
Progressive Recovery of Interdependent Services in
Enterprise Data Centers

Ibrahim El-Shekeil, Amitangshu Pal, and Krishna Kant
Computer and Information Sciences, Temple University, Philadelphia, PA 19122

E-mail:{ielshekeil,amitangshu.pal,kkant}@temple.edu

Abstract—In this paper, we discuss the progressive restoration
planning in an enterprise data center environment after partial or
full disruption. Repairing disrupted components takes significant
amount of time and human involvement. Thus, after a major
disruption, the recovery process will involve multiple stages and
during each stage, the partially recovered infrastructures will be
able to provide limited services at some degraded service level.
However, how fast and effective an enterprise infrastructure can
be recovered depends on how the recovery processes will restore
the disrupted components considering the inter-dependencies in
between the services, along with the limitations of expert human
operators. The entire problem turns out to be NP-hard and rather
complex, and we devise effective meta-heuristics to solve the
problem. By taking some real-world examples, we show that the
proposed meta-heuristics gives fairly accurate results compared
to the optimal solution, with the ratio between the optimal and
heuristic solution never exceeding 1.04.

I. INTRODUCTION

Disruptions in data centers may occur as a result of a hard-
ware failure, operating system or software failure, intrusion,
virus outbreak or natural disaster. Natural disasters include
the 2011 Japan earthquake and tsunami that damaged major
data centers in Tokyo [1], and the 2012 Hurricane Sandy in
USA where some data centers in New York were affected
due to flood [2]. Other examples include storms or lightning
that took down Google’s St. Ghislain data center operations
for five days in 2015 [3], or technical hiccups that affected
the services of Bank of America [4] and Amazon [5] centers
for 4-6 days. Such scenarios or disruptions may also arise
when a data center is relocated or upgraded in a different site,
which needs proper pre-move planning and expertise. These
disruptions could be partial that impact some applications or
full that impact the entire data center. When such disruptions
occur it causes significant downtime which may lead to a
substantial financial and legal impact.

In light of the above, there is a growing need to optimize
the post-disruption recovery and restoration process for the
enterprise data centers. A complete post-disruption restoration
process for a large data center requires multiple stages as
backup resources are brought to the field and installed, which
sometimes requires a few weeks to several months [6]. Within
this entire recovery stage, the partially restored infrastructures
will still have to operate in a degraded manner and provide
some partial level of service for clients. A key design challenge
of the restoration plan is to support partial business continuity,
that allows applications to progessively come back online after
failures or disruptions. Clearly the sequencing of data center
services that are gradually recovered will have a direct impact
on the effectiveness of the restoration process. Especially after

TABLE I. DEPENDENCIES IN BETWEEN THE SERVERS AND SERVICES

Enterprise services Necessary servers
Microsoft Project Web front end server, application server, database server
Microsoft SharePoint Web front end server, application server, database server
Active Directory Domain controller
Authentication
Microsoft DNS Domain controller
Human Resources Application server, database server
Microsoft Exchange Front end server (does mail routing), back end server

(stores mail boxes), web client

a large-scale disaster where multiple data center services are
down, thus decision on recovery sequence of these services
has an important role on minimizing the loss by bringing the
most critical applications back.

In this paper we focus on the post-disruption progressive
data center recovery problem with an objective of maximizing
the up-time of the data center service in the entire recov-
ery process. Repairing the disrupted services requires long
times and human resources or workers. The availability of
human resources with the desired expertise varies over time.
Recovering different services may require different time to
do manual configuration and actual restoration, which makes
the decision process even complex. Since the services in a
data center are often interdependent it is nontrivial to plan,
evaluate and compare different recovery decisions and choose
the best one. The entire problem turns out to be NP-hard as we
shall show later. We propose a genetic algorithm based meta-
heuristics to solve the combined problem. With simulations
we show that the ratio between the optimal solution and the
proposed genetic algorithm based solution does not exceed
1.04, which confirms that the proposed heuristics provides
fairly accurate results compared to its optimal counterpart. To
the best of our knowledge, this is the first work addressing the
data center post-disruption progressive recovery planning while
considering the interdependencies of various services as well
as considering the human related constraints and expertise.

Accordingly, the outline of the paper is as follows. Sec-
tion II addresses the overall problem formulation including
its complexity and the proposed meta-heuristic solution. Sec-
tion III reports results based on real data obtained from an
enterprise data center environments. Section IV discussed the
related works. Finally, section V concludes the discussion and
discusses potential future works.

II. PROBLEM FORMULATION

We next model this problem using a 2-layer interdepen-
dency framework. Layer-1 or service layer consists of the set
of services that the enterprise provides, whereas layer-2 or
server layer consists of the servers that need to be restored
to bring back the services as shown in Fig. 1(a). The services
depend on one or more servers to run, which can be modeledThis research was supported by the NSF grant CCF-1407876.



5 
4 

3 

2 
1 

Server1 
Server2 

Server3 

(a)

1 2 3 4 5 6 7 8 9 Time 

Server1 

Server2 

Server3 

��, �� UP 

 ��, ��, �� UP 

Worker1 

Worker1 

Worker2 

Exclusive time Shared time 

10 

(b)

Fig. 1. (a) Dependency graph in between the service layer and the server layer. (b) Timing diagram of the worker to server assignment. A1 − A5 denote all
the services.

as the Inter-layer dependencies. Table I shows different key
services of an enterprise and the corresponding servers that
they are dependent on. If Qai denotes whether the service a
is dependent on server i or not, then according to Fig. 1(a),
Q11 = Q12 = 1 as service 1 depends on servers 1 and 2. On
the other hand, in layer-1 and layer-2 there are dependencies
in between the services as well as in between the servers
respectively, which we define as Intra-layer dependencies. For
example the email services, human resources and SharePoint
depend on the DNS and Active Directory services, thus these
two services needs to be restored first before restoring others.
On the other hand in the server layer, the web client depends on
the front and back end servers for email services, application
server depends on the database server etc. Assume that Pab

denotes whether service a is dependent on service b or not,
similarly Oij denotes the dependencies in between the servers.
Thus in Fig. 1(a), P21 = P42 = P43 = P54 = 1 and
O31 = O32 = 1.

Assume that time is divided into slots which are denoted as
t. Let [0, T ] denote the time horizon, where T is the total time
in which all primary servers are recovered and 0 ≤ t ≤ T . We
assume that there are M services that need to be activated,
which run on a total of N servers. The server restoration
process consists of two steps: first is the exclusive stage when
an expert worker corresponding to a particular server needs to
install the restoration tasks in a dedicated fashion. The next
phase is shared which needs some infrequent monitoring. We
thus assume that a worker (or expert) becomes free after an
exclusive stage, as the remaining stage can mostly be taken
care of by common operators without an experts’ intervention.
Let us assume that xt

i represents whether a server i is touched
on or before time instance t or not. Similarly eti represents
whether its exclusive stage is over or not, and zti represents
whether it is completely restored or not. For example, in
Fig.1(b) xt

1 = 1 for t ≥ 1, et1 = 1 for t ≥ 3, and zt1 = 1 for
t ≥ 5. Similarly we assume that yta denotes whether service
a is restored on or before time instance t or not. For the
problem formulation we assume that exclusive time of server
i is li units, and the entire expected restoration time is Li

units. We assume that the number of expert workers are much
lesser than the number of servers that need to be restored, i.e.
W � N . Thus the workers need to take turns to bring the
services back. The workers do not have the expertise to work
on all servers, thus the workers need to be assigned one after
other to progressively restore the servers depending on their
availability and expertise. The necessary notations are depicted

in Table II.

TABLE II. TABLE OF NOTATIONS

Indices
a, b , Index for service’s (1, ..., M )

i , Index for servers (1, ..., N )
t , Index for time units (1, ..., T )
w , Index for workers (1, ..., W )

Variables
xt
i , Whether or not restoration of server i has been started by

a worker on or before time instance t

eti , Whether or not the exclusive part of server i is finished
on or before time instance t

zti , Whether or not server i is up at time instance t

yta , Whether or not service a is up at time instance t

li , Expected exclusive time of server i
Li , Expected restoration time of server i

Pab , Whether or not service a is dependent on service b

Qai , Whether or not service a is dependent on server i
Oij , Whether or not server i is dependent on server j

D(a) , Set of servers or services on which service a depends on
D(i) , Set of servers on which server i depends on
Awi , Whether or not server i is assigned worker w
Rwi , Whether or not worker w can restore server i

With these we next formulate our optimization problem
framework named progressive restoration (PR) with the goal
to maximize the total up-time of services, i.e

max

M∑
a=1

∑
t

yta (1)

This is because
∑
t
yta represents the total up-time of the service

a. For example, assume that T = 100, and the service a is up
and running at time instance 10. Thus the service remains ON
from time instance 10 onwards, and the total up-time of a is
90. We next describe the constraints as follows:

Dependency constraints: Constraint(2) models the intra-
layer dependencies which states that if a service a is dependent
on a set of service D(a), then D(a) needs to be ON before
a can be made ON. This constraint becomes a nonlinear
constraint due to the presence of the product operator, however
the constraint can be linearized by incorporating the summation
operator as shown in equation(2). Constraint (3) models the
service-server dependency, which states that the service a
cannot be ON without restoring the set of servers in D(a).
Similarly constraint(4) models the dependencies in between



the servers.

yta ≤
∏

b∈D(a)

ytb =⇒

(
M∑
b=1

Pab

)
.yta ≤

M∑
b=1

Pab.y
t
b ∀a, t (2)

yta ≤
∏

i∈D(a)

zti =⇒

(
N∑
i=1

Qai

)
.yta ≤

N∑
i=1

Qai.z
t
i ∀a, t (3)

xt
i ≤

∏
j∈D(i)

ztj =⇒

 N∑
j=1

Oij

 .xt
i ≤

N∑
j=1

Oij .z
t
j ∀i, t (4)

Timing constraints: Constraints(5)-(8) model the start and
end time of the server restoration. Constraints(5)-(6) ensure
that the exclusive time of server i is completed after li time
units. Constraints(7)-(8) ensure that server i is fully restored
after Li time units.

xt
i = et+li

i ∀i,∀t = (1, 2, ..., T − li) (5)
T−li∑
t=1

xt
i =

T∑
t=1

eti ∀i (6)

xt
i = zt+Li

i ∀i,∀t = (1, 2, ..., T − Li) (7)
T−Li∑
t=1

xt
i =

T∑
t=1

zti ∀i (8)

Worker assignment constraints: Constraint(9) states that
worker w is assigned to restore server i, if he has the expertise
to restore it. Constraint(10) ensures that all servers are assigned
a worker, and thus restored by the end of the time scale T .
Constraint(11) states that if worker w is assigned to restore
server i and j, then their exclusive time do not overlap.

Awi ≤ Rwi ∀i,∀w (9)∑
w

Awi = 1 ∀i (10)

xt
i − eti + xt

j − etj ≤ 1 +M (2− Awi − Awj) ∀t, ∀w,∀i 6= j
(11)

where M is a large number which is more than the maximum
value of the left hand side.

Other constraints: Constraint(12) states that if an service a
is ON at time instance t then it will remain ON at all the future
time steps. Similarly if a server is restored, then it remain active
for the future time steps, which is modeled in equation(13).
Constraints(14)-(15) state similar constraints corresponding to
the server restoration start time and exclusive time respectively.

yt+1
a ≥ yta ∀i,∀t = (1, 2, ..., T − 1) (12)
zt+1
i ≥ zti ∀i,∀t = (1, 2, ..., T − 1) (13)
xt+1
i ≥ xt

i ∀i,∀t = (1, 2, ..., T − 1) (14)
et+1
i ≥ eti ∀i,∀t = (1, 2, ..., T − 1) (15)

Theorem 1. The problem PR is NP-hard.

Proof: We first define the minimum latency set cover
problem (MLSC) which is known to be NP-hard. Let J =
{J1, J2, ..., Jm} be a set of jobs to be processed by a factory.
A job Ji has non-negative weight wi. Let T = {t1, t2, ..., tn}
be a set of tools. Job j is associated with a nonempty subset

Sj ⊆ T , once the entire tool subset Sj has been installed, job
j can be processed instantly. The factory can install a single
tool at each time unit. The problem is to determine the order
of tool installation so that the weighted sum of job completion
times is minimized. We now reduce the MLSC to the PR
problem.We define one instance of the MLSC problem when
wi = 1, ∀i. With this, we define an instance of the PR problem
as follows: we assume that there is no dependencies in between
the services as well as in between the servers. Also assume
that there are just one worker who has the expertise to restore
all the servers. The restoration time of all the servers are unity,
with the shared time assumed to be zero, i.e. li = Li = 1, ∀i.
This reduction transforms a MLSC problem instance into a PR
instance.

Example: Let us consider an example with M = 5 and N =
3. The intra and inter-layer dependencies are shown in Fig.1(a).
We use AMPL solver [7] for solving the optimization problem.
Fig.1(b) shows the timing diagram of the restoration process
obtained by solving problem(1). We assume that there are two
workers, worker-1 can restore servers 1 and 3, whereas worker-
2 can restore servers 1 and 2. The exclusive and shared time
of all the servers are assumed to be of 2 units. From Fig.1(b)
we can observe that as all the services are dependent of A1

and A3, thus server 1 and 2 are first restored to run these two
services. Server 3 is then restored to run the other services.

A. Proposed heuristic

Given the NP-hardness and complexity of the problem,
we propose a genetic algorithm based meta-heuristic to solve
it. A genetic algorithm maintains a population of candidate
solutions. Each candidate solution in the population is encoded
into a structure called the chromosome. Each chromosome
is assigned a fitness value, which represents the quality of
the candidate solution. Better-fitted chromosomes have higher
chances of surviving to the next generation. The number of
chromosomes per generation is constant. As in natural life,
offspring chromosomes are obtained from parent chromosomes
mainly by using two operators, crossover and mutation. Some
other chromosomes simply survive unaltered, while others die
off. Different steps of the entire genetic algorithm is described
as follows.

Chromosome structure and fitness value calculation: We
define a chromosome structure by considering the sequence
in which the servers need to be restored, i.e. we define a
chromosome as a vector (c1, c2, ..., cN ), where ci represents
the i-th server (or gene). Thus the genes of a chromosomes
are the servers, and a chromosome gives the sequence of
servers. We assume that there areM chromosomes in a mating
pool. The fitness value of each chromosome is determined
as follows: a chromosome sequence determines the order in
which the servers need to be restored. We use this sequence to
assign the workers to the servers depending on their expertise
and availability, as mentioned in the next paragraph and find
the total up-time of the services, which is considered as the
fitness value corresponding to that chromosome.

For the initial assignment of workers we construct a
bipartite graph of N workers and servers as follows: first take
the sequence of the servers and assign them different weights
depending on their precedence. For example if the server



sequence is given by S1, S2 and S3 then their corresponding
weights can be 3, 2 and 1 respectively. We next construct
N worker-nodes by putting W nodes and N − W dummy
vertices. If worker w has the expertise to restore server i, then
the weight corresponding to that edge is equal to the weight
of server i. All the other edges are assigned a value of zero.
In this bipartite graph we then run the maximum matching
algorithm like Hungarian scheme [8] to assign the workers to
their corresponding servers.

After the initial assignment the workers become free after
the exclusive time of the corresponding server. Whenever a
worker is free, he is assigned to the next possible server that
can be restored (depending on the already restored ones) in
the sequence depending on his expertise. This process goes on
until all the servers are finally restored.

Initial mating pool generation: Initially the mating pool is
generated randomly, considering the fact that the chromosome
generated satisfy the precedence constraints or dependency
relations in between the servers. For example in Fig. 1(a)
3→ 2→ 1 will be an invalid chromosome structure as server
3 depends on servers 1 and 2, thus server 3 cannot be touched
until and unless the other two servers are completely restored.
We thus describe the chromosome generation process in the
initial mating pool using an example in Table III. Assume that
Table III shows the precedence/dependency relations among
the servers, which we define as the server dependency matrix.

TABLE III. AN ILLUSTRATION OF A
SERVER DEPENDENCY MATRIX

S1 S2 S3 S4 S5

S1 0 0 0 0 0
S2 0 0 0 0 0
S3 1 0 0 0 0
S4 1 1 0 0 0
S5 0 0 1 1 0

Servers 1 and 2 do
not depend on other
servers, i.e. all rows
corresponding to these
two servers are 0.
Server 3 depends on
server 1, server 4 de-
pends on servers 1 and
2, server 5 depends on
servers 3 and 4. Ini-
tially the chromosomes need to be generated such that this
dependency relations are maintained. To do that, we define the
candidate server set (CSS) as the server set with all 0 rows,
which are servers 1 and 2 in case of Table III. We next choose
any one of the servers from the CSS randomly, this server
becomes the first gene in the chromosome. We next remove the
row and column corresponding to that server from Table III.
We then construct the CSS with all 0 rows from the remaining
dependency matrix and then choose the next gene randomly
from the CSS. This process goes on to generate all the genes
of a chromosome. The process is repeated for generating all
the chromosomes in the initial mating pool. This ensures that
the chromosomes in the initial mating pool are consistent with
the precedence relation.

Selection process: We adopt the well known elitism se-
lection mechanism where Me < M best chromosomes are
placed directly in the next generation. This ensures that the
best chromosomes (or solutions) in a generation are not lost
in the next generations. The rest of the M −Me chromo-
somes are chosen using roulette wheel selection procedure (as
decided by their fitness value) to take part in crossover and
mutation to produce offspring chromosomes. Notice that the
elite chromosomes also take part in crossover and mutation to
produce offspring chromosomes in the next generation.

Crossover operation: For the crossover operation, we
choose two chromosomes from the mating pool with prob-
abilities proportional to their fitness values. In the following
we describe two-point crossover, although in general n-point
crossover can be used as well. For a two-point crossover
we first generate a cutting-point randomly. Assuming that the
cutting point is c, for the first chromosome, we retain the first
c genes and remove the rows and columns corresponding to
these c genes from the dependency matrix. We next generate
the CSS for the c+1-th gene; if the c+1-th gene of the second
chromosome is in the CSS, we replace the c+1-th gene of the
first chromosome with that of the second one. Otherwise, we
randomly choose a server from the CSS for the c+1-th gene.
We follow the same procedure for the other genes (from c+2
onwards), and repeat the same for the second chromosome.

Mutation operation: For the mutation operation, we choose
a chromosome randomly and also choose a cutting-point c
randomly. We retain the first c genes, generate the CSS and
choose a server from the CSS randomly for the c+1-th gene.
This procedure is followed for the remaining genes of the
chromosome. The proposed crossover and mutation operations
ensure that the selection of the chromosomes in the subsequent
mating pools are consistent with the precedence relation.

The algorithm stops when the best solution of a generation
does not improve significantly for a fixed number of consec-
utive iterations or a large predefined number of iterations is
reached. When the stopping criterion is reached, the algorithm
chooses the chromosome/solution with the highest fitness
value.

III. EXPERIMENTAL RESULTS

A. Validating the accuracy of the genetic algorithm

We first validate the accuracy of the proposed genetic al-
gorithm compared to the optimal solution obtained from PuLP
solver [9], which is a library for the Python scripting language
to solve mathematical programs. We synthetically generate a
scenario with 12 services and 30 servers for this purpose.
We model the dependencies artificially such that on average
a service depends on 2 services and 2.5 servers, whereas
each server depends on another 2.5 servers. The exclusive and
shared time of the servers are approximated from practical
scenarios which typically varies from (10, 120) and (15, 300)
minutes respectively. We assume that the worker’s expertise
to the servers follow a round robin principle. For example,
in case of 3 workers we assume that W1,W2,W3 have the
expertise of restoring servers (S1, S4, S7, . . .), (S2, S5, S8, . . .)
and (S3, S6, S9, . . .) respectively.

Fig. 2(a) shows the total up-time of the data center services
with different number of workers. From this figure we can
observe that the total up-time of the services increases by just
∼2% when the number of workers increase from 2 to 6. This is
because with higher number of workers, the service restoration
time is dominated by the long shared time of their dependent
servers. Before starting the restoration process corresponding
to any server, a worker needs to wait for its dependent servers
to be completely restored. For example in Fig. 1(b) worker-
1 remains idle at time instance (3, 4) before touching server
3, as the restoration of server 1 does not finish before time
instance 4. This waiting time severely limits the utilization
of the workers. This can be verified from Fig. 2(b) which



2 3 4 5 6

Number of workers

100

105

110

115

120

125

130

135

T
o
ta

l u
p
-t

im
e
 o

f 
th

e
 s

e
rv

ic
e
s 

(h
o
u
rs

)

Optimal solution

Genetic algorithm

(a)

2 3 4 5 6

Number of workers

8

10

12

14

16

C
o
m

p
le

tio
n
 t
im

e
 (

h
o
u
rs

)

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f 
id

le
 t
im

e

Completion time

Percentage of idle time

(b)

2 3 4 5 6

Number of workers

100

101

102

E
xe

cu
tio

n
 t
im

e
 (

m
in

u
te

s) Optimal solution

Genetic algorithm

(c)

Fig. 2. (a) Comparison of the genetic algorithm and the optimal solution with different number of workers. (b) Variation of the total completion time and the
percentage of time the workers remain idle. (c) Comparison of the execution time of the optimal solution and the genetic algorithm.

Case 1 Case 2 Case 3 Case 4
125

126

127

128

T
o
ta

l 
u
p
-t

im
e
 o

f 
th

e
 s

e
rv

ic
e
s
 (

h
o
u
rs

)

Fig. 3. Total up-time of the services for different
combinations of worker expertise.

2 3 4 5 6

Number of workers

200

210

220

230

240

250

260

T
o
ta

l 
u
p
-t

im
e
 o

f 
th

e
 s

e
rv

ic
e
s
 (

h
o
u
rs

)

Optimal solution

Genetic algorithm

(a)

2 3 4 5 6

Number of workers

8

10

12

14

16

C
o

m
p

le
ti
o

n
 t

im
e

 (
h

o
u

rs
)

0

20

40

60

80

100

P
e

rc
e

n
ta

g
e

 o
f 

id
le

 t
im

e

Completion time

Percentage of idle time

(b)

Fig. 4. (a) Comparison of the genetic algorithm and the optimal solution with different number of
workers. (b) Variation of the total completion time and the percentage of time the workers remain idle.

shows that in the synthetic scenario ∼80% of the time a worker
remains idle, especially in case of higher number of workers.
This significantly reduces their overall efficiency and the level
of parallelism. Because of that the total completion time also
does not vary significantly with the increase in number of
workers.

From Fig. 2(a) we can also observe that the ratio between
the optimal and the heuristics solution does not exceed 1.02,
which confirms that the proposed genetic algorithm based
meta-heuristics provides fairly accurate results compared to
its optimal counterpart. The minor inaccuracy is generated
mainly in the assignment process, as in the proposed meta-
heuristics a worker is immediately assigned the next possible
server that can be restored whenever he is free, which may
not be optimal in all cases. To compare the execution time of
the two schemes, we execute them on Amazon Web Services
(AWS) general purpose machine with 16 vCPU and 64 GB
memory. Fig. 2(c) compares the execution time of the proposed
genetic algorithm along with the optimal solution. From this
figure we can observe that the genetic algorithm executes ∼12-
20 times faster than the optimal solution. Infact in case of
slightly larger case (with 20 services and 33 servers) the PuLP
solver’s execution time grows even beyond 10 hours.

The total up-time of the services highly depends on the
type of workers and their expertises. Fig. 3 shows the service
up-time in presence of 4 workers with various combinations of
worker expertises, which we divide into following four cases:

1) Case 1: All workers have expertise to restore all servers.
2) Case 2: Workers are divided into two teams T1, T2. In

T1 one of the workers can restore (S1, S3, . . .) whereas
the other one can restore (S2, S4, . . .).

3) Case 3: Identical to the round-robin policy adopted in
Fig. 2.

4) Case 4: Divide the workers into two teams T1, T2 and
the servers into four groups G1 − G4. In T1 all the
workers can restore the servers in (G1, G2), whereas all
T2 workers are able to restore the servers in (G3, G4).

From Fig. 3 we can observe that the up-time is highest when
all the workers have the expertise to restore all the servers. As
their expertises become limited, the total up-time also reduces.
Also the total up-time is lowest in case 3 as a particular server
in this case can be only restored by a specific worker.

B. Results obtained from a real data center environment

We next evaluate the performance of our proposed scheme
using data obtained from a medium size company that runs
data center for running enterprise and commercial workloads:
due to privacy reasons, we do not identify the company name
of the above-mentioned data center. We use a data set of 20
services and 33 servers. The mean inter-layer dependencies
is found to be 2 servers/service, whereas each service and
server depends on 3 (services) and 1.5 (servers) respectively.
Key services are Microsoft (MS) Windows Active Directory
domain and DNS, MS Exchange for mail service, MS Lync
for instant messaging service, SAP human resource and in-
voice management services, OpMeneger for SNMP network
and system monitoring, EMC Documentum for file archiving
and other few business services such as intranet, timesheet,
contracts, etc. Few services such as OpManager becomes up
once its server is restored but requires the email service to
send notifications to the administrators. We decompose such
services into multiple services, i.e. the OpManager service
is up when its corresponding server is restored, whereas the
notifications service of OpManager is restored only after both
of OpManager and MS Exchange are restored. We grouped
the servers based no their vendors; each worker generally has
expertise to restore servers of certain vendors. The detailed



TABLE IV. WORKER EXPERTISE DATABASE

W Expertise Database
2 W1 → (15 Microsoft servers), W2 → (18 others)
3 W1 → (15 Microsoft servers), W2 → (6 SAP), W3 → (12 others)
4 W1 → (15 Microsoft servers), W2 → (6 SAP), W3 → (5 EMC),

W4 → (7 others)
5 W1,W2 → (15 Microsoft servers), W3 → (6 SAP), W4 → (5 EMC),

W5 → (7 others)
6 W1 → (5 Microsoft Exchange servers), W2 → (4 Microsoft Lync servers),

W3 → (6 Microsoft servers), W4 → (6 SAP), W5 → (5 EMC),
W6 → (7 others)

worker’s expertise is enlisted in Table IV, where Ww denotes
worker w. We vary the number of workers from 2 to 6 and
record the total uptime of the services.

Fig. 4(a) shows the total up-time of the services with the
number of workers. From this figure we can observe that the
total up-time increases by ∼12% as the number of workers
increase from 2 to 6. Compared to the synthetic scenario,
in the real data center scenario the amount of worker’s idle
time reduces significantly (from 80% to 60%) which reduces
the completion time significantly (by ∼50%) as the number
of workers is increased. While comparing with the optimal
solution we observe that the accuracy of the genetic algorithm
is no worse than 1

1.04 times that of the optimal value as
obtained from Fig. 4.

IV. RELATED WORKS

Multi-layer networks: Network theory is an important tool
for designing complex systems, which are generally repre-
sented as graphs where different agents are represented as
vertices and the relation in between different pair of vertices
are represented as edges. However as the research of complex
systems evolve, more realistic framework with heterogeneous
vertices or edges become essential, that are manifested in
the form of multi-layer networks, inter-dependent networks,
networks-of-network etc. In the last decade multi-layer net-
works are used in different applications in different domains,
such as interacting power grids [10], cascading failures and
recovery in interconnected power grid and communications
networks [11], interconnected transportation networks [12] etc.

Operator scheduling problem: The job-shop scheduling
problem along with operators is studied extensively in the
literature. Several approaches are discussed in the literature to
solve this problem: in [13] the authors have proposed artificial
intelligence schemes to solve this problem, whereas the authors
in [14] have proposed a schedule generation scheme with
an objective of minimizing the total flow time. Operator
assignment problem has also been studied in the context of
employee timetabling problems [15]. The resource scheduling
problem has been used for different applications, such as in
pharmaceutical environments, handicraft productions [16] etc.

Our proposed scheme is significantly different than the
above schemes in a number of ways. All of the above
scheduling schemes try to reduce the overall makespan or total
completion time, whereas our objective is to maximize the
total up-time of the services in a recovery process. This needs
the clear understanding and modeling of different services and
their dependent applications by using a two-layer dependency
modeling, which is unlike in the related literature. Also in
our worker assignment problem, the completion time of an
application is divided into exclusive and shared phases; such
environment is not considered in the above literature.

V. CONCLUSIONS AND FUTURE WORKS
In this paper we propose a progressive data center restora-

tion scheme in the face of large-scale disruptions with an ob-
jective of maximizing the limited service provided by the data
center infrastructure during the recovery process. We propose
a heuristic approach to solve this overly complicated problem
considering the inter-dependencies of different services as
well as the experts’ availability. We have conducted extensive
simulations on real world data center traces and shown that
the heuristic approach performs quite well compared to the
optimal solution.

This paper is a preliminary study to model the progressive
restoration problem in the context of large enterprise data
centers. To model this we have simplified a number of practical
concerns that arise in enterprise data center networks. For
example, we assumed that when necessary servers correspond-
ing to a service is restored, the service is up and running.
However in practice some services may support partial load
if some critical servers are restored, whereas the performance
improves gradually as more servers comes up. Also sometimes
disruption may occur as a result of exploited vulnerabilities.
Thus it is necessary to restore and run patching to fix the
vulnerabilities before services can be restored to avoid future
disruptions. Additionally, some services require successive
restoration such as restoring from backup and then restoring
transaction logs or sometimes rebuilding the service’s servers
and then complete the configuration. Integrating these practical
issues in our model is one of our future considerations. Finally,
we plan to do a more thorough evaluation of our proposed
method based on data from a much larger set of real-world
scenarios.

REFERENCES

[1] http://iwgcr.org/japan-earthquake-puts-data-centers-and-cloud-services-
at-risk/.

[2] http://www.datacenterdynamics.com/content-tracks/power-
cooling/hurricane-sandy-data-center-stories-from-
manhattan/72772.fullarticle.

[3] https://thestack.com/data-centre/2015/08/19/lightning-wipes-storage-
disks-at-google-data-centre/.

[4] http://www.americanbanker.com/issues/176 195/bank-of-america-
website-outage-online-banking-1042932-1.html.

[5] http://aws.amazon.com/message/65648/.
[6] http://www.drj.com/drj-world-archives/general-dr-planning/feed/Page-

1.html.
[7] http://ampl.com/products/solvers/.
[8] H. W.Kuhn, “The hungarian method for the assignment problem,” Naval

Research Logistics Quarterly, vol. 2, pp. 83–97, 1955.
[9] S.Mitchell et al., “Pulp: A linear programming toolkit for python,” 2011.

[10] C. D.Brummitt et al., “Suppressing cascades of load in interdependent
networks,” Proceedings of the National Academy of Sciences, vol. 109,
no. 12, pp. E680–E689, 2012.

[11] S.Soltan et al., “Cascading failures in power grids: analysis and algo-
rithms,” in International Conference on Future Energy Systems, 2014,
pp. 195–206.

[12] A.Halu et al., “Emergence of overlap in ensembles of spatial multi-
plexes and statistical mechanics of spatial interacting networks ensem-
bles,” 2013.

[13] T.Yamada et al., “Genetic algorithms for job-shop scheduling prob-
lems,” in Modern Heuristic for Decision Support, 1997, pp. 474–479.

[14] M. R.Sierra et al., “Optimally scheduling a job-shop with operators and
total flow time minimization,” in CAEPIA, 2011, pp. 193–202.

[15] O.Guyon et al., “Cut generation for an integrated employee timetabling
and production scheduling problem,” European Journal of Operational
Research, vol. 201, no. 2, pp. 557–567, 2010.

[16] A.Agnetis et al., “A job shop scheduling problem with human operators
in handicraft production,” pp. 3820–3831, 2014.


