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Abstract- In this paper, we introduce the concept of Water
flow Driven Sensor Networks for leakage and contamination
monitoring in urban water distribution systems. The unique
aspect of our work is that the sensor network can be deployed in
the underground water network with only access to connection
points (through manholes) and driven only by water harvested
energy so as to avoid access to AC power or need for frequent
battery changes. The main problems addressed are (a) adaptation
of the network to the available energy in order to maximize
leak/contamination detection, and (b) minimal artificial water
circulation or leakage to improve detectability during periods
of almost zero natural water flow. The paper shows, through
extensive simulations, that the proposed approach can drastically
reduce the leakage/contamination reporting time (more than 3
hours to ∼30 minutes), and the adaptation can reduce this
circulation by ∼33% and yet enhance the collected/transmitted
data by 30%.

I. INTRODUCTION

Water Distribution Systems (WDS) carry fresh water from
supply sources and storage reservoirs/tanks to industrial, com-
mercial and residential areas through a complex web of
pipeline systems. However, fresh water supplies continue to
dwindle and by 2025, 2/3rd of the world will experience water
stress and about 25% will experience abject water scarcity [1].
While the stress on urban water systems continues to increase
due to movement of population to urban areas, most of these
systems are in poor shape and subject to significant amount of
water leaks, seepage, and contamination [2]. In the US, most
water systems are 100+ years old, particularly in large cities
on the east coast. For example, a 2010 audit in Philadelphia
revealed 26% water loss due to leakage and another 8% due
to metering inaccuracies, water theft, and data handling and
management issues [3]. A comprehensive survey in [4] shows
loss percentages ranging from 15% to 35% over 36 cities in
US. Europe loses more than 25% of its water to leaks, with
some countries reaching 50% mark [5]. Contamination goes
hand in hand with leakage due to seepage through leaks, rusted
pipes, internal build ups, operational mistakes, etc. Given this
state of affairs, there is a great urgency to develop ICT based
solutions that can detect and localize leaks and contamination
much more cheaply than mostly manual procedures followed
today. A quick detection also helps to increase the working
lifetime of these systems and is immensely valuable to cash-
strapped water distribution utilities.

The main objective of this paper is to develop a sensor
network that continuously monitors water leaks and contam-
ination in water pipes and reports relevant data to a control
station that can do the necessary analytics for detection and
localization. Though conceptually straightforward, effective
solutions to this problem are extremely challenging, and most

proposed solutions in the literature are not very practical. The
first major difficulty is that water pipes are mostly buried
underground, and only accessible at connection points through
manholes. Thus deploying sensors on pipes at arbitrary points,
as discussed in many proposals such as PipeNet [6], MISE-
PIPE [7] is infeasible or too expensive for cash strapped
utilities. A related difficulty is that manholes rarely have access
to AC power, and changing batteries regularly in manholes can
be quite expensive. Harvesting solar energy is also impractical
since the panels need to stick out of the manhole.

To address these issues, in this paper we consider water
flow driven sensor networks (WDSN) that are entirely powered
by water flow via a small hydro fan unit. We use a small super-
capacitor for storing the harvested energy, primarily because
of the long cycle life and high charge-discharge efficiency of
current super-capacitors [8]. The sensor node is assumed to
be at pipe connection or valve points only, installed through
the manholes. Its lower part dips into the water for energy
harvesting and measurement of contamination, velocity, etc.,
and the upper part sports the energy storage, voltage booster,
regulator and computing/communications unit. We assume that
the upper part has a suitable wireless radio (e.g., WiFi) with
antennas embedded on the exposed side of manhole covers
(and perhaps sticking out if practical).

Due to the varying flow rate in the pipes (driven by water
consumption), the availability of harvested energy varies both
in spatial and temporal domains. In branch pipes, the flow rate
may vary significantly and drop to near zero late at night. Thus
it is essential to adapt the data collection and transmission to
the available energy profile. By exploiting the highly correlated
detection ability of the individual sensor nodes, we develop
a dynamic sampling and transmission rate adaptation scheme
based on individual node’s energy budget. Furthermore, we
also study the role of artificial water circulation and/or leakage
mechanisms in keeping the network alive during low natural
flow rates and thereby improve the contamination/leakage
detection capabilities. Thus, the twin objectives of the paper
are optimal rate adaptation coupled with an optimal mechanism
for artificial water circulation when needed. We assume that
all of the analytics are done at the central control node that
has adequate computing and electric power.

The paper quantifies the advantages of our approach via
extensive simulation studies using available measurement data
and shows that the proposed mechanism can reduce reporting
time from more than 3 hours to ∼30 minutes during late nights
with only very small artificial circulation when needed. To
the best of our knowledge, this is the first work on water
distribution systems of its kind – one that tries to achieve
optimal monitoring under the real-world practical constraints
of the water networks.978-1-4799-8461-9/15/$31.00 c©2015 IEEE



The outline of the paper is as follows. Section II describes
the WDSN and the artificial water circulation mechanism.
Section III then develops a WDSN charging model to provide
adequate energy to the sensor network during low water
flow periods. Section IV-V address the problem of sens-
ing/transmission rate adaptation based on the node’s energy
budget. Section VI then presents the evaluation of the scheme.

II. WATER FLOW DRIVEN SENSOR NETWORK (WDSN)

Fig. 1. A sample water distribution
system.

We consider a large water
distribution network such as
the one in Fig 1 (taken from
Philadelphia’s water network
and showing only a tiny part
of the entire network). Typi-
cal water distribution system
consists of main lines running
from the reservoirs, and fur-
ther divided into sub-mains
and branch lines from where
service connections are given
to the customers. Water dis-
tribution networks are nor-
mally divided up into District Metering Areas or DMAs, with
ability to not only measure relevant parameters such as inflows,
outflows, flow head (pressure), etc., but also to control them.
In dense urban areas, a DMA may consist of couple of city
blocks, and we consider that as the object of study here.

We assume a software based leak/contamination detection
scheme, where the whole DMA is modeled in a simulator
[9]. The sensor nodes placed at different sections of the DMA
record and report different contamination monitoring param-
eters along with pressure, temperature, velocity etc. These
sensor readings are then compared against the simulated values
at those points. If the sensor data from a node shows a wide
variation from the simulator’s output, a leak/contamination is
suspected in the nearby regions of the sensor node.

A. Network Operation
As stated earlier, we assume that the sensing and com-

munication nodes are deployed only at connection points and
harvest energy from flowing water. We assume that the nodes
are not time synchronized and use the basic Low Power
Listening (LPL) [10] principle to conserve energy. In LPL,
idle receivers run on a suitable sleep/awake duty cycle, and
the senders always prepend their message with a sufficiently
long preamble to ensure communication with a receiver caught
sleeping. In addition, we also assume a set of strategically
deployed sink nodes for data collection. These sink nodes are
assumed to have a steady source of power (e.g., AC or long
lasting batteries) and have a second communication interface
(likely wired) to the central control node for the DMA. We
assume that the sink nodes are deployed separate from the
limitation of manhole locations – based on accessibility, power
availability, and security considerations. All non-sink nodes
collect, store and forward their sensing data and remaining
energy to their nearest sink node using single-hop, direct
WiFi/long-range Zigbee communication. While, in general,
multi-hop communication may be required to cover the entire
DMA, and can be enabled via LPL mechanism, we limit
ourselves to single hop communication in this paper. The single

hop limitation may require deploying multiple sink nodes in a
DMA, but it suffices to pretend that there is a single virtual sink
node for the entire DMA. The reason is that we are assuming
sink nodes to be energy sufficient and always active, and thus
the additional details of communication with the control center
are not interesting for this paper.
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Fig. 2. Pnet with different water
velocities

The energy harvested by
the normal sensor nodes in a
WDSN depends on the wa-
ter flow rate. We assume that
each node is equipped with a
suitable fan based harvester,
where kinetic energy of the
streaming fluid rotates the
blade and generates electric-
ity. The basic equations gov-
erning this energy conversion
are well established [11]. The
kinetic power (in Watts) of the moving fluid at velocity v (m/s),
passing through the fan of area A (m2) is given by

P = ∂
∂t

(
1
2
mv2

)
= 1

2
v2 ∂m

∂t
= 1

2
v2ρAv = 1

2
ρAv3 (1)

where m is the mass of the fluid and ρ is the density
(1000kg/m3 for water). Let ηfd denote the fluid-dynamic
efficiency of the rotating body, ηem the electro-mechanical
conversion efficiency, and ηsc the charging efficiency of super-
capacitor. Then the net electrical power for super-capacitor
charging is

Pnet = ηfdηemηsc = ηe.P (2)

where ηe denotes the overall efficiency. Needless to say, ηe
depends on a large variety of factors, and is the domain of
mechanical/electrical design. Here we only assume a plausible
range for ηe – usually not much better than 1̃0%. Fig. 2 shows
the final harvested power Pnet as a function of water flow rate
with 2.5” diameter fan and ηe = 5−15%. The most interesting
aspect of this graph is that at very low water velocities, the
harvested energy is effectively zero, thus requiring effective
management to ensure operation during low flow periods,
particularly late at night when the flow rate may stay low for
hours.

B. Keeping Network Alive
The simplest approach to keep the WDSN alive is to simply

choose adequate capacity super-capacitors to get through long
lull periods. However, this approach not only makes the
solution very expensive but also ignores an important aspect
of water distribution networks: if the flow rate is very low,
the leakage rate and contamination spread rates will also be
very low. Thus a better idea is to adapt the sampling and
transmission rates to the charging rate and thereby provide
effective coverage without needing large energy storage. In
fact, there is a sort of inherent compensation mechanism
here: if a large leak develops during the lull period, the
relevant sensors will automatically get charged up and become
operational. Similarly, a very leaky system may always provide
adequate harvestable energy, and large capacitors are wasteful.
Nevertheless, it may undesirable to let the contamination
monitoring frequency go down drastically during long lull
periods. For this, we propose an artificial water circulation
mechanism within the DMA to replenish super-capacitors.



Real water distribution systems have pumps attached at the
reservoirs or tanks, and increasingly it is possible to operate
them remotely from the control room [12]. The pumps can
inject or extract water from the system at a certain regulated
rates, which we use to generate an occasional artificial water
circulation. Such water circulation does not entail any water
loss – it is simply a circular movement among reservoirs as
shown in Fig 3. Here the water injected or taken out of the
system from nodes 1 and 2, and would also result in additional
water flows in other nearby loops as shown. Obviously, the
impact of an isolate circulation will go down rapidly as we
move away from circulation area. In other words, if we want
a significant artificial water flow in segments that are multiple
hops away from the reservoirs and pumps (e.g., segment 5-6
in Fig 3), we would need substantial artificial flow rate which
may not be possible or desirable. In those cases, we can deploy
another trick – an artificial drainage of water at certain points
(e.g., at node 5 or 6). This capability – operable from the
control room – is also becoming increasingly available in water
systems, mostly for the purposes of flushing the pipes. For
obvious reasons, we want to minimize such artificial leakage.
Artificial circulation and leakage mechanisms may also be
useful without automated control, if manual action is very
infrequent.

Fig. 3. Graphical representation of a simple
water distribution network.

Obviously, there
is a tradeoff between
the capacity (and
hence cost/size)
of super-capacitors
and the frequency
and magnitude of
the artificial flows
created. Large super-
capacitors can be
charged by 1-2
significant flows
during the night, but smaller ones will require many smaller
flows. It is possible to define an optimization problem that
determines super-capacitor sizing based on all these factors,
but we do not delve into that issue for lack of space. Instead,
we discuss a model for calculating the required flow rate at
different connection points to provide sufficient harvesting
energy for all the sensor nodes. This aspect is naturally
coupled with the basic rate adaptation mechanism, which is
required to minimize need for circulation.

III. WDSN ARTIFICIAL WATER CIRCULATION MODEL

We assume that all sensor nodes in the DMA are charged
for a short charging time τ , whenever the voltage of certain
number of sensor nodes drops below a threshold Vthresh. Let
Vini and Vtarget denote the initial and required target voltages,
and C the capacitance of the super-capacitor. Then the energy
stored in the super-capacitor by charging is given by:

Pnet.τ ≥
1

2
C
(
V 2

target − V 2
ini

)
(3)

where Pnet is the charging power in eqn (2). It follows that
the required water velocity is given by:

v ≥
[
C
(
V 2

target − V 2
ini

)
/τ.ρ.A.ηe

] 1
3 = V (assume) (4)

Thus after charging, all nodes will have voltages of at least
Vtarget. (Note that the nodes that are almost fully charged al-

ready may not take much additional charge.) The artificial wa-
ter flow for charging can be generated only at pumping points
PP, which are the pumps associated with reservoirs/tanks.
From PPs, water can be pumped in or taken out of the system
at certain regulated rates. In reality there is a maximum limit
of water flow-rate that the pumping points can generate or
the pipes can tolerate. We now describe three optimization
problems that differ based on their design objectives.

MIN DIFF: As the pumping points are limited, both in
number as well as their pumping rates, the minimum velocity
requirements of all the sensor nodes (eqn (4)) may not be met.
Thus the objective of MIN DIFF is to minimize the sum of
the differences between the required velocity and the achieved
velocity at all the pipe-sections where the sensor nodes are
placed. Let ai, Qj , Rj denote the nodal flows at node i, pipe
discharges, and pipe resistances of pipe j respectively. Let vi
and Ai denote the water velocity and area of the i-th pipe
respectively, and Vj the minimum required velocity of the
sensor node at pipe j. Let V max

j denote the maximum water
velocity supported at pipe segment j, and amax

i the maximum
flow supported at pumping point i. Let C and L denote the
number of connection points and loops in the distribution
system respectively, P the set of all pipes, and S the subset
where sensor nodes are placed. Then:

Minimize
∑
j∈S max (0,Vj − vj)

subject to vj =
|Qj |
Aj
≤ V max

j , ∀j ∈ P

±ai ±
∑

pipe j
connected to i

Qj = 0, ∀i = 1, 2, ...,C

±
∑

pipe j
∈ Ll

RjQ
2
j = 0, ∀Ll = L1, L2, ..., LL

|ai| ≤ amax
i ∀i ∈ PP (5)

We have used the Darcy-Weisbach formula in eqn (5) to calcu-
late the frictional head loss. Among the non-pumping points, if
there exists some background flow at some connection point i,
ai is assigned to that background flow. Otherwise ai is assumed
to be zero, at the non-pumping points. These background flows
can be estimated from the water flow measurements reported
by the sensor nodes.

In eqn (5) the first set of constraints ensures that the
water velocity through a pipe segment j (which is equal to its
volumetric flow rate/discharge divided by the cross-sectional
area of the pipe segment) is less than the maximum water
velocity V max

j that the pipe segment can support. The second
set of constraints are the node-flow continuity relationships
that ensure that the sum of the inflows and outflows at all
connection points are zero. The third set of constraints are
the loop-head loss relationships that state that the sum of
head losses in pipes forming a loop is zero. ± sign is used
in these two constraints to take into account the direction of
the water flow assumed. The fourth constraint states that the
water-flow rate at all the pumping point i is less than some
maximum threshold amax

i . Note that when the objective value
of MIN DIFF is zero, the pumping points can satisfy the
velocity requirements of all the sensor nodes.

MIN PUMPING: If the velocity requirements of all sen-
sor nodes can be satisfied, we would like to pump water in
such way that the amount of water pumped is minimized. Note



that MIN PUMPING is solved only if the result of MIN DIFF
gives zero objective value. Given the notations and explanation
of MIN DIFF, the following formulation should be clear and
is not explained further:

Minimize
∑
i∈PP |ai|

subject to vj =
|Qj |
Aj
≤ V max

j , ∀j ∈ P

vk ≥ Vk, ∀k ∈ S
±ai ±

∑
pipe j

connected to i

Qj = 0, ∀i = 1, 2, ...,C

±
∑

pipe j
∈ Ll

RjQ
2
j = 0, ∀Ll = L1, L2, ..., LL

|ai| ≤ amax
i ∀i ∈ PP (6)

MIN DISCHARGE: This problem is a variant of
MIN PUMPING problem where we assume the existence of a
set of discharge (or deliberate leakage) points LP as well, from
where water can be deliberately leaked at different regulated
rates. As the number of pumping points is limited, the idea is
to discharge/leak some amount of water (only for the charging
time) to generate certain water-flow at few pipe-sections that
keeps the sensor nodes running. Since the discharge wastes
water, we want to minimize it. This can be modeled as follows:

Minimize
∑
i∈LP |ai|

subject to vj =
|Qj |
Aj
≤ V max

j , ∀j ∈ P

vk ≥ Vk, ∀k ∈ S
±ai ±

∑
pipe j

connected to i

Qj = 0, ∀i = 1, 2, ...,C

±
∑

pipe j
∈ Ll

RjQ
2
j = 0, ∀Ll = L1, L2, ..., LL

|ai| ≤ amax
i ∀i ∈ PP ∪ LP (7)

In the above formulation, the zero objective value means that
without any water discharge (waste), the pumping points can
satisfy the node’s demands. In that case the secondary objective
of maintaining a minimum flow-rate at the pumping points, can
be achieved by again solving the MIN PUMPING problem
as before.

We illustrate these problems using the simple example
in Fig. 3. Let us assume that the water is pumped in from
reservoir 1 and pumped out from reservoir 2. Let nodes 3-
6 be discharge points, with discharge rates of a3-a6. Thus
the node-flow continuity relationships and the loop-head loss
relationships are as follows:

a1 −Q1 −Q2 = 0 Q1 − a2 −Q3 = 0

Q3 − a3 −Q4 −Q6 = 0 Q4 +Q2 − a4 −Q5 = 0

Q5 +Q7 − a5 = 0 Q6 − a6 −Q7 = 0

R2Q
2
2 −R4Q

2
4 −R3Q

2
3 −R1Q

2
1 = 0

R5Q
2
5 −R7Q

2
7 −R6Q

2
6 +R4Q

2
4 = 0

(8)

We solve the above optimization problems for this case using
AMPL, which is a modeling language for solving large-
scale optimization problems [13]. The necessary parameters
are listed in Table I. The maximum pumping capacity amax

(assumed to be 0.069 m3/s in Table I) corresponds to a flow
rate of 7 ft/sec in a pipe with 8 inches diameter. Fig. 4 shows
the variation of

∑
j∈P max (0,Vj − vj) with different charging

TABLE I. PARAMETERS USED

Var Values Var Values Var Values
ρ 1000 kg/m3 Fan diameter 2.5 inch Pipe diameter 8 inch
amax 0.069 m3/s V max

j 7 ft/sec C 25 F
Vini 0.9 V Vtarget 1.5 - 2 V ηe 10%
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times. As expected, the objective value decreases with the
increase in charging time and with reduced target voltage
Vtarget. Fig. 5 shows the total amount of water pumped in
and out through the PPs, with the variation of charging time.
In Fig. 5, initially the optimization problem MIN PUMPING
is infeasible, so there are no points in the graph. When the
objective value of MIN DIFF is zero, MIN PUMPING starts
giving feasible solutions, which is also a decreasing function
of charging time.
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Fig. 6 shows the total
amount of discharge with dif-
ferent charging times, where
the maximum discharge rate
is assumed to be same as
the maximum pumping rates.
Note that Fig. 4 and Fig. 6
show a strong similarity, this
is because whenever there is a
non-zero difference between
the required and achieved ve-
locity in MIN DIFF, there
needs to be some non-zero
discharges in MIN DISCHARGE. Also the total discharges
decrease with increasing charging time, as the sensor nodes
get more time to replenish their super-capacitors.

IV. SAMPLING AND TRANSMISSION RATE ADAPTATION

As discussed earlier, adaptation of the measure-
ment/transmission activity to current state of the charge
in super-capacitors is crucial for maintaining maximal
coverage of the leakage/contamination detection activity. This
is true even with artificial water circulation, since sensor
nodes in certain segments of the water network may be
difficult to charge effectively.

In general, a set of sensor nodes in a vicinity may have
significant dependency with respect to water flows and hence
their chargeability and leakage/contamination detection perfor-
mance. We can consider these nodes as forming a coalition
in the game theoretic sense which can be exploited for im-
proved performance. Coalition can be formed by simulating
leaks/contaminations at different pipe sections, using any com-
mercial simulator such as Water-GEMS [9] and by looking
at the inter-dependencies among the detection abilities of the
individual nodes, i.e. if there is a leak/contamination at any
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pipe section in a coalition, at least few sensor nodes are able
to detect it. The coalition members can collaboratively adapt
their sampling rates based on the individual node’s energy
availability, i.e. the low sampling rate of the sensor nodes with
low harvested energy is compensated by the higher sampling
rate of the nodes with higher energy. Such a mechanism is quite
different from the individual node-based rate/energy allocation
schemes discussed in the literature [14], [15].

We assume that time is divided into intervals of T time
units. The sampling rates are updated periodically in every
interval as follows. All nodes keep track of their average
harvested energy in each interval. Based on their historical
energy profiles, they predict their expected harvested energy
for the next interval, which is then used by the sensor nodes to
calculate their maximum possible sampling rate, as described
in section IV-A. The maximum possible sampling rate is
broadcast using beacon messages. The sink uses these rates
to compute the optimal sampling rates of individual nodes and
broadcasts by sending beacons, as described in section IV-B.

A. Predicting Energy Harvesting

Fig. 7 shows the conceptual model for energy harvesting.
Available energy is stored in the energy queue (EQ) which is a
super-capacitor in our case. The sampled values are stored in
a volatile RAM, which we call data queue (DQ). While trans-
mitting packets, a sensor node takes ` items from the RAM
with `min ≤ ` ≤ `max. Here `min is the minimum number of
samples that a node will accumulate before transmitting if it
has enough energy to do immediate transmission. On the other
hand, if the node is low on energy, it will continue sampling
and storing samples in the RAM (if possible). When the next
energy burst arrives, it will transmit all accumulated samples
up to the limit of `max.

Each sensor node estimates the energy arrival in its super-
capacitor in periodic intervals of T using a normalized least
mean square (NLMS) adaptive filter. In NLMS filter, historical
harvested energy profile is stored in the vector Et−1. Based
on this profile, predicted harvested energy for the next interval
λt is calculated by a dot product between Et−1 and the
coefficients of the adaptive filter Wt−1 using λt = Et−1Wt−1

and the error et is recorded. The filter coefficient is then
modified as:

Wt = Wt−1 +
s.et.Et−1

1 + |Et−1|2
(9)

where s is the step size of the filter. The super-capacitor
leakage power and average power consumption due to different
operations (sensing/transmission/reception etc) are assumed to

be µl and µe respectively. The average power consumption
µe needs to be adapted based on the energy availability to
maintain the energy conservation, i.e.

Ae + λt − (µe + µl)T ≥ 0 ∴ µe ≤
Ae + λt

T
− µl (10)

where Ae is the amount of available energy at the beginning
of that interval t.

The sampled values are stored in the DQ with an arrival
rate of r, while the packet transmission rate is µp. Note that
λt and µe are expressed in units of energy, whereas r is
expressed in number of samples. We calculate the maximum
sampling rate that the sensor node can support in the next
time interval, without DQ buffer overflow. Assume that at the
time of computing the maximum sampling rate, the number of
packets waiting in the DQ is N . The DQ capacity is assumed
to be C. To maintain the energy budget, µe = A.r+B.µp+C,
where A, B and C are constants that capture the power
consumption due to sensing, transmission and other operations
(beacon transmission/reception, processing etc) respectively.
To avoid DQ buffer overflow

N + (r − `m.µp).T ≤ C

∴ r ≤ C −N
T

+ `m.µp =
C −N
T

+ `m
µe −A.r − C

B

∴ r ≤
C−N
T

+ `m
µe−C
B

1 + `m.
A
B

= R (assume)

(11)

which gives the upper limit on the sampling rate. All sensor
nodes periodically calculate their maximum sampling rate R
and broadcast them in their beacon messages, which is used by
the sink to determine the sampling rates of all the individual
sensor nodes.

B. Computing Optimal Sampling Rate

Upon receiving the maximum sampling rate R from all the
sensor nodes, the sink formulates the sampling rate adaptation
problem to maximize a certain utility function, under the
required energy constraints. Suppose that there are N nodes in
a coalition. As the detection abilities of the sensor nodes in a
coalition are highly correlated, the sensor nodes in a coalition
can share the data sampling task among themselves for reduced
energy consumption, based on their available harvested energy.
We define the utility of a node i by considering two factors

• The sensing rate ri. As ri increases the number of
sampled points increases and so does the utility.

• In a WDSN, main lines are generally more important than
branch lines, as water from the main lines are distributed to
different sub-mains and branches. Thus a sensor node placed
in a main line is considered to be more important than sensors
placed in branches. Thus we assign a relative weight αi to the
sampled data of node i, based on its position in the WDSN.

Beyond the distributional hierarchy, there may be other
considerations in assigning the weights αi, as determined
by water system personnel. For example, the water pressure
often varies significantly within a DMA, and nodes in higher
pressure area can be given higher weights because of greater
water loss and more potential damage due to leaks there. For
contamination monitoring, one can assign weights to the nodes
that are close to the reservoirs, because any contamination



close to the reservoir needs to be detected sooner, to avoid
its spread. Higher weights can also be assigned to older and
more damage prone pipes. Also in a coalition, the detection
abilities of certain sensor nodes may be higher compared to
others, thus those nodes can be assigned higher weights.

Considering these factors, the weighted proportional fair-
ness within a coalition can be achieved by modeling the utility
function of node i as Ui(ri) = αi.log(ri), where αi is the
normalized weight. Our objective is to maximize the overall
utility of the coalition, i.e.

∑N
i=1 Ui(ri), after satisfying the

energy budget of individual nodes. We also assume that the
sink places an upper limit of M samples/interval from a
coalition, to avoid redundant sampling, i.e.

∑N
i=1 ri.T ≤ M ,

or
∑N
i=1 ri ≤

M
T = M. Intuitively we can think that the sensor

nodes in a coalition work as a single virtual sensor node that
senses and reports at a maximum rate of M samples/interval.
M is basically a controlling parameter that controls the overall
sampling rate of the coalition, i.e. if the sink wants to receive
the samples more frequently, it increases M and vice versa.
Thus the optimization problem can be written as

Maximize
N∑
i=1

Ui(ri)

subject to
N∑
i=1

ri ≤ M, ri ≤ Ri,∀i, ri ≥ 0, ∀i
(12)

where ri ≤ Ri is the maximum sampling rate constraint
(MSRC) obtained from equation (11). As log is a concave
function, this problem is a convex optimization problem,
that can be solved centrally by solving the corresponding
Lagrangian and KKT conditions. We propose an algorithm to
solve this problem, which is presented in the section V.

Algorithm 1 Collaborative Adaptive Rate Allocation scheme (CARA)
1: INPUT : Maximum sampling rate Ri, utility weights αi and M.
2: OUTPUT : Sampling rates ri ∀i ∈ {1, 2, ..., N}.
3: A={φ}; U={1, ..., N};
4: for each node i = {1, 2, ..., N} do
5: ri = αi∑

i∈U αi
M;

6: diff[i] = Ri − ri;
7: end for
8: for each node k = {1, 2, ..., N} do
9: Sort node ∈ U in increasing order of diff[k];

10: Put them in order in list L;
11: j = L[0];
12: if diff[j] < 0 then
13: rj = Rj ; A = A ∪ j; U = U\j;
14: for each node i = {1, 2, ..., N} AND i ∈ U do
15: ri = ri + αi∑

i∈U αi
.abs(diff[j]);

16: diff[i] = Ri − ri;
17: end for
18: diff[j] = 0;
19: else
20: EXIT
21: end if
22: end for
23: return ri ∀i

V. PROPOSED RATE ADAPTATION SCHEME CARA

Based on the steps described above, we now describe our
proposed Collaborative and Adaptive Rate Allocation (CARA)
scheme, as shown in Algorithm 1. In this algorithm, the sink
maintains two sets of nodes: unassigned U and assigned A.
Initially, all nodes belong to set U , but are transferred to
set A as rates are assigned for them. The sink first assigns

the sampling rates to each sensor i as ri = αi∑
i∈U αi

M
(line 4-7). The difference between assigned sampling rate ri
and maximum sampling rate Ri is stored in diff[i]. After
this sampling rate assignment, if the MSRC (obtained from
equation (11)) is violated for any node j, then diff[j] < 0.
For those nodes, the sink assigns their rates as their maximum
rate Rj (line 11) and divides the diff[j] fairly among other
nodes (line 14-17). This process is continued until the MSRC
is satisfied for all the nodes. The calculated sampling rates are
broadcasted to all the sensor nodes.

Optimality of the proposed scheme: The proposed scheme
assigns the sampling rate fairly to all the nodes based on
their weighted utilities considering the energy constraints. We
prove that the proposed scheme is optimal under the given
assumptions. We first propose and prove Lemma 1 and Lemma
2 as follows.

Lemma 1. The solution of the optimization problem:

Max
N∑
i=1

Ui(ri) =

N∑
i=1

αi.log(ri) s.t.

N∑
i=1

ri ≤M, ri ≥ 0,∀i

(13)
is ri = αi∑

i αi
M, ∀ i = {1, 2, ..., N}.

Proof: Clearly ri cannot be zero for any i. This is because
making ri = 0 makes the objective value −∞. Thus the last
constraint is inactive. Then by solving the KKT conditions of
problem (13), we obtain ri = αi∑

i αi
M (details are skipped due

to space limitations).

Lemma 2. If the sampling rate of a node is reduced by an
amount δ from the optimal rate in problem (13), and divided
among others proportionately, then the overall objective func-
tion is a decreasing function of δ.

Proof: Let us assume that for any node j, we assign
an amount αj∑

i αi
M − δ and divide δ among all others pro-

portionately, so that all nodes i 6= j are assigned a rate of
αi∑
i αi

M+ αi∑
i6=j αi

δ. Assume Γ =
∑N
i=1 αi and ∆ =

∑
i6=j αi.

If the new objective function if F (.) then we can show that

F = αj log
(αj

Γ
M− δ

)
+
∑
i 6=j

αilog
(αi

Γ
M +

αi

∆
δ
)

∂F

∂δ
= −

αj
αj

Γ
M− δ

+
∑
i 6=j

αi

∆
(

M
Γ

+ δ
∆

) < 0
(14)

Thus F (.) is a strictly decreasing function of δ.

Theorem 3. The proposed CARA algorithm gives optimal
solution for problem (12).

Proof: From Lemma 1, we get ri = αi

Γ M for the
optimization problem (13). Now we introduce the maximum
sampling rate constraint (MSRC) ri ≤ Ri in problem (13).
Suppose rj =

αj

Γ M violates the MSRC of node j, i.e. rj > Rj
and diff[j] = Rj − rj = Rj − αj

Γ M.

We consider this problem in two steps. In the first step, we
divide a total sampling rate of M̃ = Γ

αj
Rj over N nodes. Then

using Lemma 1, rj =
αj

Γ .
Γ
αj

Rj = Rj . Thus node j’s MSRC
is satisfied. For any other node i, r̂i = αi

Γ .
Γ
αj
.Ri = αi

αj
Rj . At

this point node j’s utility cannot be improved any further by
changing rj (reducing rj results in degradation of the overall
objective as shown in Lemma 2).



Now we introduce M− M̃ amount of additional sampling
rates to this system. Clearly node j cannot be assigned more
rates. Thus we assign M − M̃ among all i 6= j fairly. Using
Lemma 1, the new rates of all i 6= j are

r
new
i =r̂i +

αi

∆
.
(
M− M̃

)
=
αi

αj

Rj +
αi

∆
.M−

αi

∆
.

Γ

αj

.Rj

=
αi

Γ
.M +

αi

∆

(
αj

Γ
.M− Rj

)
= ri +

αi∑
i6=j

αi

.abs (diff[j]) (15)

which is same as the rate assigned according to Algorithm 1
(line 15). At this stage, if any other nodes violate the MSRC
constraint, we do similar operation till the MSRC constraint
is fulfilled for all the nodes. Thus the optimal sampling rates
are obtained for all the nodes.

Complexity analysis: Algorithm 1 runs in O(N2logN) time
when the number of nodes is N . We first focus on one iteration
of the outer for loop of line 8-22. The sorting operation in
line 9 takes O(N logN) time. The inner for loop of lines 14-
17 take additional O(N) time. As the outer loop runs O(N)
times, hence the time complexity of the whole scheme is
O(N2logN +N2) = O(N2logN).
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Fig. 9. (a) Hourly water usage of a single-family home for five days (s =
0.8). (b) Convergence of the forward predictor with different s.

VI. SIMULATION RESULTS

Ideally, the evaluation of the scheme should be done with
a real water distribution network, however, this is simply not
possible in practice. Water distribution companies are generally
not even willing to share the data they already collect, much
less providing access to their distribution systems. There are
real challenges in putting together a realistic network in the lab
(e.g., access to large volume water supply, reservoirs, energy
harvesters, etc.). As a result, the evaluation in this paper is
largely based on simulations that account for the water flow
physics [16] and use parameters obtained from characterization
of real water distribution systems.

We study the proposed rate adaptation scheme in Castalia
[17], which is an application-level simulator for wireless sensor
network based on OMNeT++. The simulated system topology
along with the pipe diameters are shown in Fig. 8. Water
from the reservoir comes to nodes 1 and 2 (first level nodes),
distributed to nodes 3-6 (second level nodes), and then to
7-14 (third level nodes). Each node has the fan for energy
harvesting, a super-capacitor, water sensors, a small computer,
and WiFi radio. The cross-sectional area of the fans are chosen
as 1

16 th of the pipe cross section, to avoid blocking the normal
water flow. For simulations, τ is assumed to be 1 minute,
which is much less than in section III . The difference can be
attributed to the fact we now have successively smaller pipe
diameters (going from levels 1 to 2 to 3) which increases water
velocity and helps with respect to charging of nodes. Due to
this structure, it is also reasonable to assume that all nodes fall
into a single coalition.

We model the harvested energy arrival from water-flow
based on the average water usage pattern, taken from [18],
and shown in Fig. 9(a) for a typical single-family home
over five days. The total daily usage is 169 ± 10.6 gallons.
Reference [19] reports the maximum water velocity in real
systems as 7.5 ft/sec. We conservatively assume that for the
third level nodes have a water-velocity of 5.0 ft/sec at peak
hours and compute those for other two layers using the flow
continuity relationships. We also calculate water velocities and
the available energy at other times based on the usage pattern
and variation. Fig. 9(b) shows the NLMS (normalized least
mean square) filter predictor of the available energy for five
days. We use s as 0.8.

The sink node broadcasts the assigned rates every T = 1
hr (interval time), chosen such that the harvested energy
does not change significantly within the interval time. The
beacon interval of the sensor nodes is assumed to be 30
minutes. We assume that the nodes use asynchronous Low
Power Listening that makes them sleep most of the time and
wake-up periodically to check the channel activity. The power
consumption in each node is represented as:

Pnode = PBtTBt
TB

+ M .PDtTDt + N .PBrTBr + S .PsTs + P.PPTP

where Px and Tx represent the power consumption and the
duration, respectively, of the event x; and TB represents the
beacon interval. Transmission/reception of beacons is denoted
by Bt/Br, data transmit/receive is denoted by Dt/Dr, and
processing and sensing are denoted as P and S, respectively.
M , N and S are the number of data transmission, beacon
reception and data sampling respectively. P represents the
number of times that a node wakes-up per second to check if
the channel is busy, and is set to 8 in our application.

We assume DQ capacity as 20 samples, `min, `max as 3,
5 respectively, M as 840 samples/hr (i.e. 1 sample/min per
node on average), and harvesting efficiency ηe = 10%. In
reality ηe itself is dependent on flow velocity and load, but
for simplicity we keep it fixed at 10% for our simulations.
The super-capacitor is assumed to be of 25Farad @2.7V with
an initial voltage of 2.0V for all nodes. The super-capacitor
leakage power is calculated as P0.exp(a.Vc) [8], where Vc
is the super-capacitor voltage and P0 and a are constants
obtained from best-fitting the experimentally obtained results,
and are P0 = 2.572e−17 and a = 11.982 respectively. The
DC-DC converter efficiency (in between the super-capacitor
and the sensor node) is assumed to be 75% [8]. The sam-
pling/transmission is stopped, whenever the capacitor voltage
goes below 0.9 V, which is considered as very low voltage.

We assume α at levels 1, 2, and 3 in the ratio 4, 2, and 1 to
reflect the fact that detection at higher levels of the distribution
network is much more important than at lower levels. We use
the following policy for water circulation: if 50% of the nodes
go below the threshold voltage of Vthresh = 0.9 V, water is
pumped in through the pipes of nodes 1-2 to boost the node
voltages to Vtarget = 1.5 V (or higher) at all nodes. However a
sampling frequency based pumping policy can also be adopted,
i.e. whenever the overall sampling frequency goes below a
limit, the pumping starts. We model both our scheme, i.e.,
CARA, and the simpler non-adaptive scheme called equal
rate allocation (ERA) which assigns same sampling rate to
all nodes. We use nodes 1, 3 and 7 to show the characteristics



of first, second and third level nodes respectively. We run the
simulation for 24 hours. Parameters used for simulations are
listed in Table II.

TABLE II. SIMULATION PARAMETERS
Var Values Var Values Var Values Var Values
PBt 1000 mW TBt 140 ms PBr 200 mW TBr 140 ms
PDt 1000 mW TDt 140 ms PDr 200 mW TDr 140 ms
PP 200 mW TP 3 ms PS 495 mW TS 400 ms
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Fig. 10. Mean energy harvested over time for different nodes.

Fig. 10 shows the mean energy profile of nodes from
normal water flow over 24 hrs at levels 1, 2, and 3. To model
fine-grain harvesting variations due to water flow turbulence,
the actual energy arrival is modeled as uniformly distributed
around the mean. The energy harvested depends on the water
velocity and fan diameters. In this example, the water velocity
increases at lower levels but the fan diameter decreases,
thereby resulting in the behavior shown.
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Fig. 11. Remaining energy over time for (a) ERA scheme, (b) CARA scheme.

Benefits of Energy Adaptation: We compare our rate adap-
tation scheme with ERA in Figs. 11(a) and (b), which show the
remaining energy of node 7 during the crucial night hours. It is
seen that without adaptation, the pump is on frequently because
the sensor node continues to sample fast and dies more often.
However, with adaptation, both the sampling rate and hence
the pumping rate slow down. In particular, CARA effectively
reduces the pumping frequency by 33% as shown in Fig. 12(b).
Also by dynamically adapting the sampling rates to maximize
the system utility, CARA achieves 35% of higher information
measure (defined as the product of the number of samples and
their relative weights) without any water circulation and 30%
in presence of artificial circulation, compared to ERA as seen
from Fig. 12(a).

CARA can further reduce the pumping frequency by ex-
ploiting the mutually inter-dependent detection abilities among
the members of a coalition. In particular, Fig. 12(b) also shows
the pumped water amount for CARA under the policy that
pumping is done only when all sensor nodes within a coalition
die. This policy reduces pumping frequency by another 20%.

Benefits of artificial water circulation: Fig. 13(a) and (b)
show the sampling schedules of nodes 1, 3 and 7 without and
with artificial water circulation. It is seen that the artificial
circulation at the night drastically improves the monitoring. It
is also seen that the sampling rate of the higher level nodes are
higher, because of higher energy availability and higher chosen
utility weight (i.e., α). This clearly shows the adaptive nature
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Fig. 12. (a) Comparison of total effective information received at the sink.
(b) Comparison of total water pumped into the system.
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Fig. 13. Number of samples with time, (a) without water circulation (b) with
water circulation.
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Fig. 14. Event reporting time (a) without and (b) with water circulation

of CARA based on the individual nodes relative weights and
energy availability.

From Fig. 14(a) we can observe that without water cir-
culation, it takes more than 3 hours for the system to notify
the WDS administrator of small leaks/contamination spread.
However, a small amount of artificial circulation reduces this
to about 30 minutes as seen from Fig. 14(b). By providing
the extra sampling capability at night, the water circulation
procedure improves the effective information measure by 14%
as observed from Fig. 12(a). Also in this example, the amount
of extra water circulation during night hours is only a small
fraction (< 0.7%) of the total water-flow throughout the day
as derived from Fig. 12(b).

VII. RELATED WORK
Wireless sensor networks for pipeline monitoring is well-

researched, but most of them require manual access to the
pipes and thus not very useful for much of practical WDS.
For example, PipeNet [6], MISE-PIPE [7] involve sensor de-
ployment along pipe length on the outside whereas SPAMMS
[20] requires RFID tags painted inside of the pipe. In [21] the
authors propose a self maneuvering robot going through the
pipes and monitors the leaks. Authors in [22] consider flowing
acoustic sensors that communicate with fixed relay nodes de-
ployed along the pipe. Contrary to these approaches, we focus
on techniques that do not require any ground digging or even
following of buried pipelines from above-ground, which itself



may be impractical. Different mathematical models have been
explored for leak modeling as well by considering them as
demands that depend on the pressure [23], [24]. WaterGEMS
is a commercial package that incorporates many such features
for designing and configuring WDS [9].

Energy management in sensor network is also heavily
researched. Control of sleep/wakeup cycle is a standard tech-
nique that is explored in several MAC proposals [25]. Other
techniques for reducing energy consumption include data com-
pression and source coding [26], transmit power control [27],
multiple channel assignment [28] etc. While these proposals
are mainly motivated towards maximizing the life-time of the
sensor network, our objective in this paper is to schedule the
operations according to the energy harvesting opportunities and
adapt them to the energy availability that varies dynamically
while maximizing the collection of most useful samples. In
this regard, some relevant papers are [29] and [30], where
the authors propose fair rate adaptation for interference or
congestion control; however, they do not consider adaptation
for meeting individual node’s energy budget. Authors in [14]
and [15] propose energy aware rate adaptation schemes using
dual decomposition in a distributed manner, that can incur
high control overhead and long running time, which make
their schemes impractical especially in the context of resource
constrained sensor networks. In contrast, our technique is a
collaborative rate adaptation that exploits correlated detection
of a “coalition” of sensor nodes and is computed in a central-
ized manner to avoid the overhead of distributed computations.
Such a scheme can be used in other energy harvesting environ-
ments where the sensor nodes have correlated event detection
or sensing capabilities.

VIII. CONCLUSIONS
In this paper, we explored water flow driven sensor network

that can be practically deployed in real water distribution
networks without substantial expense and continued mainte-
nance. We showed that the scheme can significantly reduce
the leak/contamination detection time during periods of low
water flow, while minimizing the need for artificial water flow
to keep the network alive. We also motivated the advantage of
collaborative sampling within a coalition, and we plan to ex-
plore this aspect along with the optimal coalition formation in
more detail in the future. Another important concern of WDSN
is its security [31], [32], even if the sensor nodes are physically
secured. An adversary can eavesdrop to acquire secure network
information or maliciously inject tampered packets into the
network to produce false leak/contamination alarms. To make
the WDSN dysfunctional, an attacker can also inject jamming
signals, which impedes the wireless communications and at
the same time depletes the receiver’s super-capacitors. Making
the resource constrained WDSN resistant to these security
concerns is one of our future research endeavors. We also plan
to conduct more comprehensive simulations that more directly
include the effect of flow turbulence and obstructions/build ups
within the pipes on flows and energy harvesting. Other than
simulations, we also plan to do real experiments, to the extent
such experiments are feasible based on the available monitor
and energy harvesting products and tools.
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