
PLMlight: Emulating Predictable Latency Mode in
Regular SSDs

Tanaya Roy∗, Jit Gupta∗, Krishna Kant∗, Amitangshu Pal†, Dave Minturn‡
∗Computer and Information Sciences, Temple University, Philadelphia, PA 19122, USA
†Computer Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, India

‡Intel Corp, Hillsboro, OR 97291, USA

Abstract—The interactive web applications increasingly de-
mand an end-to-end latency that is not only low on the average
but also is “deterministic” in that they avoid long tails. Storage
systems today largely keep data in SSDs, but SSDs are known to
have unpredictable latencies due to background activities such as
garbage collection. The recent NVMe access protocol proposes a
Predictable Latency Mode (PLM) which allows the SSD to cycle
between deterministic window (DTWin) and nondeterministic
window (NDWin) periods, with background activities largely
pushed to the latter. However, this means that the number of
read and write IOs during DTWin period is limited and need
to be managed properly. Another challenge is that to date no
real SSDs are available in the market with this feature. In this
paper, we explore the possibility of emulating the PLM feature
in regular SSDs using Intel Optane that does provide a rather
deterministic access latency. In particular, we propose a write
I/O friendly PLMlightcoordinator (PLMLC) that buffers writes
in Optane and sends them to SSD during the NDWin-like period
and also intelligently manages the limited number of IOs possible
during DTWin-like period. The coordinator is designed to handle
requests from multiple hosts that may access shared data on
the SSD and may have different QoS requirements in terms of
latencies. The results show that PLMLC improves the 99%-ile tail
latency by 5.8x even without any sophisticated traffic estimation
procedures.

Index Terms—SSD, NVMe, Tail Latency, QoS, Predictable
Latency Mode (PLM), Intel Optane

I. INTRODUCTION

Storage systems form a crucial component of data center
infrastructure and substantially influence the performance of
the applications. Furthermore, nearly all of the storage re-
sides away from the hosts in “storage servers,” which means
that network is an indispensable part of any storage access
in current days. The emerging interactive applications are
increasingly data-centric and require a low average storage
access latency and one that does not vary a lot from request
to request [1] [2] [3]. The low variation in latency is popularly
expressed as a requirement of “deterministic” latency, but it
means that the length and mass in the latency tail are tightly
controlled.

The enterprise’s ongoing replacement of hard drives (HDDs)
by NVMe based solid-state drives (SSDs) has enabled high
storage throughput and low storage access latency. Unfortu-
nately, SSDs also need to internally carry out a complex array
of background activities to create the impression of a simple

read/write device. This simplicity is achieved by the Flash
Translation Layer (FTL) that manages out-of-place writes,
address translation, wear-leveling, and garbage collection [4]–
[9]. These background activities can occasionally increase
the IO latencies substantially, even to the level of several
milliseconds [10].

The storage access latency consists of several components
including the device access latency, queuing latency for the
device, network latency for the host to get to the storage server
hosting the storage device, and host side latency. In this paper,
our concern is only the device access latency, which often is a
significant piece of the overall latency. Thus the notion of ”de-
terminism” only applies to this. The current version of NVMe
protocol provides a feature known as predictable latency mode
(PLM) to manage the latency caused by background activ-
ities by essentially limiting those activities to time windows
known as NDWin (Non-deterministic windows) while no such
operations are performed during the periods between NDwin
periods, known as DTWin (deterministc windows). Now if we
have two (or more) copies of data on different SSDs which
never are simultaneously in NDWin mode, it is possible to
provide deterministic service to the low latency class of jobs
by serving them during DTwin periods.

Unfortunately, there are currently no available SSDs that
implement this feature, and even when such SSDs become
available, we have the question of providing some level of
determinism to SSDs that don’t have this feature. We tackle
this in this paper by defining a mechnism known as PLMlight.
Although the background operations may occur at random
times in a regular SSD, we attempt to reduce their impact by
bunching up the writes and not doing them during DTWin pe-
riod. (The DTWin/NDWin periods are now artificially imposed
durations explained later). The writes are held in a nonvolatile
memory buffer that has rather deterministic access times (i.e.,
Intel Optane SSD considered) during the DTWin periods, and
flushed to the SSD during the NDWin period. The write flush
to SSD may trigger some garbage collection activity, which
we expect to happen in the NDWin period. The objective then
is to examine to what extent we can achieve deterministic read
latencies and low write latencies with this arrangement.

We evaluate such a mechanism in a multi-host environment
where it becomes necessary to coordinate hosts’ access so that
each host stream can be given the desired QoS treatment. In978-1-6654-9550-9/21/$31.00 ©2021 IEEE

particular, we assume that each host’s IO stream belongs to
one of the predefined set of QoS classes, and the coordinator,
which we call PLMlightCoordinator (PLMLC), assigns how
much of the IO capacity of a DTWin period each class can
use. Any excess IO operations must be done in the NDWin
period, where the latency is no longer deterministic. We show
that PLMLC can help in achieving low latency and provides
QoS differentiation as well. Although the overall performance
is not as good as can be achieved via a real implementation of
PLM, we note that we can achieve these results with widely
available technologies and thus the solution can be easily used
by existing storage systems without any need to replace the
existing devices.

The outline of the rest of the paper is as follows. Section II
discusses the background and the related work. Section III
discusses the methodology we have employed to achieve deter-
ministic latency in shared environment followed by Section IV
which talks about the workloads used and the experimental
evaluation. Finally, section V concludes the paper.

II. BACKGROUND AND RELATED WORK

Traditionally, the SSD firmware controls these background
activities with little regard to the ongoing IO operations.
Certain implementation choices such as incremental garbage
collection or incremental wear-leveling can reduce the dis-
ruptive impact of these operations [11]–[14]. However, to
eliminate them, it is necessary to either put the scheduling
in the host’s hands (so that the host can schedule them as
appropriate) or provide a mechanism by which the applications
needing determinism can always have their requests processed
without interference. The former is supported by the emerging
concept of ZNS (Zoned Name Space) [15] where the SSD
is divided into several “zones” each of which is managed
independently as a log-structured “device,” i.e., data can only
be appended until the zone fills up. The host controls the
garbage collection of zones and can be avoided during IOs
of applications requiring deterministic latency. However, the
additional burden placed on the host for managing zones is a
downside, making its widespread adoption difficult.

NVMe 1.4 specification (NVMe v1.4) proposes another
mechanism to achieve deterministic latency without burdening
the hosts. However, it has the disadvantage of requiring the
data to be replicated on two (or more) identical devices, similar
to but not identical to RAID 1. It is known as the Predictable
Latency Mode (PLM), and each SSD in the RAID-1 like pair
cycles through time windows known as “DTWin” (determin-
istic window) and “NDWin” (non-deterministic window) in a
way that at least one of them is always in the DTWin mode.
In the DTWin mode, background operations are held back so
that the device is dedicated to serving the requests.

NVMe1.4 standard does not offer clear guidance as to how
write I/O should be handled. This standard suggests that the
writes during the DTWin period could be absorbed by an
NVRAM buffer inside the SSD and then transferred to SSD
during the NDWin period. Such an arrangement can work
nicely for read-only traffic since the data can be read from

whichever SSD is in DTWin mode; however, writes introduce
three complications: (a) the writes must be reflected on both
copies, (b) writes could trigger background activities (e.g.,
garbage collection) and (c) a write cannot be postponed as
that would result in serving stale data. However, this brings
in several issues regarding the sizing of NVRAM buffer
and corresponding cost implications and the impact of buffer
overflow (which would require a forced transition from DTWin
to NDWin mode). The NVMe1.4 mechanism does not address
the issue of data being shared among multiple hosts, such as
in the case of a distributed database system. Moreover, no
commercially available SSD has implemented this feature so
far; therefore, it is impossible to evaluate it directly.

In the work [16], the read IO management is explored
in a shared environment by modifying an extremely detailed
SSD simulator called MQSim [7]. The designed coordinator
synchronizes hosts (that itself looks like a host to the device)
to observe the IO use of each host and distributes the IO
capability during the DTwin period among various hosts.
We also introduced the notion of QoS and showed how
the IO count allocation could be done to respect the QoS
requirements.

A. SSD Structure and Management Activities

Fig.1 shows the details of NVM storage structure. An
NVMe SSD is partitioned into one or more “NVM sub-
systems” which can be managed independently. An NVM
subsystem comprises of one or more NVMe controllers, one or
more NVM subsystem ports, non-volatile storage medium and
an interface between the controllers and the storage medium.
Therefore, an SSD can be deemed as an NVM subsystem.
Each NVM subsystem may consist of one or more Endurance
Groups (EG) to localize garbage collection. Each EG could
contain a number of “NVM Sets” (NVMS), and each of those
can consist of one or more Namespace (NS).

Fig. 1: NVM Storage Hierarchy

The NVMe Storage Con-
troller (NSC) helps to con-
nect a host with the NVM
storage. An SSD can be
accessed by a host locally
as well as remotely. For
remote access, a protocol
called NVMe-oF (NVMe
over fabric) has been de-
fined that essentially ex-
tends the NVMe commands
to be ported from host to
the target and executed re-
motely [17].

The PLM is operated at
the granularity of NVM-sets, which cycles between the afore-
mentioned DTWin and NDWin as in Fig 2 such that all
background activities are performed during the NDWin period.
The DTWin budget can be represented by three attributes: (a)
a predefined time limit, (b) a predefined limit on the number
of reads, and (c) a predefined limit on the number of the writes

Fig. 2: PLM Mechanism
that can be performed on the NVM-set. Both (b) and (c) are
collectively termed as Deterministic Counts (DC) in this paper.
The NVM-set may transition to NDWin if either of these limits
is exceeded. There are various DTWin attributes introduced
in NVMe v1.4 such as DTWin read typical (CRD), DTWin
Write typical (CWR), and DTWin time maximum (TDW).
We consider the parameters CRD and CWR as DTWin read
deterministic count (read DC) and write deterministic count
(write DC) respectively.

B. PLM Feature and Its Functioning

The PLM feature proposed in [15] is primarily designed to
cater to reads since the latencies for reads are generally more
critical than for the writes. To achieve the deterministic latency,
the host needs to obey the predictable latency operating rules.
As stated earlier, to provide continuous access to DTWin mode
to an application, we need multiple (two or more) NVM-sets
that are identical and contain copies of the data. If all NVM-
set copies are never simultaneously placed in the NDWin
state, an application can read data in the DTWin mode any
time. While the required duplication is expensive, it is needed
only for the data accesses that must be deterministic; one
copy suffices for all other data. Also, if multiple copies are
maintained for resilience reasons, they can be used to provide
the deterministic service as well. It is also worth noting that
a traditional RAID1 (mirroring) does not provide the same
functionality as PLM since the reads could occur in RAID1
while the SSD is doing the background operations.

The NVM-set may transition to the NDWin before exhaust-
ing its DTWin budget – this happens if there is an emergency
management operation required such as an emergency garbage
collection being triggered. The amount of time spent by the
NVM-set in the NDWin state depends on the necessary back-
ground operations for management activity (and the flushing
of writes accumulated in the buffer.)

A remote host can setup a connection via NSC. The NSC
advertises the DTWin related status for each NVM-set into
a “log-page”. The log-page is accessible to the host using
NVMe commands and therefore the DTWin information per
NVM-set. The host defines the beginning of DTWin and
NDWin periods by making requests to the NSC using the
“set-feature” command. Since a host could use multiple NVM-
sets simultaneously, they could be at different points in their
DTWin/NDWin cycles. Therefore, the host must influence

DTWin/NDWin duration to synchronize multiple copies of
NVM-sets. PLM’s current specification puts the regular tran-
sition between DTWin and NDWin control with the host (if
the log-page advertised status is respected) and the forced
transition with the NSC (if the host does not respect the
operating rules).

C. Coordinator Background

One of the initial issues we encountered in our study of
the PLM feature was the associated problems while extending
it to a multi-host environment. In such an environment a
resource allocation module is required along with the existence
of usual NSC capabilities. This module can be a part of the
NSC itself; however, running separate workloads pertaining
to the different hosts can create a bottleneck at the NSC.
This overhead brings forth the need to break this module
into sub-modules and place it outside the NSC in a suitable
setting i.e. the storage server. This issue is explored in [16]
by introducing the concept of a PLM Coordinator (PLMC),
which acts like the aforementioned DTWin budget allocation
entity that distributes read DC/TDR. It interacts with the
hosts and allocates for them their read DC (depending on
their QoS requirements) at the start of each DTWin period.
The PLMC does not participate in the data path of the I/O
requests, however, it is also possible to place the PLMC on
the host side as another host requesting for the shared NVMe
Set.

D. Hybrid Storage Model

Hybrid storage model is quite popular this days for dis-
tinctive purposes. In [18] surveys with different set of storage
technologies choices with their usefulness and pitfalls. The
hybrid storage model with Optane memory, used in the same
level with SSD or as a different level in the storage hierarchy,
to enhance the performance and endurance of the overall
storage system is explored by multiple researchers [19]–
[21]. In [19], they have valuable findings to use for building
emerging hybrid SSD controllers. They have observed, it is
suitable to place small files to be placed in the Optane and
large files on SSDs. The Optane is used to enhance the
endurance of the overall storage system in [20]. [21] caches
datablock based on the access eligibility of a block from SSD.

In our work, we have considered Optane in the same level
as SSD to emulate the PLM feature. Therefore, there are
no existing works with which we can compare the realized
deterministic latency.

III. ACHIEVING DETERMINISTIC LATENCY IN SHARED
ENVIRONMENT

As stated earlier, PLMC is capable of distributing read DC
among the active hosts based on the application QoS. However,
it doesn’t consider write IOs. The shared environment becomes
interesting when write intensive workloads are in play simul-
taneously and share the same working set. To assure consis-
tency it is required to execute the write IO when requested.
However, inexpert handling of write IO can consume the

Fig. 3: An Illustration of PLMlightArchitecture

device write DC and therefore can force DTWin to NDWin
transition. This can result in a long spike in latency for latency
sensitive applications. In this paper, we have proposed a
coordinator - PLMlightCoordinator (PLMLC), to manage both
read IO and the write IO in regular SSDs while embodying
the features from PLM. Thus guaranteeing the low latency for
high QoS applications.

A. Proposed PLMLC in a Shared Environment

We design the proposed PLMlightto distribute the read DC
among multiple hosts running different workloads that share
the storage space while also handling write IOs. PLMlighthas
two sub-modules, the central coordinator agent i.e. PLMLC
along with a Write Handling Agent (WHA) in each server.
The PLMLC is placed on the control path, outside the storage
controller. It acts as a host and communicates with the storage
server using NVMe-OF. Therefore, it can collect the status of
the PLM parameters from the NSC using NVMe commands.
Also, it can collect the traffic experienced by each host via
message passing to allocate read DC for each host. The write
IO needs to be executed immediately to maintain consistency
and reliability. To control the write DC usage of each NVM
set, limited write IOs are performed on SSD. The excess write
IOs need to be relocated in order to achieve deterministic
latency. Therefore, the WHA needs to be placed in the storage
server along with the NSC to direct the location of the write
IO execution. In the proposed PLMlight, we need an additional
device (which reports more deterministic write latencies) along
with the regular SSDs to complete the aforementioned excess
write IO, thus creating a Hybrid Storage Model.

In this paper, we have considered Intel Optane SSD to
accomplish these excess writes. The architecture of PLMlightis
shown in the Figure 3. PLMLC allocates read DC to each
host actively accessing the NVMe target, consisting of two
or more NVM subsystem(s), i.e SSD(s), and Optane as the
additional device. It also maintains a consolidated write DC
pertaining to the device so as to ensure the device’s seamless
transition to NDWin when write DC is exhausted. Each
subsystem can have one or more NSCs that control a number
of NVM-sets. The hosts can communicate with PLMLC using
conventional NVMe-OF protocol [17], [22] and access each
NVM-set’s log-page to collect read DC information. It is

assumed that each host is reliable to convey its usage to
PLMLC and respect the allocated limit. The PLMLC needs to
learn the workload traffic characteristic to estimate the required
DC. It allocates the read DC to each host based on the
read DC estimation and the QoS class of the applications
running on each hosts. Unlike PLMLC, there is no separate
communication needed between hosts and WHA. The WHA
decides the write IO execution device depending on the device
characteristics.

In general, hosts with similar traffic characteristics will ex-
perience the same underlying device access latency (exclusive
of any queuing or other latencies) in the absence of manage-
ment operations. Therefore, the difference will be highlighted
in tail latency. The end-to-end (E2E) latency will consist of
different components, such as: (a) host-side IO dispatch and
IO completion latency, (b) network transit latency, (c) NVMe
queuing and queue handling latency, and (d) device access
latency. In reality, the QoS class definition would cover the
end-to-end latency, and must be split into allowable latencies
for each of these four components. For example, if TL is the
overall desired 99% latency, we can split it into four pieces
TLi, i = 1..4 with

∑4
i=1 = TL. This paper is only focused

on (d) following such a split.

B. Host Traffic Estimation by PLMLC

The PLMLC module of PLMlightneeds the estimated
read DC of each host and distributes the available read DC
considering the application’s QoS class. The estimation could
be done either by each host individually and then communi-
cated to PLMLC, or the PLMLC can do the estimation itself.
The former is more cumbersome and perhaps not desirable
since it adds extra burden on the hosts and could be subject to
misbehavior if a host’s estimation is faulty (e.g., a deliberate
overestimation supplied by the application). However, the host
can potentially use information that is not available to PLMLC,
including perhaps the precise number of reads/writes to be
performed during a DTWin.

The PLMLC can easily separate the requests from each
host and do a statistical estimation of the traffic. However,
the key difficulty in such an estimation is that the storage
traffic is generally very bursty and nonstationary. Thus the
standard quasi-stationary time-series prediction models, such
as ARMA, Kalman-filters, etc. do not provide very good
predictions [23]. In fact, our experiments with all these
algorithms (not reported here) confirmed that these well-
established methods did not provide any significant advantage
over a simple exponential smoothing-based traffic estimation.
In theory, more sophisticated neural net models could do
better by capturing the patterns in the workload, however,
this method has two key hurdles: (a) need for very long
traces for training the model, and (b) need to retrain when
workloads/applications change. Our results show that basic
exponential smoothing provides satisfactory results in spite of
its simplicity.

Let R(m)
j (n) denote the measured read request count (traf-

fic) at the n-th DTWin for the j-th class and R(p)
j (n) their

smoothed estimated in the same period, with 0 < ζ < 1 as
the smoothing constant. Then,

R(p)
j (n+ 1) = ζR(m)

j (n) + (1− ζ)R(p)
j (n) (1)

Where ζ is chosen experimentally as 0.5 for the entirety of
each experiment.

C. Deterministic Count Allocations by PLMLC

For the DC allocation, we have closely followed our pre-
vious work in [16] where we considered k hosts running
different workloads with different QoS classes represented as
Q1, Q2, ..., Qk. The n-th DTWin duration is termed Wd(n)
which is followed by the subsequent NDWin of duration
Wnd(n). The entirety of these two periods is collectively
termed as the scheduling period W (n), where

W (n) =Wd(n) +Wnd(n) (2)

The write request behavior during a preceding Wd(n)
determines the duration of a succeeding Wnd(n) as the writes
may trigger background activities which in turn extend said
Wnd(n). During each W (n) we need to allocate the total DC
among the k hosts so as to establish differentiated treatment
for all of Q1, Q2, ..., Qk classes and to also make sure that DC
allocated is not wasted (i.e. a certain does not use its allocated
DC)

1) Read DC allocation: We term the total available
read DC during a Wd(n) as C. If the predicted traffic results
in a total required read DC is below C, we then allocate the
estimated value itself. However, if the predicted value exceeds
C, we follow a fixed ratio style of allocation for the excess
required read DC, which is as explained below.

Fixed Ratio Allocation Policy: In this allocation policy,
the residual required read DC is split among various hosts
based on a predefined set of ratios rj corresponding to the
Q different classes. We further divide the allocation policy
into two different styles so as to observe how it affects the
QoS differentiation. This is done on the basis of how much
minimum read DC is guaranteed to each host. They are as
follows -

• Equal Base (EB): In every DTWin, each QoS host starts
with the same minimum read DC. Though, additionally,
they may get more read DCs based on their traffic
characteristics and QoS class.

• Prioritized Base (PB): At the beginning of each DTWin,
each host is assigned read DCs based on their QoS
class. Additionally, more read DCs are also allocated
based on the QoS class, similar to EM.

In contrast to [16], we have considered only the fixed
ratio policy as the other method mentioned in [16] (Strict
Priority) and Fixed Ratio tend to perform similarly in a variety
of situations.

2) Write DC management: We can distribute the read DC
considering the traffic intensity and QoS class of the workload.
In that case, we can force low QoS class workloads to wait
and perform their execution during NDWin, when allocated

Workload High Medium Low
WorkloadI 421.6 424.7 426.3
WorkloadII 383 397.2 396
WorkloadIII 1161.6 1163.2 1160.4
WorkloadIV 1117.3 1131.1 1132.6

TABLE I: Average IO in KB/DTWin

read DC is exhausted before the DTWin ends. In the case
of write DC, we cannot stall the write operations until
DTWin ends as the working set is shared among all the
hosts. This action will violate consistency. Therefore writes
need to be performed immediately. This is also the reason
why we refrained from differentiating between QoS classes
for allocating write DC. To mitigate the premature end of
DTWin, we will reduce the number of writes going to the
SSD. Here we consider a policy where small writes (4K to
64K IO size in our case) are done in Optane and large writes
(larger than 64K) in SSD.

IV. EVALUATION OF THE PROPOSED PLMLC

A. Workloads and Configurations Used

Fig. 6: Snapshot of W-I

To evaluate our mecha-
nism, we use the widely
accepted FIO benchmark-
ing tool to create work-
loads that can stress test
PLMLC [24]. We ran FIO
with four different configu-
rations which we denoted as
I-IV. These workloads were
spawned into three different
processes with each process pinned to a different CPU. The
CPUs are considered as three hosts in our description. The
workload configurations are as follows.
1) Workload I and II: The first two workloads have a read-

write ratio of 30:70 and 70:30 respectively. Both of these
workloads have a request size of 4KB. This tests PLMLC
’s performance for single block requests.

2) Workload III and IV: Here, the request size for these
two workloads range from 4KB to 128KB, but the same
30:70 and 70:30 read/write ratios are maintained. This tests
PLMLC’s performance for variable and larger request sizes.

Fig. 7: Snapshot of W-IV

Due to the pervasive use
of caching and prefetching
throughout the storage hi-
erarchy, we considered pri-
marily 100% random work-
loads. This presents the
most challenging workload
for PLMLC. We can ob-
serve this random behavior
in Figs 6 and 7 and can also
observe how the variable request size of Workload IV ensures
that the rate of requests is smaller as compared to that for
Workload I. Both these figures show a two-second snapshot
of workloads I and IV.

(a) Read Tail Latency Comparison (W-II) (b) Read Tail Latency Comparison (W-IV) (c) Write Tail Latency Comparison (W-IV)

Fig. 4: Read and Write Tail Latency Comparison with Baseline for Workloads II and IV

Fig. 5: Histogram depicting request size distribution in W-III
We have used the Linux applications blktrace and blkparse

to capture the replayable trace pertaining to each of the
workloads generated by FIO. The resultant trace contained
four actions (in the given order) pertaining to each request -

1) Q / Queue Request: This action notes the intent to queue
the request at the given location. No request actually
exists yet.

2) G / Get Request: This action corresponds to allocating
a struct request container, which is a mandatory step to
send any type of request to the block device.

3) D / Issue Request: As the name suggests, this action
issues the created existing request to the driver.

4) C / Completed Request: Finally, this notifies the
completion of the request.

For our evaluation, we have only considered the action D as
that is the only action of significance to us. This is because
every other action is dependant on how the application itself
behaves, for example, the request may be completed at a
different time in FIO compared to PLMLC. The final trimmed
traces (with a single action pertaining to a single request) were
used for our experimentation.

B. Evaluation Metrics

In this paper, our goal is to achieve low latency with
minimum variation. Therefore, measuring and comparing tail
latencies, along with the average latencies, are useful here.

• Read Tail Latency: For each of the considered workloads,
read latencies are measured and tail latency at differ-
ent %-tile, viz. 90%-tile, 95%-tile, 99%-tile, 99.9%, are
reported. These values represents the maximum latency

value, for the fastest 90%, 95%, 99% and 99.9% of read
IO requests respectively.

• Write Tail Latency: Similar to the read latency, write
latencies are measured and tail latencies are reported.

C. Experimental Setup

In this paper, to achieve our goal of deterministic latency, we
have emulated the NVMe 1.4 proposed PLM using workloads
containing both reads and writes in a distributed shared
environment. We have considered two identical SSDs, NVMe
SSD 970 EVO Plus, as NVM-sets. The Optane memory on
PCIe is considered as the write buffer to these NVM sets. As
there is no common driver application to manage both SSDs
and Optane memory, we have implemented an application
that manages both SSDs and Optane in a Linux environment,
Ubuntu 20.04. We have turned off the SSDs internal write
cache and Linux page cache to reduce the effect of caching
mechanism in the experienced latency of an IO request.

D. Evaluation Results

For evaluation, we have considered the above four
workloads(I-IV). Each of these workload types runs on three
hosts with different QoS class requirements. We have per-
formed a baseline experiment with three hosts running si-
multaneously for each workload on SSD without any QoS-
based treatment. As there is no differential treatment for the
three hosts in the Baseline scenario, all three exhibit close
to identical behavior with negligible difference. Hence we
have only depicted one of the hosts in our figures as the
Baseline comparison. We compared our PLMlightperformance
for all the workloads against the baseline. We performed the
PLMlightperformance tests using the fixed ratio policy with EB
and PB. For each of the workloads, we considered three hosts
in the Hybrid Storage Model (as mentioned in Section IIIA)
with different QoS classes (high, medium and low) running
together.

For each of the workloads, we considered consistent con-
figurations depending on the workload characteristics. The
available read DC and write DC for every DTWin are
the same and considered as 80% of the average read and
write IOs per DTWin. The DTwin period is considered as 1

(a) Read Tail Latency Comparison (EB) (b) Read Tail Latency Comparison (PB) (c) Write Tail Latency Comparison

Fig. 8: Read and Write Tail Latency Comparison with Baseline for Workload III

millisecond. Therefore, 80% of the read and write IOs will be
served in 1 millisecond. We want to examine how efficiently
PLMlightcan distribute this DTWin IO capacity among three
classes. The PLMlightperformance tests are done considering
both EB and PB, where total base read DC collectively
assigned for high, medium and low are 75% of the average
read. In the case of EB, the total base read DC is shared
among three QoS equally as mentioned in Section III-C. In
contrast, total base read DC is shared between QoS classes
as 50%, 30% and 20% for high, medium and low respectively.
Therefore, for a high IO intensive application, all QoS class
have the possibility to achieve the required amount of DC
to experience low read latency. PLMlightdoesn’t distribute
write DC among the QoS classes. All QoS classes share the
write DC on a first-come-first-serve basis.

1) Write-intensive IO Workload: Write intensive workloads
(Workloads I and III) running on SSD can yield a few
milliseconds read latency as shown in Figs 8a and 8b and
considered as baseline. Therefore, it is reasonable to compare
our PLMlightconsidering the Hybrid Storage Model with the
baseline. Baseline has millisecond-level tail latency from 90
percentile and beyond. Whereas, PLMlighthas microsecond-
level tail latency at 99%-tile. The tail touches the millisecond-
level latency at 99.9%-tile, which is not different than baseline.
At 99%-tile, the High QoS host under PLMlightin Workload III
improves 2.7x and 5.8x than baseline for EM and PM respec-
tively. With these workload characteristics and considered DC
configuration, there is not much differentiated service provided
with EM policy. However, for PM policy, PLMlightprovides
significant differentiated service. Therefore, the High QoS host
performs better by 0.5x compared to the Low and Medium
QoS host for 99%-tile tail latency. The write latency also
significantly improves with PLMlightas shown in Fig 8c. It
happens as Optane consumes a large portion of writes. The
IO size distribution of this workload is represented in Fig 5.
All writes with IO size greater than 64K are consumed by the
SSD. Otherwise, it is persisted in the Optane. We cannot see
differentiated service for write latency among the three QoS
classes as writeDC’s are used collectively.

Further, we wanted to explore the write intensive workload

performance with PLMlight, where all writes are small (4KB)
i.e. Workload I. Fig 9 shows that PLMlightcan outperform
baseline for High QoS. It improves close to 0.5x at 99.9%-tile.
However, the differentiated service results in higher latency
for low and medium QoS than baseline in this Workload.
Moreover, when we consider the writes, the latency for all the
QoS classes stays at microsecond values as shown in Fig 10.
This happens as writes are all consumed by the Optane buffer
and transferred to SSD during the NDWin period.

2) Read-intensive IO Workload: Although PLMlightis pri-
marily focused on write intensive workloads, we wanted
to conduct performance tests considering the read intensive
workloads (Workloads II and IV) too. Fig 4a shows that high
QoS read tail latency performs better than baseline by 70%
at 99%-tile and 30% at 99.99%-tile with a hybrid model. The
primary reason of this small improvement in read latency is
the small portion of write data goes to Optane and results
in a spike in SSD latency. Therefore, any amount of writes
dissociated from SSD can yield better read tail latency. This
finding can be made stronger with a performance test with
significant IO size variations even in read intensive workload.

In this workload (Workload IV), we have variations in IO
size, and a small fraction of writes with less than 64KB IO
size persists in the Optane, while the rest go to the SSD. In
Fig 4b, the high QoS outperforms the baseline read tail latency
by 80% for 99%-tile and 55% for 99.9%-tile, which is almost
similar to the performance achieved with the read-intensive
small IO workload (Workload II). It is noticeable that low
and medium QoS class read latency improves from the other
read-intensive workload (Workload II) by avoiding write IO
execution in SSD. Although, a small amount of write is present
in the workload, persisting a portion of it in Optane improves
the write tail latency significantly in PLMlightas compared to
the baseline (shown in Fig 4c).

From the described result graphs we have noticed that the
write-intensive low and medium workloads perform better
than read-intensive workload settings for read latency. In case
of write-intensive workload, fig 9 and fig 8 the considered
read deterministic counts are sufficient for the read IO exe-
cution during DTWin and therefore, helps medium and low

Fig. 9: Read Tail Latency Comparison for W-I

Fig. 10: Write Tail Latency Comparison for W-I

workloads to achieve low latency. In case of read-intensive
scenario, fig 4, we have considered a stressed situation, where
device DCs are not enough for the ongoing read and write IO
operations. Therefore, high is given highest preference and as
an effect, the medium and low suffered significantly.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have considered a mechanism to enhance
the determinism of SSD access latency by making use of
DTWin/NDWin concepts proposed in NVMe1.4, coupled with
the introduction of a more deterministic device in the overall
architecture. Since no commercially available SSDs currently
have yet implemented this feature, and there is a huge installed
base of SSDs, our proposed mechanism instead attempts to
increase determinism by artificially defining DTWin/NDWin
periods such that minimal writes to SSDs are issued during
the DTWin period. Instead, most writes are directed to an
Intel Optane device that inherently provides deterministic
latency. These writes are opportunistically transferred to SSD
during NDWin periods. In this paper, we design a coordinator
that can handle requests from multiple hosts to a shared
device. The coordinator distributes the allowed IO counts to
individual hosts based on their QoS requirements. A detailed
evaluation shows that mechanism can substantially enhance
the determinism and also reduce the write access latencies by
close to 5.8x.

ACKNOWLEDGMENT

This research was supported by a grant from Intel Corpo-
ration.

REFERENCES

[1] Y. Xu et al., “Bobtail: Avoiding long tails in the cloud,” in USENIX
NSDI, 2013, pp. 329–341.

[2] G. DeCandia et al., “Dynamo: Amazon’s highly available key-value
store,” ACM SIGOPS operating systems review, vol. 41, no. 6, pp. 205–
220, 2007.

[3] J. Dean et al., “The tail at scale,” Communications of the ACM, vol. 56,
no. 2, pp. 74–80, 2013.

[4] A. I. Alsalibi et al., “A survey of techniques for architecting slc/ml-
c/tlc hybrid flash memory–based ssds,” Concurrency and Computation:
Practice and Experience, vol. 30, no. 13, p. e4420, 2018.

[5] S. Kim et al., “Analysis of potential risks for garbage collection and
wear leveling interference in ftl-based nand flash memory,” Journal of
The Korea Society of Computer and Information, vol. 24, no. 3, pp. 1–9,
2019.

[6] Y. Cai et al., “Error characterization, mitigation, and recovery in flash-
memory-based solid-state drives,” Proceedings of the IEEE, vol. 105,
no. 9, pp. 1666–1704, 2017.

[7] A. Tavakkol et al., “Mqsim: A framework for enabling realistic studies
of modern multi-queue SSD devices,” in USENIX FAST, 2018, pp. 49–
66.

[8] J. Kim et al., “Alleviating garbage collection interference through spatial
separation in all flash arrays,” in USENIX ATC, 2019, pp. 799–812.

[9] A. Tavakkol et al., “Flin: Enabling fairness and enhancing performance
in modern nvme solid state drives,” in ACM/IEEE ISCA, 2018, pp. 397–
410.

[10] https://www.intel.com/content/dam/www/public/us/en/documents
/technology-briefs/low-latency-for-storage-intensive-workloads-tech-
brief.pdf, 2020.

[11] S.-M. Huang et al., “Providing slo compliance on nvme ssds through
parallelism reservation,” ACM Transactions on Design Automation of
Electronic Systems (TODAES), vol. 23, no. 3, pp. 1–26, 2018.

[12] J. Guo et al., “Parallelism and garbage collection aware i/o scheduler
with improved ssd performance,” in 2017 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 2017, pp.
1184–1193.

[13] Y. Du et al., “Enhancing ssd performance with ldpc-aware garbage
collection,” in 2017 IEEE 6th Non-Volatile Memory Systems and Ap-
plications Symposium (NVMSA). IEEE, 2017, pp. 1–4.

[14] J. Do et al., “Improving cpu i/o performance via ssd controller ftl support
for batched writes,” in Proceedings of the 15th International Workshop
on Data Management on New Hardware, 2019, pp. 1–8.

[15] “Nvm express base specification, rev 1.4,” https://nvmexpress.org/wp-
content/uploads/NVM-Express-1 4-2019.06.10-Ratified.pdf, June 2019.

[16] T. Roy et al., “Managing ssd tail latency with plm,” Proc. of NAS, Oct
2021.

[17] D. Minturn et al., “Under the hood with nvme over fabrics,” in Ethernet
Storage Forum. SNIA, 2015.

[18] M. Hoseinzadeh, “A survey on tiering and caching in high-performance
storage systems,” arXiv preprint arXiv:1904.11560, 2019.

[19] H. Chen et al., “An empirical study of hybrid ssd with optane and qlc
flash,” in 2020 IEEE 38th International Conference on Computer Design
(ICCD). IEEE, 2020, pp. 175–178.

[20] T. Roy et al., “Enhancing endurance of ssd based high-performance
storage systems using emerging nvm technologies,” in IEEE IPDPS
Workshops, 2020, pp. 1070–1079.

[21] J. Gunta et al., “Fussycache: A caching mechanism for emerging
storage hierarchies,” in 2020 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom). IEEE, 2020, pp. 74–
81.

[22] Z. Guz et al., “Nvme-over-fabrics performance characterization and the
path to low-overhead flash disaggregation,” in ACM SYSTOR, 2017, pp.
16:1–16:9.

[23] A. S. Weigend, Time series prediction: forecasting the future and
understanding the past. Routledge, 2018.

[24] J. Axboe, “Fio,” 2013. [Online]. Available: https://fio.readthedocs.io/en/
latest/

