
PLMC: A Predictable Tail Latency Mode Coordinator for
Shared NVMe SSD with Multiple Hosts

Tanaya Roy∗, Jit Gupta∗, Krishna Kant∗, Amitangshu Pal†, Dave Minturn‡, Arash Tavakkol§
∗Computer and Information Sciences, Temple University, Philadelphia, PA 19122, USA
†Computer Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, India

‡Intel Corp, Hillsboro, OR 97291, USA
§Fortum, Switzerland

Abstract—Solid-State Drives (SSDs) involve a complex set of
management activities in the background, resulting in unpre-
dictable delays and occasional extended access latencies. However,
there is an increasing demand for ”deterministic” access latency
in a growing number of scenarios. This demand has prompted
a new feature in the NVMe storage access protocol called
Predictable Latency Mode (PLM), which provides a way to tighten
tail latency in SSDs. This paper presents the first study of the
PLM feature in a single-host environment and its extension to
multi-host settings. We propose a PLM Coordinator (PLMC) that
regulates access to the PLM of a shared SSD device based on
the hosts’ traffic characteristics. Our simulation experiments
show that the proposed PLMC can achieve 82% improvement
in 99.99% tail latency compared to a bare SSD without PLM
feature. Moreover, the proposed coordinator with simple traffic
prediction can perform 93.2% better than without coordinator
on the 99%-tail latency values.

I. INTRODUCTION

The ongoing replacement of hard drives (HDDs) by solid-
state drives (SSDs) with NVMe (Non-Volatile Memory Ex-
press) interface in the enterprise has enabled much higher
performance and low end-to-end storage latencies [1]–[4].
However, the tail latency in current SSDs can range up to
several milliseconds.

Fig. 1: Latency Distribution for Intel DC P4610 SSD

For example,
Fig. 1 shows
the latency
distribution of
a recent Intel
NAND SSD
device (Intel
DC P4610
SSD) with a
workload of 70%-read and 30%-write of 4KB blocks [5]. It
shows that the 99 percentile tail latency can be more than
1 ms.1 Popular applications such as streaming applications,
social media platforms, financial transactions require not only
a low average access latency but also a short tail latency
so that transaction to transaction latency does not vary
substantially [6]. Thus, tightly controlling the tail latency is
essential for emerging storage systems [7]–[9].

The NVMe 1.4 specification (NVMe v1.4) introduces the
predictable latency mode (PLM) [10] feature for NVMe SSDs

1This figure is only for illustration; our experimental setups don’t use this
SSD and the workload is different too.

to achieve deterministic latency. The PLM feature is based
on the concept of deterministic window or DTWin and non-
deterministic window or NDWin modes. During the DTWin
mode, the storage access latency is made deterministic by
avoiding background activities, which are deferred until the
SSD goes into NDWin mode. The DTWin mode is realized
by the limited DTWin budget (explained in sec II-B). A
careful DTWin budget allocation becomes critical if (a) several
applications, with different QoS classes, have tight tail-latency
requirements and thus need to take advantage of the PLM, and
(b) the data accessed by these applications are located on the
same SSD.

If the workloads are running on the same host, the host
itself can regulate the share of the DTWin budget for each
application; however, when multiple hosts target the same
SSD, a coordinator is needed. In this paper, we design and
evaluate such a coordinator, henceforth called PLM coordina-
tor (PLMC).

Typical data center environment concentrates storage in a
small number of “storage servers” that are accessed by all the
hosts; therefore, the scenario of multiple hosts accessing data
on the same SSD is routine. It is likely to even increase as SSD
sizes move from the current few TB to few tens of TB. Typical
examples of such shared access include traditional databases,
semi-structured key-value stores, or document stores contain-
ing documents, images, videos, etc. If multiple workloads
compete for a limited DTWin budget, providing each of them
a proper QoS can become quite challenging.

The existing PLM mechanism, as currently defined, focuses
only on read IO latency improvement, and hence this paper is
also focused on read I/O management. It calls for buffering of
all writes that arrive during a DTWin period in an NVRAM
device (intended to be internal to the SSD but could also
be external) and flush them to the SSD during the NDWin
period. Thus while writes are very important to the overall
PLM scheme, they are out of scope for this paper and will be
addressed in future.

To the best of our knowledge, there is no other comparable
mechanism in the literature at this point. Specifically our
contributions are as follows:
• Simulating PLM feature: Since the PLM capability is

nascent and still not available in any commercial SSDs, we
need to lean on simulation to examine PLM performance.
For this, we have modified MQSim [11], which is a com-

978-1-7281-7744-1/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 N

et
w

or
ki

ng
, A

rc
hi

te
ct

ur
e

an
d

St
or

ag
e

(N
A

S)
 |

97
8-

1-
72

81
-7

74
4-

1/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
N

A
S5

15
52

.2
02

1.
96

05
47

0

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on December 20,2021 at 11:06:09 UTC from IEEE Xplore. Restrictions apply.

prehensive and validated model of NVMe and SATA-based
SSD.

• Extending PLM feature: The PLM feature is currently
defined only for use by a single host. In this paper, we
extend it to multiple hosts sharing a SSD by defining a
PLM Coordinator (PLMC) that interacts with the hosts and
allocates a suitable DTWin budget to each. The PLMC
resembles any other NVMe host and thus does not require
any changes to the existing protocols. Therefore, PLMC can
be implemented in a container or VM in the storage server
itself that the hosts can invoke.

• PLMC Evaluation: The proposed PLMC predicts the traffic
of different classes and uses it to allocate the DTWin
”counts.” We show that this mechanism can achieve up to
31% improvement in the 99% tail latency of the highest
QoS class as compared to an uncoordinated operation of
the hosts. This result holds in spite of very high burstiness
of the traffic.
The outline of the paper is as follows. Section II provides

an in-depth discussion of the PLM feature as specified in
NVMe1.4, and its limitations along with the the motivation
behind the proposed PLMC. Section III discusses the detailed
design of PLMC. Section IV provides our simulation results.
Finally, section V concludes the discussion.

II. PLM MECHANISM AND ITS DEFICIENCIES

A. SSD Structure, Background Activities and Access

SSDs internally involve complex management activities that
are performed largely in the background by the firmware
known as Flash Translation Layer (FTL). The primary role of
FTL is to hide the complexities of out-of-place writes, address
translation, wear-leveling, and garbage collection [12]–[14].
These activities and their interference with normal read/write
operations can extend the access latency from its nominal
value (<100 µs) into several milliseconds [15] as illustrated
in Fig. 1.

The NVM storage model defines several concepts including
NVM subsystem, domain, endurance group, NVM-sets and
namespaces, as illustrated in Fig 2. An NVM subsystem

Fig. 2: NVM Storage Hierarchy

is an integrated collection of one
or more NVMe controllers, one
or more interface ports and may
contain non-volatile storage and
hence an SSD can be considered
as an NVM subsystem. An NVM
subsystem may consist of single
or multiple domain(s), which is
the smallest indivisible unit that
shares states(for example: power
state, capacity information). An endurance group is a col-
lection of NVM-Sets, which consist of one or an array
of namespaces. Each endurance group is an organizational
construct for wear leveling purposes.

The NVMe Storage Controller (NSC) helps to connect a
host with the NVM storage. An SSD can be accessed by a

Fig. 3: PLM Mechanism

host locally as well as remotely. For remote access, a protocol
called NVMe-oF (NVMe over fabric) has been defined that
essentially extends the NVMe commands to be ported from
host to the target and executed remotely [16].

The PLM is enabled at NVM-set granularity and, therefore,
NVM-set cycles between the aforementioned DTWin and
NDWin time windows as fig 3 such that all background
activities are concentrated only during NDWin period. The
DTWin budget is defined by two attributes: (a) a predefined
time limit and (b) a predefined limit on the number of the read
and write operations that can be performed on an NVM-set.
The NVM-set may transition to NDWin if either of these limits
is exceeded. There are various DTWin attributes introduced in
NVMe v1.4 such as DTWin read typical (CRD), DTWin Write
typical (CWR), DTWin time maximum (TDW). We consider
the parameters CRD and CWR as DTWin “counts” (DC), and
DC/TDW as the DTWin budgets.

B. PLM Feature and Its Functioning

The PLM feature is currently designed primarily to cater to
reads since the latencies for reads are generally more critical
than for writes. To achieve the deterministic latency, the host
needs to obey the predictable latency operating rules. As
stated earlier, to provide continuous access to DTWin mode
to an application, we need multiple (two or more) different
NVM-sets that are identical and contain copies of the data.
If all NVM-set copies are never simultaneously placed in the
NDWin state, an application can read data in the DTWin mode
any time. While the required duplication is expensive, it is
needed only for the data accesses that must be deterministic;
one copy suffices for all other data. Also, if multiple copies are
maintained for resilience reasons, they can be used to provide
the deterministic service as well. It is also worth noting that
a traditional RAID1 (mirroring) does not provide the same
functionality as PLM, since the reads could occur while the
SSD is doing the background operations.

The NVM-set may transition to the NDWin before exhaust-
ing its DTWin budget – this happens if there is an emer-
gency management operation required such as an emergency
garbage collection being triggered. The amount of time spent
by the NVM-set in NDWin state depends on the necessary
background operations for management activity.

A remote host can setup a connection via NSC. The NSC
advertises the DTWin related status for each NVM-set into
a “log-page”. The log-page is accessible to the host using
NVMe commands and therefore the DTWin information per
NVM-set. The host defines the beginning of DTWin and
NDWin periods by making requests to the NSC using “set-
feature” command. Since a host could use multiple NVM-
sets simultaneously, they could be at different points in their
DTWin/NDWin cycles. Therefore, the host must influence

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on December 20,2021 at 11:06:09 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: 99.99 percentile Tail Latency per DTWin in isolation vs sharing

DTWin/NDWin duration to synchronize multiple copies of
NVM-sets. PLM’s current specification puts the regular tran-
sition between DTWin and NDWin control with the host (if
the log-page advertised status are respected) and the forced
transition with the NSC (if the host does not respect operating
rules).

C. Issues with PLM Feature in a Multi-host Environment

We now study the issues of the PLM feature in a multi-host
environment. To illustrate this, we have created a mixture of
three different workloads of different QoS classes (i.e. high,
medium, and low) considering a few IO-intensive portions
from Systor 2017 traces [17], a month-long virtual desktop
infrastructure (VDI) read-intensive trace. The read IO size of
all three considered workloads, which shows a wide variations,
have studied the impact on latency for high QoS workloads
in a shared environment when multiple workloads share the
same data storage resources without the awareness of others.

The impact on 99.99 percentile tail latency per DTWin
for high QoS workloads in the said workload mixture is
represented in Fig. 4. We observed that the high QoS workload
violated the latency requirement. The high QoS workload
experienced 6X times more 99.99 percentile tail latency when
running with other QoS class workloads, in a span of 15
minutes, compare to running in isolation. Thus, it gives us the
insight to engage a PLMC that schedules IO requests from
different workloads during a deterministic period such that
the QoS requirement is satisfied.

III. PROVIDING DETERMINISTIC SERVICE IN MULTI-HOST
ENVIRONMENT

The current PLM feature does not recognize a multi-host
environment; instead, it assumes that each host will indepen-
dently work with the PLM feature of the target NVMe SSD
device that it is trying to use. In a single host environment, a
host can access an NVM-set during DTWin via NSC. In the
shared environment a DC allocate module is necessary along
with traditional NSC functionalities. This module can help
to distribute the required DC for different workloads running
on a single host. However, running separate workloads in an
environment of multi-host systems might create a bottleneck at
the NSC if the DC-allocate module is placed as a part of NSC.

Therefore, the DC-allocate module needs to be outside of the
NSC to coordinate among different host accesses to control
the access latency tail in a multi-host environment. Hence,
storage server could be suitable place for PLMC. However, it
is also possible to locate it at the host side, acting as one of the
requesting hosts for the shared NVMe set. For fault-tolerance
purposes, the PLM host can be dynamic using standard leader
election algorithms [18], which we do not focus upon in this
paper.

Fig. 5: Proposed PLMC Architecture

A. Coordinating Multiple Host Accesses Through PLMC

The proposed PLMC is shown in Fig. 5. The PLMC
allocates DC to each of the hosts actively accessing the
NVMe target, consisting of one or more NVM subsystem(s),
i.e SSD(s). Each subsystem can have one or more NSCs
that control a number of NVM-sets. The PLMC uses the
conventional NVMe-OF (NVMe over fabric) protocol [16],
[19] to communicates with NSC(s) and access each NVM-
set’s log-page to collect DTWin attributes. The PLMC is not
involved in the data path for scalability reasons and does not
directly monitor IOs. Instead, each host is trusted to accurately
convey its usage to the PLMC and abide by its limits. On its
end, the PLMC should learn the needs of the workloads run
by each host and supply the DC accordingly. Therefore, the
active hosts can communicate with PLMC via message passing
to provide for their needs. The host, with the allocated DC,
can perform remote IO operations via the NVMe-oF protocol.

All hosts with similar traffic characteristics will experience
the same underlying device access latency (exclusive of any
queuing or other latencies) in the absence of management
operations; therefore, the difference will be mostly in tail
latency. The end-to-end latency will consist of at least four
components: (a) host-side IO dispatching and IO completion
latency, (b) network transit latency, (c) NVMe queuing and
queue handling latency, and (d) device access latency. QoS
classes’ definition is most meaningful in terms of the end-
to-end latency, and thus control over the overall tail latency
needs to consider all these four components. It would require
decomposing the end-to-end tail latency into its constituent
elements and managing each part suitably. However, this paper
is only focused on (d).

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on December 20,2021 at 11:06:09 UTC from IEEE Xplore. Restrictions apply.

The PLMC considers the traffic characteristics experienced
by each of the hosts and the available DC of an NVM-set to
distribute the DC among hosts. Moreover, an efficient DC allo-
cation mechanism should consider the QoS class requirements.
PLMC supports multiple application classes based on the tail
latency requirement. To obtain deterministic latency, a host
needs to access the device during DTWin while respecting
DTWin attribute values. Therefore a suitable DC allocation
policy is needed. Unlike a static DC allocation we have
considered a static initial DC allocation along with dynamic
additional DC allocation in PLMC. We assume that each host
requests allocation of DC from PLMC at the start of DTWin
to have the initial allocated DC. If the host receives fewer than
the required counts during DTWin, it can request PLMC for
additional DC allocation. The allocated during a DTWin are
not taken back. Therefore, an appropriate DC allocation policy
is required to reduce the unused DC during a DTWin. PLMC
explores various DC allocation policies in this paper.

B. Host Traffic Estimation by PLMC
The PLMC’s primary role is to estimate or receive the DT

count needs of each of the participating hosts and make the DC
allocation accordingly. The key parameter required by PLMC
is an estimate of the DTWin count (DC) allocated to each host
for the next DT window. We have found the storage traffic to
be generally quite irregular and nonstationary. Since the well-
known time-series prediction methods such as Kalman Filter,
ARMA models, etc. assume at least quasi-stationarity, their
usefulness was questionable, and we indeed found this to be
the case by implementing them. We are not reporting those
results since they did not perform any better than the simple
exponential smoothing that we do use for prediction. Although
sophisticated methods such as those based on machine learning
could potentially yield better results, that aspect is beyond the
scope of this paper.

Let R(m)
j (n) denote the measured request count (traffic) at

the n-th scheduling period for the j-th class and R(p)
j (n) their

smoothed estimated in the same period, with 0 < ζ < 1 as
the smoothing constant. Then,

R(p)
j (n+ 1) = ζR(m)

j (n) + (1− ζ)R(p)
j (n) (1)

C. Deterministic Count Allocations by PLMC
We call the exponential smoothing-based estimation of DC

as Coordinator Initiated Prediction. It is also possible to
make a host-based prediction and convey those to PLMC.
The hosts may have better estimates of the traffic, and thus
their estimation may be preferred. However, the quality of
the estimation may vary. We can incorporate individual traffic
predictor at each host to precisely estimate the number of
requests happen in the DTWin and supply that to PLMC.
Thus, the sole purpose of host-based prediction is to use it
as a baseline to determine how much better the DC allocation
policy can do if we knew the exact DC requirements in every
DTWin period.

Let us consider k hosts each running workloads of different
QoS classes, denoted as Q1, Q2, ..., Qk, with tail latency

requirement of Li for class Qi. Also, let’s consider p copies of
NVM-sets S1, S2, ..., Sp. In the following we use the index n
to denote the n-th window DT/ND window. The n-th DTWin
is of duration Wd(n), followed by an NDWin of duration
Wnd(n). We define the total duration of these as the scheduling
period W (n) =Wd(n) +Wnd(n).

The maximum duration of Wd(n) is TDW (n) – the specified
period (100ms or 400ms in our experiments); however, if all
of the available DCs are exhausted early, i.e. Wd(n) ≤ TDW ,
the window also ends prematurely. The premature end of the
window would include the service of all the requests arriving
during the window. The duration of the non-deterministic
period depends on the write request behavior during the
preceding DTWin.

In each scheduling period, we need to distribute the total
DC C (as same as CRD) among the k hosts such that the
corresponding target latency requirement is met and no counts
are wasted (i.e., reserved for a host that does not use them). In
particular, the allocation of DCs should consider the following
three aspects and use them as evaluation metrices.

Definition 1 (Utilization): The utilization of a host is
defined by the ratio between the number of DCs consumed
vs. allocated.

Definition 2 (Deficiency): The deficiency of a host is the
fraction of requests that are not covered by the allocated DC.

Definition 3 (Tail Latency): The 99.99-percentile tail
latency is measured for each QoS class (same as host in this
paper).

The DC allocation for each host during a given Wd(n) is as
follows. If the total predicted traffic

∑q
j=1R

(p)
j (n) is below

C, then we allocate the predicted value of DC. Otherwise,
the residual DC Cres(n) (i.e., the counts remaining after the
minimum allocation during Wd(n)) can be distributed among
the q hosts based on their QoS class. We consider the following
two methods for this:
1) Policy I (Strict Priority): This additional allocation policy

prioritize the high priority DC needs. The high priority
workload get priority to assign the required DC to match
the predicted traffic for the current window, if residual DC
is available. If the residual DC is less than the predicted
traffic, all of it is allocated to that traffic.

2) Policy II Fixed Ratio: In this additional allocation policy,
the residual DC is split among various hosts based on a
predefined set of ratios rj corresponding to the different
classes of workloads running.

IV. EVALUATION OF THE PROPOSED PLMC

A. Enhancing MQSim Simulator to Support PLMC

Due to lack of commerical availability of SSDs with PLM
feature, we evaluate PLMC using a comprehensive simulation
model of SSDs. For this, we built the PLMC capabilities in
an existing comprehensive SSD simulator called MQSim [11].
It explicitly represents the flash device characteristics and
operation, the SSD’s internal architecture, detailed FTL opera-
tions, device-level caching, and host interfacing. It provides an

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on December 20,2021 at 11:06:09 UTC from IEEE Xplore. Restrictions apply.

exact representation of both SATA and NVMe interfaces, of
which we use NVMe differentiated queuing feature to support
different QoS classes.

MQSim has certain limitations and does not contain all
the features necessary for building the PLM. It does not
support the concept of NVM-sets and other NVMe v1.4
features. Consequently, we embarked upon an extensive effort
to understand the implementation and enhance it for our needs.
PLM simulation requires multiple host and multiple NVM-
sets. MQSim can handle multiple IO flow and we consider
each IO flow as host. We emulated multiple NVM-sets by
virtualizing the entire address space into logical address ranges
pertaining to the the number of required devices. Proceeding
to the PLM features, we first had to introduce the notion of
IO Determinism by stalling garbage collection procedure in
MQSim and carry them out at a later time (during NDWin
period).

B. Workloads and Configurations Used

For evaluation, we used the Systor 2017 trace [17],
a month-long virtual desktop infrastructure (VDI) read-
intensive trace that exhibits wide variations in IO sizes.

TABLE I: Datasets’ Read IO Intensities
DataSet High Medium Low
DS1 420 0.78×High 0.71×High
DS2 480 0.83×High 0.72×High
DS3 165 0.85×High 0.7×High

We combined
selected
portions of
the original
trace to create
a variety of workloads listed in Table I (tabulated as average
incoming 4KB requests during each DTWin). Each of
these datasets consist of three workloads with different IO
intensities, considered as high, medium and low QoS classes
respectively. We have considered these priorities based on
their 99.99 percentile tail latency requirement, where high
has lowest latency requirement among all others.

TABLE II: Configurations used
Config DC TDW

1 1.2×MDC 100 ms
2 1.4×MDC 100 ms
3 2.0×MDC 400 ms
4 2.5×MDC 400 ms

We evaluated several
different configurations
(w.r.t DC and DTWin
period length of the
NVM-set) for each of
these datasets. A large
DTWin reduces interactions between the hosts and PLMC,
reduces overhead, and may reduce burstiness due to the ag-
gregation effect. However, since DCs are readjusted only once
for each DTWin, a large DTWin will reduce the effectiveness
of the control.

Because of this trade-off, we have used DC and DTWin
period (TDW) configurations as represented in Table 6. Here
MDC is the average number of DC required by all three
workloads, which has been determined offline by analyzing
the trace. In all cases, the available DC of an NVM-set at any
DTWin period is set above the average value to handle high
traffic variability.

C. Evaluation Results

For evaluation, we considered three hosts, each running
workloads of high, medium and low QoS classes respectively.

Fig. 6: Evaluation result for CoD based 10 percentile Utilization, 50 and 90
percentile Deficiency considering DS1.

Fig. 7: 99.99 Percentile Tail Latency for HoD Simulation

We evaluate how DC of two NVM-set copies (or two SSDs)
are distributed amongst the hosts based on DC utilization, DC
deficiency, and resulting 99.99% tail latency respectively.

The results obtained from Datasets 1, 2 and 3 are similar
and therefore only Dataset1 results are reported. The three
aforementioned QoS class workloads are considered for both
strict priority and fixed ratio policies under coordinator di-
rected (CoD) and host-directed (HoD) cases.

Utilization: In Fig. 6 we only report 10 percentile Utiliza-
tion values for the CoD case (w.r.t. both strict priority and
fixed ratio) as it was observed that utilization is always 100%
for HoD (because the exact amount of DC needed is known).
The 50 & 90 percentiles are not reported since they all turn out
to be 100%, which indicates no wastage of allocated counts
and may be a sign of scarce resources. The CoD numbers
are lower than the HoD numbers because the PLMC does not
know the precise needs and therefore has to be generous in
its estimation. Thus the excess DT count allocation results in
less than 100% utilization in Fig 6. All three hosts experience
roughly the same utilization level, with the ”Low” dominating
slightly. The reason behind this is ”Low” QoS host is allocated
less DC compared to the traffic experienced and hence, uses
up all allocated DC.

Deficiency: For deficiency, we report the 50 & 90 percentile
values for the CoD case in Fig 6. It is observed that the median
deficiencies are rather small compared to the 90 percentile
deficiency value. For HoD we observed that the deficiencies
are closer to zero as number of required DC are correctly
assigned. However, for CoD, they are small too since the
available DCs are significantly higher than the average. The
reported 90 percentile deficiency numbers are much more
variable. It is worth noting that the experiment runs for ≈9000
DTWins for configuration 2 and 2250 for configuration 4,
which indicates that the 90 percentile values are expected to
be rather variable.

Tail Latency: For tail latency, we report 99.99 percentile
values in Fig. 7 and 8 for HoD and CoD respectively. We
compute the the tail latency during each DTWin and then
report the top 99.99% values experienced during the entire

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on December 20,2021 at 11:06:09 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: 99.99 Percentile Tail Latency for CoD Simulation

Fig. 9: Comparison of Median tail latencies for Dataset 1.

workload lifetime for each ”High”, ”Medium” and ”Low”
QoS traffic. For both CoD and HoD, High QoS class achieves
smallest 99.99 percentile tail latency as compared to Medium
and Low. Both HoD and CoD improve the 99.99 percentile
latency for high 87.2% and 81.7%, medium 56.9% and 42.9%,
low 42.5% and 16.2% respectively, when we consider strict
priority with Config2. Using the strict priority and fixed ratio
the High QoS class CoD attains 30% and 25% higher
than 99.99 percentile tail latency of HoD. Such accuracy
is impressive, considering the stress case considered here:
very high burstiness and synchronized traffic with simple
traffic estimation. Moreover, the High QoS class in CoD for
strict priority can improve 93.2% compare to the shared
environment(Fig. 4).

We next simulate a less challenging situation where we cre-
ate another dataset (henceforth called Dataset4) from Dataset1
by adding an offset of 200 ms and 400 ms to ”Medium”
and ”Low” traffic, respectively. This change desynchronizes
the peaks and results in a traffic pattern where satisfying
the requirements of all classes becomes much easier. Fig. 10
shows the variation of tail latency for Dataset4. It is seen that
the latency drops drastically, by almost 30X, as compared to
Fig. 9. With such low latencies, the QoS priority issue is
moot, and all hosts get essentially the same treatment. The
agreement between HoD and CoD is excellent for fixed ratio
and very good for strict priority (16% error for high priority).
However, any discrepancy, in this case, is irrelevant since all
QoS objectives achieved.

V. CONCLUSIONS AND FUTURE WORK

This paper explores and extends the predictable latency
mode (PLM) feature introduced in NVMe v1.4. We show how
the PLM concept can be extended to a multi-host environment
where multiple hosts share an NVMe device, as would be
the case for database accesses. For this, we have proposed
PLM coordinator (PLMC) that runs on a storage server and
can be implemented without any changes to the current
NVMe v1.4 standard. We evaluated the proposed PLMC with

Fig. 10: Comparison of Median tail latencies for Dataset 4.

extensive experiments performed in SSD simulator (MQSim).
The experimental evaluation of the mechanism demonstrates
that it can substantially reduce tail latency and help deliver
predictable latency to the higher QoS classes with 93.2%
improvement in 99.99 percentile tail latency compared to
the shared environment. In future, we will also examine the
impact of writes regarding their effect on the duration of the
nondeterministic window and their impact on the deterministic
mode operation by filling up the NVRAM buffer and forcing
a switch-over to the nondeterministic mode.

REFERENCES

[1] R. Micheloni et al., Inside solid state drives (SSDs). Springer, 2013.
[2] D. Cobb et al., “Nvm express and the pci express ssd revolution,” 2012,

intel Developer Forum.
[3] H. Strass, “An introduction to nvme,”

https://www.seagate.com/files/www-content/product-content/ssd-
fam/nvme-ssd/nytro-xf1440-ssd/shared/docs/an-introduction-to-nvme-
tp690-1-1605us.pdf.

[4] A. Huffman, “Nvm express,” revision 1.0 c. Intel Corporation, 2012.
[5] https://www.intel.com/content/dam/www/public/us/en/documents

/technology-briefs/low-latency-for-storage-intensive-workloads-tech-
brief.pdf, 2020.

[6] S. Chen et al., “Parties: Qos-aware resource partitioning for multiple
interactive services,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2019, pp. 107–120.

[7] Y. Xu et al., “Bobtail: Avoiding long tails in the cloud,” in USENIX
NSDI, 2013, pp. 329–341.

[8] G. DeCandia et al., “Dynamo: Amazon’s highly available key-value
store,” ACM SIGOPS operating systems review, vol. 41, no. 6, pp. 205–
220, 2007.

[9] J. Dean et al., “The tail at scale,” Communications of the ACM, vol. 56,
no. 2, pp. 74–80, 2013.

[10] “Nvm express base specification, rev 1.4,” https://nvmexpress.org/wp-
content/uploads/NVM-Express-1 4-2019.06.10-Ratified.pdf, June 2019.

[11] A. Tavakkol et al., “Mqsim: A framework for enabling realistic studies
of modern multi-queue SSD devices,” in USENIX FAST, 2018, pp. 49–
66.

[12] L.-P. Chang et al., “Real-time garbage collection for flash-memory
storage systems of real-time embedded systems,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 3, no. 4, pp. 837–863, 2004.

[13] K. Eshghi et al., “Ssd architecture and pci express interface,” in Inside
solid state drives (SSDs). Springer, 2013, pp. 19–45.

[14] R. Micheloni et al., “Solid state drives (ssds),” in Solid-State-Drives
(SSDs) Modeling. Springer, 2017, pp. 1–17.

[15] J. Kim et al., “Alleviating garbage collection interference through spatial
separation in all flash arrays,” in USENIX ATC, 2019, pp. 799–812.

[16] D. Minturn et al., “Under the hood with nvme over fabrics,” in Ethernet
Storage Forum. SNIA, 2015.

[17] S. I. T. Repository, “Systor’17 fujitsu laboratory traces.” [Online].
Available: http://iotta.snia.org/traces/4964

[18] F. S. Gharehchopogh et al., “A survey and taxonomy of leader election
algorithms in distributed systems,” Indian Journal of Science and
Technology, vol. 7, no. 6, p. 815, 2014.

[19] Z. Guz et al., “Nvme-over-fabrics performance characterization and the
path to low-overhead flash disaggregation,” in ACM SYSTOR, 2017, pp.
16:1–16:9.

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on December 20,2021 at 11:06:09 UTC from IEEE Xplore. Restrictions apply.

