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Abstract- We propose a RSSI based localization scheme
for wireless sensor networks that mitigates the effects of
shadowing caused by obstacles that are scattered in the
field of operation. The proposed scheme applies a spatial
correlation mechanism to eliminate RSSI signals that are
affected by obstructions. The effectiveness of the proposed
scheme is validated using simulations as well as some initial
experimental results.
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I. INTRODUCTION

In the last decade, a significant amount of research have
been directed towards enabling wireless sensor networks
(WSN) to be a viable and cost-effective solution for distributed
monitoring tasks. WSNs can utilize multi-modal information
from embedded sensors, perform onboard processing, and
apply distributed processing for monitoring applications that
include environmental monitoring, health monitoring, security,
industrial control, and many others. They are also easy to
deploy and can be programmed to adapt to changing con-
ditions. The main challenge towards developing long-term
applications with WSNs is that the sensor nodes have limited
computational, communication, and energy resources, and
hence, all tasks must be designed with these constraints.

Position estimation of the wireless sensor nodes, popu-
larly termned as localization, in WSNs is a critical task
that is required for most applications as well as for aiding
many networking protocols (e.g. routing) in WSNs. Despite
the tremendous advancements made on the development of
geographical positioning systems, this task requires special
solutions for WSNs because state-of-the art positioning sys-
tems, such as GPS, are not viable for WSNs due to cost
and energy constraints. Furthermore, GPS requires satellite
signals, which may not be available in sensor nodes that
do not have clear view of the sky. Consequently, significant
research efforts have been reported for the development of
cost-effective localization schemes for WSNs that can operate
under the constraints of resources in the sensor nodes.

A popular approach for localization that can be applied
without requiring additional hardware in wireless sensor nodes
is the use of distance estimates of the nodes from known loca-
tions (beacons) using the RF received signal strength indicator
(RSSI). However, RSSI is an inaccurate measure of distance
due to irregularities of wireless signal propagation. Hence,

much of the work on RSSI based localization techniques have
been directed towards developing methods for minimizing
errors of such estimates. Typically this can be achieved by
multilateriation, which involves combining RSSI information
from a number of beacons that is greater than the minimum
number required for localization using accurate distance es-
timates (viz. three beacons for localization on a plane and
four beacons for localization over a three dimensional space)
[1]. Our research is motivated by the fact that multilateration
with RSSI based distance estimates is severely affected by
shadowing effects that cause some of the RSSI measurements
to be uncharacteristically erroneous than others. We propose a
scheme that applies a simple spatial correlation mechanism
to select a subset of a (large) number of beacons signals
to perform multilateration. The idea behind this approach is
that for any node in a typical WSN deployment, some of
the beacon signals will be unobstructed, and hence distances
estimated from their RSSI values will be less erroneous than
others. Consequently, multilateration with RSSI measurements
from those signals would provide higher accuracy of the node
location. We demonstrate from simulation studies that such an
approach reduces the localization error compared to one that
applies multilateration to all beacon signals together. We also
present some results obtained from an experimental testbed to
show the effectiveness of the proposed localization scheme.

The rest of the paper is organized as follows. In section
II, we summarize the related work. Details of the motivation
for this work and the problem statement are provided in
section III. Section IV describes our localization scheme in
detail. Performance evaluations from simulations and from
some basic experimental data are discussed in section V. We
conclude our paper section VI.

II. RELATED WORK

Localization schemes for WSNs can be broadly classified
into two: range-based and range-free localization schemes.
Range-based localization schemes [2], [3], [4], [5] use RSSI,
angle-of-arrival (AOA), time of arrival (TOA), or time dif-
ference of arrival (TDOA) to measure the distance or angle
between a beacon and an sensor node and then use trilateration
or triangulation to estimate the sensor nodes position. These
approaches are effective as long as the distance or angle
estimates are not too inaccurate. Range-free schemes [6],
[7], [8] do not use range measurements to estimate sensor
node location. However, these schemes do not attempt to
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Fig. 1. (a) View of the Paradise substation, where the ParadiseNet was deployed. (b) One of the wireless sensor nodes for circuit-breaker monitoring.

provide precise location estimates. For instance, some range
free localization schemes use communication ranges (or RF
based proximity method) to estimate the region where a sensor
node is located.

The scheme widely used to reduce the error in range
based localization techniques using RSSI is the linear least
square method, which determines the estimated location that
minimizes the average error from all reference points. The
error margin with this method reduces with increasing number
of anchors used for multilateration. However, the problem
that presents itself is that in a large and obstructed sensor
network, an unknown node may not receive a sufficiently large
number of beacon signals from anchors. The result of this
is insufficient error minimization. One approach to overcome
this problem is to apply iterative multilateration [1]. However,
this method suffers from the drawback of propagating errors
throughout the sensor network. Another method used in solv-
ing the problem mentioned is by collaborative multilateration
but this method involves solving for all unknown positions
simultaneously resulting in a non-linear optimization problem.
Though there are ways to solve this, like the Kalman filter, they
involve significant computation as well as communications
costs.

Mobile beacons are popularly used in many sensor local-
ization schemes to provide the necessary distance or angle
estimates. An example is the work by Bin Xiao et al. [6],
who proposed a distributed localization scheme using a mobile
beacon. A sensor node is assumed to be in a region called
Arrival and Departure Overlap (ADO) formed by the inter-
section of the arrival constraint area and departure constraint
area constructed by the beacon signals as the beacon arrives
and departs the sensor nodes sensing range. C. Wang et al.
[9] proposed the MRTP algorithm which uses distance upper
bound constraints to achieve accurate localization estimates
in obstructed environments. It uses the same approach as the
Centroid technique [10] but applies the distance upper bound
constraints to achieve further accuracy. Another interesting
take is the work done by Young-Bae Kong et al. [2]. Their
approach is to perform localization using the grid-based MLE
method, and then perform error detection by using the Min-
Max algorithm to overcome the large attenuation measurement

errors of the obstructed interferences. Finally they use the
compensated RSS measurements to correct the localization
error.

Our proposed scheme differs from these in that it uses the
fact that not all signals are affected by obstructions in the
network. It improves upon the linear least square method by
eliminating the effects of the obstructed beacon signals. It tries
to combine the RSSI measurements that contribute to a high
degree of agreement towards the final location estimate. This
is achieved using spatial correlation of initial estimated sensor
locations that are calculated using different combinations of a
few out of all beacon signals in a trilateration process.

III. MOTIVATION AND PROBLEM STATEMENT

This work was motivated by experiences from deployment
of a real-life WSN that was developed by the authors for
monitoring the health of equipment in a power substation.
The project, sponsored by EPRI, was initiated in 2006, which
resulted in the deployment of a 122-node WSN known as
ParadiseNet in a TVA-operated power substation in Kentucky
[11]. The location site and an illustraion of a deployed wireless
sensor node is depicted in Figure 1. The need for a self-
localization scheme in this network arises due to several
reasons. Firstly, it is extremely difficult to record and track
the locations of sensor nodes in such large scale deployments,
especially when nodes are sometimes displaced due to re-
quirements imposed by monitoring tasks, network formation,
and expansion. Secondly, several proposed energy coserving
protocols and algoriths that are currently under development
require the nodes to be aware of their locations. Such deploy-
ment sites can easily allow the movement of a robotic beacon
transmitter that can be used for self-localization. While the
technique is technically feasible, the main difficulty in using
a beacon assisted localization scheme in such locations is
that the presence of large objects (e.g. transformers, circuit
breakers, metal boxes and beams, etc.) in the field can cause
significant errors to the RSSI measurements due to shadowing.
Hence, such a beacon assisted localization scheme would be
accurate if the sensor nodes could automatically select the
beacon signals that were relatively unaffected by shadowing
effects.
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Fig. 2. Illustration of the proposed localization scheme from simulations: (a) Simulation topology showing obstructions in blue circles, anchor positions
using triangles, and corresponding estimated locations from subsets of three beacons using diamonds; (b) bivariate Gaussian functions with mean centered at
the estimated locations; and (c) addition of the Gaussian functions, showing the final location estimate.

The scenario described above is quite general and may
be observed in other WSN deployments. Consequently, we
pose the localization problem as follows. We assume that
a set of wireless sensor nodes are randomly deployed in a
given geographical area that is serviced by a set of B beacon
generators to assist node localization. The beacon generators
broadcast RF signals that include their locations, which are
assumed to be known. A moving robot equipped with a
GPS and RF hardware to transmit its locations periodically
as it travels along a selected path in the deployment area
is one approach for implementing such beacon generation.
Sensor nodes apply RSSI measurements to estimate their
distances from the beacons, by using a path loss model that
is assumed to be known from offline channel measurements.
Technically, a sensor node can compute its location estimate by
using a minimum of three beacon signals that are transmitted
from non-collinear locations and can apply multi-lateration
to a larger set (potentially all) beacon signals received for
improving this location estimate. The problem is to design a
self-localization scheme for the sensor nodes that will use a
subset of the beacon signals received to provide the highest
accuracy of its location estimate from multilateration.

IV. PROPOSED LOCALIZATION SCHEME

The proposed scheme takes random subsets of M beacons
(M << B) and performs multilateration to each subset to
get a location estimate. This may involve a maximum of(

B
M

)
multi-laterations, which will result in as many location

estimates for each node. The proposed scheme then applies
a clusterization technique to select the most likely location
that is in agreement with the maximum number of individual
multi-laterations. The idea is that for subsets that include
shadowed beacons, the estimated locations would be spatially
uncorrelated. However, if a number of subsets of beacons
are obtained from unobstructed beacons, they would have a
high degree of spatial correlation. Consequently, combining
the spatially correlated location estimates would eliminate
the effect of shadowing, which cause large errors in location

estimates. The concept is illustrated in Fig. 2 using a simulated
scenario with 11 beacons located 20m apart on the x and y
axes, and two circular obstacles. It is assumed that the RSSI
of RF signals received from all beacons (red triangles on the
axes) at the sensor node (blue rectangle) experience log-normal
fading, whereas those obstructed by the two obstacles also
experience shadowing. The results of triangulation from all
combinations of subsets of 3 beacon signals at the sensor
nodes are indicated by red diamonds. Spatial correlation of
these triangulation results is obtained by superimposing a
set of bivariade Gaussian distributions centered at each of
these localization results (Fig. 2(b)), followed by addition
(Fig. 2(c)). The final location estimate is obtained by taking
the location of the peak of the summation.

A. Discussion of our algorithm

In this section we describe our localization scheme based on
shadowing channel propagation model. As mentioned earlier,
the unknown node first measures the RSSI received from
the anchor nodes and estimate the distances from the corre-
sponding anchors using a channel model. Then the position
of the node is determined from these distances by using
a multilateration algorithm and finally those estimates that
areaffected by the obstacles are filtered. We model the radio
channel propagation characteristic using the shadowing model
where received power at a distance d is given by

Pr(d) = Pr(d0)− 10.n.log

(
d

d0

)
+ Xσ (1)

where Pr(d0) is the received power at the reference distance
d0, n is the path loss exponent and Xσ is a zero-mean
Gaussian random variable with standard deviation σ which
comes from the channel noise and the shadowing effects. In
our proposed scheme, the radio channel is modeled offline
using a small set of RSSI measurements and parameters like
n and Pr(d0) are fed into as the input of this scheme. Because
of the spatio-temporal characteristics of the radio channel, in
the estimated model these parameters may not be accurate
representation of the real radio channel of an environment at
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any particular instance, which introduce some errors in the
RSSI as well as distance estimation. Also in an obstructed
environment the received power is highly disturbed due to
the obstacles between the signal path of an anchor and the
unknown node. Now we explain our proposed scheme that tries
to reduce these disturbing effects in three stages as follows:

First stage: At first it forms all combinations of M non-
collinear anchors that can be calculated from their positions
sent in the beacon messages. Suppose there are N such non-
collinear combinations. Also it stores the estimated distances
calculated from all beacons from their corresponding RSSI
measurements using the channel model described earlier with
the estimated set of parameters fed into it.

Second stage: From each combination of M anchors (we
use M = 3) formed in the first stage, we calculate a location
estimate using multilateration (trilateration for M = 3) using
linear least square method. This gives a total of N location
estimates.

Here we discuss the linear least square method used to
minimize the localization error. For an unknown node with
position (x, y), the basic idea of localization is to

Minimize ε = |
M∑
i=1

√
(xi − x)2 + (yi − y)2 − d2

i | (2)

where di is the distance from the unknown node to the i-th
anchor that is measured from the RSSI from the corresponding
anchor. Note that the square of the distance between the
unknown node and anchor node i can be expressed as

(xi − x)2 + (yi − y)2 = d2
i ∀i = 1, ..., M

=⇒ (xi − x)2 − (x1 − x)2 + (yi − y)2 − (y1 − y)2

= d2
i − d2

1 ∀i = 2, ..., M

=⇒ 2x(x1 − xi) + 2y(y1 − yi)

= (d2
1 − d2

i )− (x2
1 − x2

i )− (y2
1 − y2

i )

∀i = 2, ...,M (3)

Expressing equation (3) in matrix form we get 2(x1 − x2) 2(y1 − y2)
...

...
2(x1 − xM ) 2(y1 − yM )

[
x
y

]
=

 b1

...
bM

 (4)

In the case of RSSI based localization, the real distances di

between the unknown node and anchor node i is disturbed by
channel noise, obstacles and other shadowing effects. Because
of these effects, instead of having a real distance di, we get
some noisy estimations d̃i. Therefore, the system of equation
can be written as

A.x̄ = b̃ (5)

where A =

 2(x1 − x2) 2(y1 − y2)
...

...
2(x1 − xM ) 2(y1 − yM )

, x̄ =
[

x
y

]
and b̃

is given by b̃1

...
˜bM

 =


(d̃2

1 − d̃2
i )− (x2

1 − x2
i )− (y2

1 − y2
i )

...
(d̃2

1 − ˜dM
i )− (x2

1 − xM
i )− (y2

1 − yM
i )

 (6)

Therefore, the position of the unknown node can be calculated
by minimizing ‖A.x̄− b̃‖2. By using the least-squares method
we get the solution of this equation as x̂ = (AT A)−1AT b̃.

Third stage: As mentioned earlier, due to the radio channel
characteristics and obstacles, the unknown node receives a
disturbed RSSI measurements and distance estimate. This
stage distinguishes whether or not an estimate is affected by
obstacles among these N estimates by looking at their spatial
distributions in the field of operation. We assume that the po-
sition estimates are {xi, yi} ∀ i ∈ (i, ...N). Next we construct
N bivariate Gaussian pdfs with the mean centered at {xi, yi}
∀ i ∈ (i, ...N) and superimpose them. This superposition of
all pdfs give a Gaussian mixture density where the position
estimates affected by obstructed beacon signals remain as
outliers as far as the number of obstructed beacon signals are
not very high. Then the (x, y) position of the peak point of
this Gaussian mixture density is assumed as the final location
estimation of the unknown node. Thus this process basically
filters out the affected RSSI measurements in the presence of
limited number of obstructions.

B. Optimization

Since a Gaussian function requires exponentiation, we re-
place it with a simpler function that comprises two concentric
cylinders with radii r and 2r. The first cylinder with radius
r gets a height of α and the second cylinder gets a lesser
height of β. This idea of two concentric cylinders is the
approximation of the Gaussian pdfs. Then the same process
of summing up of all the heights is applied and the position
of the peak is chosen as the position of the unknown node.

The purpose of choosing M = 3 is mainly twofold. First, it
reduces the computational complexity of multilateration which
is important especially for low-power sensor motes that have
low processing capabilities. Second, choosing M = 3 gives
large number of possible location estimates which helps in
producing a good Gaussian mixture density.

V. PERFORMANCE EVALUATION

This section presents evaluation results of our proposed
localization scheme using both simulations as well as initial
experiments. For simulations, we use an environment as de-
picted in Fig 2(a). We use a log-normal shadowing model with
a path loss exponent of 4 and the standard deviation (σ) of the
shadowing random variable is assumed to be 3. The obstacles
used in the simulations are of 5 meter radius and the transmit
power of the beacons are 0 dBm.

Fig 3 shows the variation of the average localization error
obtained using the proposed localization scheme and that
obtained from multilateration using all beacon signals together
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Fig. 3. Comparison of localization error of our proposed scheme with the linear least square method (a) σ = 0 (b) σ = 3 (c) σ = 6 .
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Fig. 4. Comparison of percentage of nodes localized of our proposed scheme with the linear least square method (a) σ = 6 (b) σ = 9.

(linear least square estimate) for varying number of obsta-
cles [12]. It is observed that the proposed scheme reduces
localization errors especially when there are obstacles in the
network. Note that in an obstacle-free network, the proposed
scheme has a higher error that the least square method. The
reason is that the linear least squares method uses much more
than three beacons signals (as used in the proposed scheme)
to compute an unknown node locations. Fig 4 shows the
percentage of nodes localized in two schemes which also
shows an improvement in our scheme compared to the least
square method.

Next we evaluate the effect of approximating the Gaussian
function with the proposed concentric cylinders, which is
shown in Fig 5. We make σ = 6 and r = 3 meters for this figure.
From this figure we can observe that the average localization
errors increase marginally while using concentric cylinders.
Thus we conclude that our approximation performs very close
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Fig. 5. Comparison of average localization errors using Gaussian pdfs and
two concentric cylinders.

to the performance using Gaussian pdfs.
To show the performance of our proposed scheme in a real

world scenario, we experiment with 11 MICAz anchors and
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Fig. 6. (a) Experiment scenario where triangles are the positions of the anchors using our proposed scheme. (b) Using Linear Least Square Method. (c)
Comparison of average localization error for each node of these two schemes.

7 MICAz unknown nodes in an area of 25 × 25 meter2

as shown in Fig 6. The deployment location was one that
comprises airconditioning equipment for campus buildings,
which posed as obstructions in our work. Fig 6(c) shows the
average localization errors for each unknown nodes in two
schemes. From these figures we can observe that the errors
are reasonable even if a challenged obstructed scenario which
establishes the effectiveness of our proposed scheme. Also
compared to the least mean square method, our proposed
scheme gives lesser errors in most of the unknown sensor
node positions.

VI. CONCLUSIONS AND FUTURE WORKS

This paper presents a simple and effective range-based self
localization scheme that uses the peak of a bivariate Gaussian
mixture to localize an unknown node in an obstructed sensor
network environment. A key advantage of the scheme is that
it is effective in negating the effects of erroneous distance
calculations in node localization within an obstructed sensor
network. The proposed scheme shows accuracy in localizing
an unknown node in the presence of obstacles within a sensor
network. In future, we intend to implement and test our
proposed scheme in large real life monitoring environments.
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