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Abstract—Ad hoc smartphone networks can be used to aug-
ment communications degraded by disasters provided that
the individual ad hoc clusters can reach some ‘“connection
gateways” to get out to the Internet. This capability can
be provided by devices in the surrounding area that retain
cellular connectivity in addition to the connectivity provided
by the specially deployed emergency equipment, if any. The
disconnected areas may not be known until they are back
online; however, we need a mechanism to estimate them so
that the gateway devices can be best recruited to provide the
connectivity. This needs to be done in a dynamic environment
because of the significant mobility in the wake of the disaster.
In this paper, we propose a mechanism to estimate regions that
are likely to be dense but disconnected, and with significant
connected devices in and around them. Such regions are most
likely to benefit from the ad hoc network. Because of the lack
of direct information on people (or smartphone) density, we
attempt to do this by analyzing the twitter data. We use our
approach on the twitter data available on hurricane Sandy in
2012.

Index Terms—Ad hoc Network, Twitter, Network Evolution,
Spatial Clustering

1. Introduction

With increasing frequency and intensity of natural dis-
asters, and increasing impact of all types of disasters on
large urban areas, it is important to focus on the key
issue of facilitating communications during and after the
disaster. The communications networks become stressed
in the aftermath of a disaster both due to heavier traffic
and potentially reduced capacity due to damage to the
infrastructure (e.g., cell towers). Thus it is important to
assess the density of the people vis-a-vis the communica-
tions capability and capacity in the disaster region. Disaster
events generally lead to substantial non-routine movement
of people, which results in people densities to change over
time. In addition, the damage and repair processes also
typically evolve with time especially for events that go
on for days (e.g., wild-fire, floods, hurricanes, etc.) The
dynamic evolution makes the emergency provisioning of
communication resources quite difficult because of lack of
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predictability in mobility, damage, or even repair processes.
For example, the mandatory/voluntary evacuations before
the disaster are expected to result in large scale movement of
people, but their destinations beyond the immediate area of
danger can be highly varied. During the disaster, unplanned
movements may occur for a variety of reasons including the
impact of additional failures. During hurricane Sandy, there
was a major power failure in Manhattan over a large area.
Interestingly, much of it was repaired rather rapidly but an
area of western Manhattan remained dark for several days,
causing movement out of this area.

This paper is concerned with assessing areas with large
people density that may be facing failure and/or severe
overload of the communications network, so that it is pos-
sible to expeditiously provide them with additional external
connectivity via either the surviving infrastructure around
that area, or via additional communications equipment. We
propose an approach to efficiently estimate dense regions
that are likely to be disconnected, which can be used on
large dynamically evolving data sets. Unfortunately, our
currently available data sets, including the one for hurricane
Sandy analyzed here, contain only sporadic communications
outages which limits large scale validation of our approach.

Section 2 places this problem in the context of our
ongoing work on smartphone integration into the emer-
gency response networks. Section 3 discusses the problem
of estimating how many potentially affected and unaffected
smartphones are in the area. Then, section 4 introduces the
method of dynamic clustering of twitter data to solve this
problem. Section 5 discusses about the recruitment process
of the surviving smartphones to work as gateways to the
ones that lost communication. Finally, section 6 concludes
the discussion.

2. Ad Hoc Communications Network

Given the ubiquity of smartphones, we exploit them to
augment damaged communications. We assume that each
smartphone has our app, called EDARWIN, [1] installed
and this app can be initiated during disasters. The network
is intended for emergency message/data transmissions from
people (or phones) that do not have any direct cellular
coverage to an emergency control center (ECC). The ECC is
assumed to be outside the disaster area and fully operational
(including Internet connectivity). We envision the ad hoc
network to consist of many disjoint clusters of smartphones
in the disaster area, each of which is ultimately able to



reach one or more “connection gateway” that has Internet
connectivity and thus can reach ECC. These issues are
discussed briefly next.!

2.1. Building SmartPhone Clusters

When a disaster affected area loses cellular connectivity,
it starts to build out a cluster of all EDARWIN enabled
smartphones in the area. Since a mere loss of signal does
not indicate a disaster, we exploit the Wireless Emergency
Alerts (WEA) signals to trigger the buildout. WEA is the US
centric implementation of an international standard called
Common Alerting Protocol (CAP) and is supported by
nearly all current smartphones [2]. For building the cluster,
we exploit the WiFi hot-spot mode, since it is available
universally on almost all smartphones, and offers a much
more practical solution than say, ad hoc mode WiFi [1].
Building WiFI-hotspot based network is a bit challenging
due to the need for complementary modes (hot-spot vs.
client) among any two communicating smartphones, and
energy conservation by keeping the smartphones in a deep
sleep model when not communicating actively. The details
of the discovery of neighboring devices, building the ad
hoc network, and energy efficient data transfer issues are
discussed in [1]. Because of the challenges involved and
significant delays of multi-hop transmissions, the network
is suitable for emergency data transfers only, rather than
voice communications. However, bulk transmission — such
as transmitting multiple pictures/sounds captured by the
phone to help with rescue/safety assessment — can be done
easily through this network since the biggest delay/energy
expenditure is in setting up a continuous communication
path rather than the data transfer.

2.2. Connection Gateways

A connection gateway is ideally a especially designed
emergency communication node (ECN) that provides both
WiFi and long distance (e.g., satellite) connectively. ECNs
are usually mounted on emergency communications vehicles
(ECVs) so that they can be positioned as needed and then
moved as the situation evolves. However, such deployments
are generally difficult due to physical inaccessibility of dis-
aster hit area and can take a long time to deploy. Fortunately,
in most disasters, the communications network is only partly
damaged, e.g., some cellular towers (or their backend con-
nections) are damaged, while others are not. Therefore, we
focus on scenarios where the smartphones that still have
cellular coverage can act as connection gateways. That is,
there are two types of phones in the disaster area: Affected
Vulnerable Devices (AVDs), i.e., those without direct cellu-
lar connection, and Unaffected Vulnerable Devices (UVDs),
i.e. those with cellular connection. Here “Vulnerable” means
that all devices have received the WEA signal and presumed
to be in the disaster area. Recruiting UVDs for providing

1. Once reached, the ECC also authenticates devices and confirms the
disaster, so that the ad hoc network is not misused.

the gateway service and ensuring that they are not burdened
unnecessarily are crucial for the scheme to be successful.
Note that in order to act as a gateway, the UVDs with
EDARWIN app would need to turn on their WiFi radio and
discover AVDs in their vicinity in an energy efficient man-
ner. (According to our scheme in [1], UVDs are always in
client mode so that they will not discover other UVDs.) Each
UVD will also keep track of who it has talked to recently
(for few hours) to avoid repeated connection establishment
and authentication message exchange.

We assume that UVDs are recruited by ECC, possibly
with the involvement of cellular carriers who could provide
them incentive to participate; however, we do not focus on
those aspects here. Instead, we consider the problem of how
to best make use of the willing UVDs and minimize burden
on them. Obviously, the burden on UVDs depends on how
many AVDs need to be served around them and how many
other UVDs are present. While the number and location of
UVDs can be determined, this is not possible for AVDs until
the ad hoc network has been built and connected to ECC. In
the following, we discuss the problem of estimating AVD
density and identifying suitable UVDs to recruit by using
the twitter data.

3. Mobile Density Estimation

We estimate the density of AVDs and UVDs within
an area by tracking the movements in and out of the area
starting with the normal situation. Given the assumption of
almost everyone carrying a smartphone, tracking of GPS
coordinates of all people (really, smartphones) is theoreti-
cally possible, but the data is not publicly available. Instead,
we try to estimate it using the publicly available twitter
data that is labeled with GPS coordinates. Given the density
estimates, the ECC can recruit willing UVDs suitably (based
on their ability to dedicate bandwidth for gateway function
and other aspects if known, such as the battery level). ECC
may also rotate the gateway role among UVDs to minimize
battery impact, and would need to make changes based on
UVD mobility, i.e., do the least disruptive handoff from one
UVD to another. In the following, we address the issue of
density estimation and tracking its evolution. The actual use
of density estimates is beyond the scope of this paper and
a part of our continuing research.

User density estimation from available twitter data faces
several difficulties and sources of error. First, not everybody
tweets and the twitter API provides only 1% of the tweets.
However, studied over a rather long time window (e.g., an
entire day or a good fraction of a day), it can provide a
reasonable estimate of the user presence. Since the data col-
lected does include unique user IDs, it is possible to identify
all tweets of a given user, from which user density can be
computed. For mobile users the location depends on tweet
time, which complicates matters. We use “average” location
of the user for density estimations. The second difficulty is
that in the environment of interest here, no tweets will be
recorded in an area where the cellular communications are
down. In other words, the tweets only tell us about areas



that do have cellular coverage, i.e., the UVDs around the
areas where communications are lost. The AVD density can
be estimated based on the last known density updated for
increase or decrease in density in the surrounding areas.

We have done a preliminary analysis of the twitter data
for NY/NJ area around Manhattan for hurricane Sandy in
2012. The hurricane actually hit NY/NJ area on Oct 29,
and its immediate effects lingered for several days. Fig. 1
shows the change in density over successive days starting
with Oct 25 (i.e., difference between Oct 25 and 24) until
Nov 2. Similarly, Fig. 2 shows the changes over Oct 29 thru
Nov O1. A red square indicates a net density gain over the
previous day, and a blue square shows net loss, with darker
shade showing a larger change.

Let us focus on Manhattan which is the most heavily
populated area. It is seen that Figs la and 1b do not show
normal movements because of almost complementary nature
of the density change across 2 days. However, Fig 1c shows
an appreciable change. This is because on Oct 27, the path
of the storm is known with high certainty and people move
to safer areas. In particular, the midtown area is somewhat
depleted. Oct 29 shown in Fig 2a shows a large depletion
in the western part. This is due to the hurricane landfall and
widespread power failure as a result. Figs 2b and 2c show
the power failure persisting in extreme western part, and
on Nov 01 (in Fig 2d), the situation returning to normal.
Unfortunately, neither the density data for Oct 25-Nov 1
(not shown), nor the differences shown in Figs 1 and 2
show any significant predictability. That is, given the density
for any given day and past history, it is not possible to
predict what will happen the next day (except during normal
period before the hurricane). While this is not a problem
for using UVDs as gateways and changing them as needed;
it is a problem for deploying emergency communications
equipment which might take more than a day to plan, reach
the site and deploy. Therefore, we shall focus exclusively
on recruiting UVDs for providing the connectivity.

While the power failure did happen in this instance and
is confirmed by the tweets, the reports of Internet failure
were very sporadic as discussed later. In fact, if there were
widespread communication outages, we would not have
tweets from those areas. Thus, tweets from the affected area
can only be inferred by their absence! Therefore, assuming
that the areas of dark blue represent areas where additional
support for emergency communications will be useful. We
thus attempt to determine areas of large density depletion,
and find the red areas in and around them where UVDs can
be recruited. In the following, we discuss an efficient spatial
clustering algorithm for estimating such areas.

4. Spatial Clustering

In order to determine areas of large density depletion,
here we propose a spatial clustering method to efficiently
load and cluster the spatial twitter data that comes in large
scale and dynamic changes. The spatial clustering is usually
computationally expensive, making it inefficient to deal with

the large volume dynamic data. Taking the traditional grid-
based spatial clustering for example, it takes about |Cell|?
(the |Cell| is the total amount of grid cells) steps for it
to execute the spatial clustering, which causes big delay
and distorted result regarding the newly loaded data. The
hierarchical-partition results in a tree-like data structure,
which handles sparsely and densely populated spatial data
space more efficiently. The tree-based data structure has
been widely used in database technology to organize the
spatial data for rapid query. In the proposed method, spatial
clustering is reconstructed in a tree-based structure to load
the dynamic spatial data and determine the spatial cluster
by scanning the dense regions along the tree.

The dynamic spatial clustering is feasible only if the
spatial data in computation is up-to-date regarding the large
volume dynamic data, and the spatial clustering is efficient
in process. Figure 3 shows the partition of point-type spatial
data; the data space is partitioned into a tree-based structure
while each page (node) represents the portioned sub-region
in the map. We choose the K-d-B-tree (k-dimensional Bal-
anced Tree) as the tree-based structure for its search effi-
ciency similar to a balanced k-d tree, and optimal external
memory accesses for block-oriented storage ([3]). Figure 3-
(b) shows the partition into a 2-d-B-tree (k = 2 in this
case). There are four necessary operations used to keep
the tree-based data structure update to the dynamic spatial
data loading from twitter. The splitting and reorganizing
operations are used to keep the property of k-d-B-tree, such
as keeping the tree balanced and avoiding the overfull in
the block storage for each point page. The data loading and
discarding the spatial big data is achieved by inserting and
deleting operations. In Figure 3-(c), the spatial clustering
can be achieved by searching the pages (nodes) with higher
density of emergency-related data points.

As shown in Figure 4, the dense region scanning uses
a depth-first search in three steps. A stack is constructed
to store the intermediate parameters of each region’s pages
ID, density value, and boundary. A depth-first scan is de-
signed in three steps. It first pushes all regions’ intermediate
parameters onto the stack, and then pops the intermediate
parameters to compare them with the threshold using the
judgement logic (as shown in Table in the middle of Fig.
4. It then determines the dense regions according to the
enumerated eight finite states of scanning results. The pro-
posed clustering method is much more efficient than the
traditional grid-based one. Let A denote the set of all spatial
data points, and let us denote the size of singular block
memory for the k-d-B-Tree as Block. The total number of
leaf nodes (pages) of k-d-B-Tree equals to %, and its
height equals 1092%. Since the k-d-B-Tree is a balanced
binary tree, its total number of nodes (pages) is given by
(21092%Jrl — 1). The current dense region scanning has
to parse all nodes in k-d-B-Tree, therefore, its computational

complexity will be close to O( B‘l’;llck).

The proposed spatial clustering clusters the disaster-
related region that is dramatically changing during emer-
gency. Fig. 5 shows results from spatial clustering of the
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Figure 2: Density Changes over Oct 29 - Nov 01, 2012

Hurricane Sandy twitter data. The dynamic spatial clus-
tering computes two density functions. One is the density
of tweets with disaster-related keywords, such as “power”
and “Internet” which have abnormal signal spikes. Fig. 5-a
and Fig. 5-b illustrate the daily hotspots based on the first
density measure. The two figures show the situation before
and after the storm hit NY/NJ area. It is clearly seen that
the affected area expanded significantly after the storm. In
fact, the tweets about power and Internet before the storm
are likely to be about potential rather than real events. It
appears that the Internet failures were very sporadic instead
of large scale. This is actually a more desirable scenario

for the smartphone based ad hoc networks for the outage
areas since it would be relatively easy to find UVDs that
can be recruited. Nevertheless, in the following, we shall
try to identify the affected areas (no Internet coverage, poor
coverage, or heavy congestion) based on the drop in tweet
density itself.

The other density function is the density drop of any
given sequential time slots. Fig. 5-c and Fig. 5-d respectively
show the drop in tweet density before and after the storm
with the drop extent being shown by various overlayed
rectangles. The data clearly shows a significant drop in
tweets following the hurricane.
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Figure 6: Grid Splitting Illustration (Red circle denotes sub-
cells where AVD density > 7.

5. Recruitment Process for UVDs

Since the density of the AVDs are extremely non-
uniform, we develop a scheme which divides the entire
affected region into a nonuniform grid so that any UVD
can be recruited from each cell. We propose a heuristic
to develop this scheme. We first divide the region into a
uniform grid where the size of a grid cell is D,,,40 X Dimaa
meters as shown in Fig. 6a. The size D,,,, is chosen so
that all AVDs within a cell can be reached within a few
hops. This is essential since the performance of a multi-hop
network in terms of throughput and delays degrades rapidly
with the number of hops, and more than 5-10 hops becomes
impractical in practice. We next check whether in any cell,
the density of AVDs is more than some threshold 7. If so,
such elements are subdivided into 4 smaller sub-elements as
shown in Fig. 6b, provided that all the smaller sub-elements
consist of atleast one UVD, and the element dimensions
remain more than D, X D,,iy. This process goes on until
in all the sub-cells the AVD densities are less than 7.
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Figure 7: Heatmaps after the non-uniform grid formation
and subsequent mergers

When this process completes, we choose one UVD from
each of the smallest grid cells. Such divisions ensure that the
load density on all cells (or on the UVDs) are limited. We
simulate this scheme on the tweets from unique users from
10/23-10/26 (4 days before Sandy hurricane) as the total
population. The locations of the users are extracted from
their last tweet. The total number of such unique users is
found to be 17,314. Fig. 7a shows the corresponding results
after the non-uniform grid formation, with D,,,, = 800
meter, d,,in, = 100 meter and 7 = 50. Here the blue crosses
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Figure 5: Spatial Clustering of Tweets for hurricane Sandy

show the UVDs required to provide connectivity. Obviously,
the grid cells from the densely populated areas of Manhattan
are much smaller compared to those from other areas.

It is easy to see that many cells can be merged into
a larger elements while still ensuring that the AVD density
does not exceed 7. Fig. 7b shows result of recursive merging
which ends when no more elements can be combined. As
can be seen, the merging reduces the number of UVDs
significantly (from 538 to 320).

6. Conclusions and Future Collaboration

In this paper, we examine the problem of determin-
ing the most prominent disaster affected areas that where
connectivity may be lost but there is potential to provide
connectivity via devices around them that have connectivity.
We presented an efficient algorithm for identifying such
clusters using analysis of the twitter data. The work de-
scribed here is very preliminary and ongoing. It needs to
be examined in much more depth in order to determine the
robustness of the method and its usefulness in real disaster
scenarios. A basic limitation in this regard is lack of suitable
data sets with known areas of communication loss, against
which the algorithm can be tested. Japan, unfortunately, has
experienced several large earthquakes and we will examine
what data is available and how it can be used for network

evolution. In particular, understanding people’s movement
pattern in different phases of a disaster will be useful for
adapting the communication networks and placing of ECNs.

We will also study the interaction between the trans-
portation and telecommunication networks in large urban
areas which tend to be intertwined during disasters. In
particular, the lack of communications degrades routing
decisions and worsens congestion; whereas the congestion
and blocked roads prevent ECVs to be positioned in the
most needed areas. Building a successful smartphone based
ad-hoc network could break this circular dependency and
allow for faster repair of communications infrastructure and
better transportation to assist with evacuations and rushing
emergency supplies and health care.
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