in mathematics from Seoul
National University in 1993, the M.S. degree in
information and communications engineering from
the Pohang University of Science and Technology in
1998, and the Ph.D. degree in computer science from
the Korea Advanced Institute of Science and Tech-
nology, South Korea, in 2004. From 1994 to 1996,
he worked as a Software Engineer with LG-CNS
Systems Inc. From 1998 to 2007, he worked as a
Senior Researcher with the Electronics and Telecom-

munications Research Institute (ETRI). He worked as a Professor with the
Department of Software and Communications Engineering, Hongik Univer-
sity, from 2008 to 2019. He is currently a Professor with the Department
of Computer Engineering, Gachon University. His research interests include
cryptography, cybersecurity, and artificial intelligence. He is an Editor of
ETRI Journal.

Ramachandra Achar (Fellow, IEEE) received
the B.Eng. degree in electronics engineering from
Bangalore University, India, in 1990, the M.Eng.
degree in micro-electronics from the Birla Institute
of Technology and Science, Pilani, India, in 1992,
and the Ph.D. degree in electrical engineering from
Carleton University in 1998. He is currently a Pro-
fessor with the Department of Electronics Engineer-
ing, Carleton University. Prior to joining Carleton
University Faculty in 2000, he worked in various
capacities in leading research laboratories, including

the T. J. Watson Research Center, IBM, New York, in 1995, Larsen and
Toubro Engineers Ltd., Mysore, in 1992, the Central Electronics Engineering
Research Institute, Pilani, India, in 1992, and the Indian Institute of Science,
Bengaluru, India, in 1990. His research interests include signal/power integrity
analysis, circuit simulation, parallel and numerical algorithms, EMC/EMI
analysis, and mixed-domain analysis. He is a fellow of the Engineers Institute
of Canada. He is a Practicing Professional Engineer of Ontario.

Angshuman Karmakar received the B.E. degree
in computer science and engineering from Jadavpur
University, Kolkata, the M.Tech. degree in computer
science and engineering from the Indian Institute
of Technology, Kharagpur, and the Ph.D. degree
from Katholieke Universiteit Leuven (KU Leuven),
Belgium, for his dissertation titled “Design and
Implementation Aspects of Post-Quantum Cryptog-
raphy.” He is one of the primary designers of the
post-quantum Saber KEM scheme which is one of
the finalists in the NIST’s post-quantum standardiza-

tion procedure. He is currently an FWO Post-Doctoral Fellow with the COSIC
Research Group, KU Leuven. His research interest spans different aspects of
lattice-based post-quantum cryptography and computation on encrypted data.

Jose Maria Bermudo Mera received the B.Eng.
and M.Sc. degrees in telecommunications engineer-
ing from the Technical University of Madrid, Spain.
He is currently pursuing the Ph.D. degree with
the COSIC Research Group, Katholieke Universiteit
Leuven, Belgium, with a research project titled
“Implementation Aspects of Lattice-Based Cryptog-
raphy.” He is a Team Member of the post-quantum
Saber key-encapsulation mechanism scheme which
is one of the finalists in the NIST’s post-quantum
standardization procedure. His research interests

include the implementation of cryptography on software and hardware plat-
forms and physical security.

Authorized licensed use limited to: Gachon University. Downloaded on June 13,2022 at 23:51:04 UTC from IEEE Xplore. Restrictions apply.

