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Abstract- Sensing of food spoilage and contamination is an
active area of research, with many types of contact and non-
contact sensors are being developed that can track fresh food
quality throughout the distribution process. In this paper, we
consider the communication of the sensed product quality along
with the box position (in the stack of boxes in the truck or
in a warehouse room) to the next level, in order to make
the logistics more efficient and less wasteful. Given the water-
rich, inhomogeneous biological media, RF or ultrasonic based
communications are inappropriate in such environments, and we
instead explore Magnetic Induction (MI) based communication
framework in the HF band (3-30 MHz). We propose a novel
magnetic induction based localization scheme to localize the boxes
and study its accuracy via extensive simulations. We show that
with a small number of anchor nodes, the localization can be done
without any errors for boxes as small as 0.5 meter on the side,
and with small errors even for boxes half as big. Our preliminary
analysis suggests that such sensors can last for several years
without any battery replacement.

I. INTRODUCTION

The purpose of this paper is to explore the use of mag-

netic induction (MI) based communication and localization to

support advanced fresh food distribution logistics. MI refers

to energy transfer between two inductor-capacitor (or LC)

circuits, which is widely used in many areas, e.g. the charging

of electric toothbrush, mobile phones, electric vehicles etc. [1].

In particular, we develop mechanisms to automatically monitor

and report out the fresh food quality as measured by quality

sensors enclosed in the boxes that may be stored in a distribu-

tion center or in transit in a truck, railcar, etc. The communi-

cated quality along with the positional identification of the box

can be exploited to trigger actions that can significantly reduce

the fresh food waste, enhance distribution efficiency, and serve

as early warning for contamination. These mechanisms would

help develop the fresh food extension to the emerging concept

of physical Internet [2].

It is well known that the presence of aqueous/tissue media

of fresh food makes the use of normal RF communication

(e.g., Bluetooth at the 2.4 GHz ISM band) and localization

challenging due to high signal absorption and complex channel

conditions [3]. Also RF based localization techniques can

localize with the accuracy of few meters [4], which are

not precise enough for localizing the shipping boxes of 0.5-

1 meter dimension. Ultrasound (or acoustic) propagation in

tissues is deeply affected by the highly inhomogeneous fresh

food media and leads to significant speed variations and

multipath scattering [5]. Because of these limitations, we

focus on magnetic induction (MI) based communications that

are known to be less affected by such media. Compared to

the RF-based techniques, the MI-based techniques have the

following advantages: (a) better penetration performance (i.e.,

low absorption) as the magnetic permeability of tissue medium

is very similar to that of air, (b) predictable channel conditions

as MI communications are are less susceptible to surrounding

environments, and (c) small coil antennas (e.g., a few mm

or cm). The MI channels are also more determined as the

MI signals are not reflected or scattered by the surrounding

environments, and thus suffer from smaller signal fluctuations

and multi-path effects [6].

Although magnetic induction based communications have

been studied in the past for underground use [7], [8], their

use for communication and localization is quite challenging

in the context of fresh food logistics as discussed in the next

section. We show that the proposed mechanism can achieve

effective communication, accurate localization, and low power

consumption. We exploit the regular geometry of the shipping
boxes and the information of their neighbor relationship to

develop a novel magnetic induction based localization scheme.

Through simulations we show that using the proposed MI

based localization scheme, the sensing devices can be located

without any error for shipping boxes as small as 0.5 meter.

We also show through preliminary analysis that such sensor

nodes can operate for several years before needing any battery

replacement. To the best of our knowledge, we are the first to
propose adopting the MI-based techniques for designing low-
cost, low-power communication and localization mechanisms
in the very challenging operating environment of food quality
monitoring systems.

The outline of the paper is as follows. Section II discusses

the overall context of the research and its larger vision.

Section III describes the suitability of MI communication in

such environment as opposed to RF and ultrasonic. Section IV

introduces the MI communication framework and discusses

the channel model for it. Section V formulates the localization

problem. In this section we show that the localization problem

is NP-hard, and present a heuristic approach. Section VI shows

extensive simulation results to explore the effectiveness of the

mechanism. Section VII then concludes the discussion.

II. BACKGROUND AND MOTIVATION

Recently there are increasing expectations of “freshness”

from the public and sustainability concerns that favor lo-This research was supported by the NSF grant CNS-1542839.
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cally/regionally grown food and demand low-carbon footprint

transportation and distribution. Unfortunately, the added fresh-

ness comes at the cost of more food waste, lower transportation

efficiency, and higher carbon footprint. In particular, up to 40%

of all food (and up to 50% of fresh food) is wasted in the US

on its way from farm to table, which amounts to throwing

away $165 Billion each year [9].

The inefficiency of private logistics has long been recog-

nized and there is a definitive move towards 3rd party logistics

(3PL) and its derivatives, which essentially outsources the

logistics to a 3rd party that can serve multiple customers using

common assets such as trucks, distribution centers, containers,

etc. Another significant development is the borrowing of ideas

from cyber Internet to create what is known as “Physical

Internet” that includes modularized containers, standardized

addressing mechanisms, shared logistics, etc. [10]. In this

connection the authors in [2], [11] have examined Fresh Food

Physical Internet (FFPI or F 2π) to integrate perishability into

the physical Internet model. The third significant evolution

is rapid automation of logistics including robotic processing,

loading, unloading, positioning, self-driven vehicles, etc., often

referred to as “Industry 4.0” initiative [12].

Automated sensing and communication of fresh food quality

can play a central role in this landscape to reduce waste,

increase efficiency, and enhance food safety. Our vision is

that all packages of perishable products will have at least one

sensing node that has a suitable array of sensors to detect

crucial aspects of product quality including bacterial content,

contamination, texture/color degradation, bruising, etc. Devel-

opment of such sensors is currently a very active area and some

simple sensors are already showing up, such as C2Sense [13],

FoodScan [14], Salmonella Sensing System [15] etc. Our focus

is primarily in large boxes handled by the logistics, and these

may contain one or more levels of smaller boxes, ultimately

down to a package containing the product that can be sensed

via various forms of contact (e.g., chemical) or non-contact

(e.g., gas sampling, imaging) sensors. We envision at least one

small package in the big box containing a sensor, though more

could be deployed for better accuracy at a higher cost. The

sensed quality needs to be communicated to a suitable decision

maker or Analytics & Operations Center (AOC) for further

analytics and action. The communication must be automatic

(as opposed to someone opening the box and observing the

sensor), should identify (or “localize”) the box sending the

sensed data, and the communication delay must be suitably

bounded to provide maximum flexibility in corrective actions.

These observations provide the main motivation for our

work, although in this paper we focus exclusively on the local

communications part of the problem, i.e., communicating the

sensed quality parameters to the “next level”, which would

be a truck, railcar, warehouse room, etc. Beyond this, the

information can be communicated using existing technolo-

gies such as WiFi or Cellular. The main challenges in our

communication and localization problems include (a) presence

of very challenging communications media (e.g, water rich

fruits/vegetables and meat tissue), (b) need for very low power

Fig. 1. A schematic diagram of the proposed network scenario.

and small size radios that do not require frequent battery

change, and (c) potentially severe interference due to presence

of many nodes in a small area (e.g., a truck or room full of

product boxes, each with a sensor/radio as envisioned above).

III. DIFFERENT COMMUNICATION TECHNOLOGIES

Let us now consider the nature of the sensor radio suitable

for such environment. Unfortunately, the presence of aque-

ous/tissue media of fresh food makes the use of normal RF

communication (e.g., Bluetooth in the 2.4 GHz ISM band)

challenging due to high signal absorption and complex chan-

nel conditions [3]. Reducing absorption by choosing lower

frequencies (e.g., 802.11ah) helps in attenuation, but would

need bigger antennas and cause severe interference in this very

dense sensor environment. Authors in [16] show that in body-

area-networks, especially in tissue medium, the path loss at 50

mm is 47-49 dB at 403.5 MHz. Other studies [17], [18] have

also reported attenuation values ranging from 20 dB at 100

MHz to 60 dB at 1 GHz for distances less than 10 cm. High

RF transmission powers are certainly undesirable because of

serious overheating and thus quality loss [5].

Another promising technology in food or tissue medium

is acoustic or ultrasonic communication. Ultrasonic waves

are subject to lower absorption as compared to RF waves in

aqueous or tissue medium. However, ultrasound (or acoustic)

propagation [5] in tissues is deeply affected by multipath

fading because of the inhomogeneity of the medium in terms

of density and, consequently, sound velocity, and the pervasive

presence of very small organs and particles. Therefore, numer-

ous attenuated and delayed versions of the same transmitted

signal reach the receiver, making detection and decoding a

challenging operation. Also a significant portion of the energy

is absorbed (although lower then RF) and converted into

heat when ultrasounds propagate. This could potentially lead

to a temperature increase, which will affect the quality of

perishable food being transported.

Such challenges cannot be overcome until a major paradigm

shift is made to address the limitations of current typical

communication technologies in food medium. Prior research

indicates that the Magnetic Induction (MI) based communica-

tion in the HF band (3-30 MHz) is largely unaffected by the

tissue medium [19]. Compared to RF, MI suffers from smaller

signal fluctuations and multi-path effects. The ability to use

small coils (2.5/5.0cm in our experiments), short transmission
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range (e.g., 1.5 m), and a decent data rate (e.g., 596 Kb/s)

are ideal for our application. Finally, ultra-low-power MI
solutions consume less power than RF and ultrasound over
short distances. The MI channels are also more determined as

the MI signals are not reflected or scattered by the surrounding

environments, and thus suffer from smaller signal fluctuations

and multi-path effects. Also there is no known biological effect

of MI in the food or tissue medium.

TABLE I
TABLE OF NOTATIONS

Indices

i, f , g, l � Index for sensor nodes and boxes (1, ..., N )

a � Index for anchors (1, ..., A)

Variables

(r, φ, θ) � Radial distance, inclination and azimuth angle of the
spherical coordinate system

μ � Permeability of the medium

ρ � Radius of the magnetic coils

N � Number of turns of the magnetic coils

Δ � Box dimensions (i.e. length, height, width)

dai � Distance of box-i from anchor-a

Prai � Power received at sensor node-i from anchor-a

xig � Whether or not the sensor node-i is in box-g

Saif � Whether or not Prai > Praf
Ba
gl � Whether or not the dag < dal

Imax � Maximum number of iterations of Algorithm 1

IV. MI BASED COMMUNICATION INFRASTRUCTURE

Fig. 1 shows the overall architecture where the shipping

boxes are stacked in the container of a truck that carries fresh

products. We assume that each shipping box carries multiple

lowest level packages, i.e., a retail package of meat or a small

package of fresh produce. A sensing device is attached at one
of the packages which is placed at the center of a shipping
box. Thus the sensed value of this device is considered as

the representative of all the packages in that box. Even if

Fig. 1 shows that the boxes are homogeneous and the truck

is 100% full, the proposed scheme also works for boxes with

different dimensions and partially full truckloads. Also instead

of attaching the sensing device to the package at the center, it

can be also be attached to the last package before closing the

box (for packaging convenience). However the same protocol

needs to be followed for all the boxes.

We assume that each sensor device is capable of both

sensing and communication and is equipped with a low-cost

MI radio operating at 10 MHz (which is the most commonly

used frequency). We also assume that a few anchor-nodes

with two radio interfaces (MI and WiFi) are mounted on

the inner side of the truck container. The MI interface is for

communication with the sensor devices, and the WiFi interface

is for communication with the central controller in the driver

cabin. The anchors also work as sinks to the sensing devices.

A. MI Based Channel Modeling

We use isotropic MI coil antennas consisting of three

orthogonal coils to ensure reliable communications in all

(a)

 

 

A 

O 

(b)

Fig. 2. (a) A spherical coordinate system where the receiver is located at
O. (b) The intersection angle between two coils.

directions and thus robust localization. In particular it is no

longer necessary to ensure that the coil planes of all radios

are identical. We first discuss the magnetic field generated by

a unidirectional coil using Fig. 2(a) and then extend that to

develop orthogonal tri-directional coils. The relevant notations

are enlisted in Table I. In Fig. 2, the transmitter is located at

the origin A and the receiver is located at the observation

point O, which is at a distance r away from the origin. The

permeability of the medium is denoted by μ. The intersecting

angles βt and βr in between the coils are determined as shown

in Fig. 2(b). With these the magnetic field generated at the

observation point O because of a unidirectional coil located

at A, due to the current flowing of magnitude It is given by

[20], [21], [22]

Mt→r =
Flux−linkage

current
=

Φt→r

It

≈ μπN2ρ4

2r3

∣∣∣∣cosβtcosβr − 1

2
sinβtsinβr

∣∣∣∣ (1)

Φt→r is the magnetic flux through the receiving coil Cr

generated by Ct.

We now derive the expression of a tri-directional coil from

the mutual inductances in between them. Notice that a tri-

directional coil consists of three unidirectional coils that are

orthogonal to one another. Because of this reason, the coils

on the same sensor device do not interfere with each other.

Assume that the transmitter has three orthogonal coils denoted

as C1, C2 and C3, whereas the receiver’s are labeled with C4,

C5 and C6 respectively. Thus the mutual inductances between

one of the transmitting coils (C1, C2 and C3) and any of the

three receiving coils (C4, C5 and C6) can be given by Mu→v

from equation(1) where u = 1, 2, or 3 and v = 4, 5, or 6. Since

the induced current at the receiver can generate new magnetic

field, there is a backward mutual inductance from the receiver

to the transmitter. Usually, the mutual inductance is reciprocal,

i.e. Mu→v = Mv→u.

Consider two coupled tri-directional coils (transmitter and

receiver coils), assume that all 3 transmitting coils have the

same voltage Vs. Let RL denote the load resistance, C the

capacitor needed to match with the coil’s self-inductance L
and is set to C = L

ω2 for ensuring resonant circuitry, where ω
is the resonant frequency. Then the current in each of the coils

(I1 to I6) can be derived by using Kirchhoffs voltage law as
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(a) (b) (c)

Fig. 3. (a) Path loss in case of unidirectional coil transceivers. (b) Path loss in case of tri-directional coil transceivers. (c) CDF of path loss for unidirectional
coil and tri-directional coil transceivers. γx and γy denote the relative angle of the coils with respect to the x and y-axis respectively.

(a) (b)

Fig. 4. (a) Path loss and its (b) CDF for tri-directional coil transceivers with
different φ and θ.

follows:⎡
⎢⎢⎢⎢⎢⎢⎣

Vs

Vs

Vs

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

RL 0 0 X41 X51 X61

0 RL 0 X42 X52 X62

0 0 RL X43 X53 X63

X14 X24 X34 RL 0 0
X15 X25 X35 0 RL 0
X16 X26 X36 0 0 RL

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

I1
I2
I3
I4
I5
I6

⎤
⎥⎥⎥⎥⎥⎥⎦

(2)

where Xuv = jωMu→v . With these the path loss can be

expressed by

L = −10logPr
Pt

= −10log
∑6

u=4 |Iu|2RL∑3
u=1 �(VsIu)

(3)

where Pt and Pr are the power transmitted and received

respectively. �(q) represents the real value of a complex

variable q.

Fig. 3 shows the comparison of unidirectional and tri-

directional coil transceivers with different coil orientations.

μ and N are assumed to be 4π × 10−7 Henrys/m and 10

respectively. We keep r = 1 meter and the source voltage

Vs = 3 V in Fig. 3. RL is assumed to be of 1Ω. In Fig. 3, we

keep the coil position fixed and change the coil orientations

with respect to its x and y axis. Notice that for the tri-

directional coil, the orientations (γx and γy) in Fig. 3(a)-

(b) denotes the orientation of one of the three unidirectional

coils. The other two coil’s orientation vary with respect to the

first one, such that all there are orthogonal. From this figure

we can observe that with tri-directional coil transceivers the

transmission characteristics is near-isotropic which makes it

suitable for our application. Also the tri-directional coil has

lower path loss compared to the unidirectional coil as seen

(a) (b)

Fig. 5. (a) Path loss with distance for tri-directional coil transceivers. (b)
Received power with different source voltages.

from Fig. 3(c). We next keep the receiver coil orientation fixed,

and change its relative position in the 3D space by varying the

θ and φ in Fig. 1(a). The result is shown in Fig. 4, where r is

assumed to be of 1 meter. From this figure we can observe that

as far as the distance in between the coils are the same, their

relative position in the 3D space do not affect the received

signal strength in between them.

Fig. 5(a) shows the path loss with distance using tri-

directional coil transceivers. From this figure we can observe

that with Vs = 3 V, the transmission range of tri-directional

coil transceivers are typically 2-3 meters (considering 70 dB

of loss) with ρ = 0.025 meter and even higher with larger coil

radius, which is adequate for our applications.

However in a network of multiple nodes, there will be

multiple such tri-directional coils with interdependent mutual

inductances in between them. The mutual inductances in

between any two coils can be calculated using equation(1),

which can be utilized to calculate the current at each one of

the coils using the similar approach as in equation(2). Thus

the power received at each node is calculated by adding the

received power in its three coils.

B. MI Based Communications

Since the MI-based communication has a short transmission

range, multi-hop communication will be a must when there

is no direct link between a sensor device and its nearest

sink-node. Hence, a data-gathering tree/forest needs to be

constructed (or reconstructed) when the network is formed (or

changed) so that each sensor device has a path to its nearest

sink-node. This can be done using the existing schemes from

the rich literature of research on wireless sensor networks (e.g.,
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[23]). Fig. 6(a) shows the effect of multi-hop magnetic com-

munication with different number of link-level retransmissions

(η) and number of hops (Ψ). We assume link-level packet error

rate Pe = 10−3, which is obtained from experimental results

in [24] for a 1-1.5 meter magnetic link. From Fig. 6(a) we

can observe that the packet delivery ratio (i.e. (1− P η
e )

Ψ
) is

more than 99% even with 10 hops, which shows the feasibility

of multi-hop communication in such environment. Note that

since low-power communication is a critical requirement here,

the data-gathering tree/forest will need to be constructed in a

way that minimizes the energy consumption (e.g., this can

be approximated by minimizing the total number of data

transmissions).

(a) (b)

Fig. 6. (a) Packet delivery ratio and (b) lifetime of the sensor nodes for
multi-hop communication.

Due to the near-field transmissions via the coupled magnetic

field, the receiver coil can detect the MI signal without

actively “listening”. Hence, an MI signal intended for a near-

by sensor device may also be detected. Thus an ultra-low-

power wake-up component can be integrated, which triggers

up the communication module when an MI signal is detected.

The communication module remains in sleep mode most of the

time and will be periodically (e.g., once every 15-30 minutes)

woken up for reporting the sensed data, or when triggered

by the wake-up component. In such low-power modes the

sensor devices are mostly inactive and can run for several

years without any battery change. For example with power

consumption of 1.5 mW@1V [25] in the active mode, a

sensing device can last for several years with a chip battery

of 220 mAh [26] if it operates in ∼1% duty cycle. In general

the power consumption in each node is represented as:

P =
PBtTBt

ΥB

+ N
PBrTBr

ΥB

+ M
PDtTDt

ΥD

+ R
PDrTDr

ΥD

+ A
PDrTDr

ΥL

+
PsTs

ΥS

where Px and Tx represent the power consumption and the

duration, respectively, of the event x; and ΥB , ΥD and ΥS

represent the beacon interval, data interval and sampling inter-

val respectively. Transmission/reception of beacons is denoted

by Bt/Br, data transmit/receive is denoted by Dt/Dr, and

sensing is denoted as S, respectively. N is the number of

neighbors, M and R are the number of sensor nodes whose

packets are forwarded and received/overheard by the node

respectively. We assume that there are A anchor nodes that

transmit control messages (for localization or sending other

updates) with an interval of ΥL.

Fig. 6(b) shows the lifetime of such a sensor node with N
= 20, A = 12, and M = R. ΥB and ΥL are assumed to be

30 minutes and 1 hour respectively. We assume that the radios

remain on for 15 ms for reception and forwarding, which is

sufficient to transmit/receive packets with a data rate of 596

Kbps [25]. Notice that in Fig. 6(b) we only consider power

consumption due to communications (i.e. transmissions and

receptions). Actually the lifetime will be sightly less due to

power consumption due to sensing, however food sensors like

C2Sense consumes ∼10μW for sensing [27] which is several

orders of magnitude lesser than the communication module.

Also Fig. 6(b) gives a conservative estimate of the battery

lifetime, which can be further stretched by implementing

event-driven sampling and communication (i.e. transmit when

the change in quality is more than some threshold) rather than

doing it periodically. Also in reality, M is not going to be

more than 50 in a truck environment with 100-200 boxes,

which ensures that a sensor node can last even more than 5

years without any battery replacement. Although battery-free

energy-harvesting devices can be alternative solutions, we do

not consider integrating them here due to their higher cost and

variability in the harvested energy.

V. MI BASED LOCALIZATION SCHEME

We assume that the box positions are precisely known to

the central controller which is possible in the future, advanced

food logistics where the loading-unloading of the shipping

boxes will be done in an automated fashion for better and

well-planned truck space utilization. However in a large food

chain it is hard to keep track of which sensor is in which box.

Thus the purpose of our localization is to identify from which

box the sensed data is coming, or to identify the shipping

boxes with products that may have contamination or spoilage.

A. A Conceptual Overview

Ideally for localizing the sensor nodes we need to es-

timate their distances from some reference points (or an-

chors). However in presence of multiple such nodes, their

interdependent mutual inductances make the distance estimate

highly erroneous. Also the distance estimate requires precise

knowledge of the channel parameters which is hard to obtain

in our applications, as they vary depending on the types of

the food products or whether the truck (or boxes) are fully

loaded or not etc. The distance estimate also requires the exact

orientations of the coils, which is also not available in this

scenario as different food packages can be kept in different

orientations while packing them to the boxes. In case of MI

communication, the distance estimate is also disturbed by the

ferromagnetic materials inside the truck walls. Therefore in

contrast to such distance based localization mechanisms [22],

[8], our objective is to collect the information of the received

power at the sensor nodes from an anchor to get their relative

distance with respect to that anchor and use this information

to localize them to the known box positions. We argue in

section V-D that such an approach is robust even in presence

of the truck walls.

We explain this with the help of Fig. 5(b) where we deploy

5 cubic boxes with dimensions (Δ) equal to 1 meter side by
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side. A sensor node is placed at the center of each box. We

assume that there is one anchor that transmits pilot signals

whose received power is recorded by the 5 sensor nodes. Box-

1 is closest to the anchor whereas box-5 is the farthest. Fig.5(b)

shows that variation of the received powers at the sensor nodes

with different voltage Vs. From this figure we can observe that

the received power is monotonically increasing function of Vs,

also the relative order of the received power at different sensor

nodes remain consistent with different Vs. We can also observe

that the received powers are consistent with the box distances

from the anchor, i.e. the received power of sensor node-1 is

the highest whereas that of node-5 is the lowest. Thus we can

maintain a constant Vs at an anchor and can get a relative order

of the other node’s positions which can be matched to that of

the boxes. However as the received power is the function of

the mutual effect of all the node’s coils, the order can also

be disturbed in presence of higher number of sensor nodes.

The relative order can also be disturbed as the propagation

characteristics is not completely isotropic, as obtained from

Fig. 3(b)-(c).

In order to study the impact of many sensors, we develop

a factor called outlier factor which is defined as follows.

Consider a scenario where N boxes (along with sensing

devices) are placed in a 3-D grid such that the i-th sensor node

is placed in the i-th box. An anchor is placed at one corner of

the grid with enough power to reach all nodes. We assume that

Sig is an adjacency matrix which is 1 if the received power

of sensor node-i is more than that of g, and Big is 1 if box-i
is closer to the anchor than box-g. With this the outlier factor

is equal to
∑

i

∑
g |Sig−Big|

∑
i

∑
g Sig

. Thus the outlier factor measures

the level of inconsistencies between the power received by the

sensor nodes and their corresponding box distances from the

anchor. For example in Fig. 5(b) the outlier factor is 0, as the

received power is consistent with the box distances from the

anchor.

Fig. 7 shows the variation of the outlier factor with different

Δ. We consider two cases, one with 3-D grid of 5×5×5

boxes and the other with 10×5×5 boxes. From Fig. 7 we can

observe that even with ρ = 0.05 meter and Δ = 0.5 meter, the

outlier factor remains below 0.4 with both in case of 125 and

250 sensor nodes, i.e. less than 40% of the relative ordering

are inconsistent whereas the rest are consistent. However the

outlier factor is significantly low (below 0.2) when the coil

radius ρ = 0.025 meter. From this point onwards we therefore

keep the coil radius ρ = 0.025 meter because of its smaller

outlier factor and thus for better localization accuracy. The

transmission range with ρ = 0.025 meter is 2-3 meters which

is adequate for our purpose. The small size of such coils makes

it easier to be attached in small food products as well.

B. Localization Problem Formulation

We assume that there are N sensor nodes that are placed

in N shipping boxes. A anchors are placed at different

corners at the trucks (or warehouses) whose transmissions

can be received by all the sensor nodes. This assumption

is feasible as the anchors are not battery constrained and

(a) (b)

Fig. 7. Variation of outlier factor with different Δ, in case of (a) 125 sensor
nodes, and (b) 250 sensor nodes.

thus use higher Vs to extend their transmission ranges. Each

anchor transmits a pilot signal separately (i.e. two anchors

do not transmit at the same time). The sensor nodes record

the received power corresponding to the pilot signals from

different anchors and report them to the sinks (which report

them to the central controller through WiFi interface) using

multi-hop communications as discussed in section IV-B. The

localization is done at the central controller which knows the

box locations and thus the relative order of the boxes from

each anchor. It also records the relative distance order of the

sensor nodes from each anchor based on their received power

from the anchors. With these we now formulate our magnetic

localization problem, that assigns the sensor nodes to the boxes

based on the received power measurements of the sensor nodes

as well as the known distance order of the boxes from the

anchors. Assume that xig is a binary decision variable which

is 1 if node-i is assigned to box-g. Also assume that dai denotes

the distance between anchor-a and the box-i. Saif is an input

binary variable which is 1 if Prai > Praf , and B
a
gl is also an

input binary variable if box-g is closer to a than box-l, i.e.

dag < dal . With these the problem can be formulated as follows:

Maximize

A∑
a=1

N∑
i=1

N∑
g=1

N∑
f=1

N∑
l=1

xigxflS
a
ifB

a
gl (4)

subject to

N∑
g=1

xig = 1, ∀i ∈ S (5)

N∑
i=1

xig = 1, ∀g ∈ B (6)

xig ∈ {0, 1} ∀i ∈ S , g ∈ B (7)

where S and B are the set of sensor nodes and boxes.

The objective is to assign the sensor nodes into the boxes

such that the similarities in between the distance order of

the sensor nodes and the boxes are maximized. For example

assume that the sensor node-i is assigned to box-g, and the

sensor node-f is assigned to box-l. In such a scenario, if

Prai > Praf and dag > dal , then S
a
if = 1 and B

a
gl = 0. Thus the

expression xigxflS
a
ifB

a
gl becomes 0, or there is a discrepancy

in the distance orders corresponding to this assignment. On the

other hand if dag < dal , then xigxflS
a
ifB

a
gl equals to 1, which

says that the assignment conforms the corresponding distance

orders. Constraints(5-6) ensure that a sensor node is assigned

to exactly one box and vice versa.
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Theorem 1. The problem of magnetic localization is NP-hard.

Proof: We first define the largest common subgraph
problem (LCS) which is known to be NP-complete. Graph H
is said to be common to graphs G1 and G2 if both G1 and G2

contain induced subgraphs isomorphic to H . The maximum

common subgraph problem can be defined as follows: given a

pair of graphs G1 and G2, find the largest induced subgraph

common to both.

We now show that our magnetic localization problem

contains the largest common subgraph problem as a spe-

cial case. Assume an instance of the magnetic localiza-

tion problem with A = 1, then S
1 and B

1 are two

N × N adjacency metrices. We construct two directed

graphs U and V such that Uig = S
1
ig and Vig = B

1
ig .

 

 

 

 

  

 

 

Fig. 8. Rectangle rule for subgraph
isomorphism. The red and green ver-
tices are the vertices of graphs U
and V respectively.

Then a graph H is the largest

common subgraph of U and

V if and only if the maximum

value of equation(4) is equal

to the number of edges in H .

This can be verified by using

the rectangle rule of subgraph

isomorphism as mentioned in

[28], i.e. when xig = xfl =
Uif = Vgl = 1 in (4) it forms

a rectangle as shown in Fig. 8.

Thus finding the maximum of

(4) is equivalent to finding the

number of such rectangles. This is equivalent to finding the

maximum number of common links of U and V, or in

turn solving the largest common subgraph problem. Since

the largest common subgraph problem is NP-complete and

a special case of the magnetic localization problem, thus our

magnetic localization problem is NP-hard.

C. Proposed Heuristic

As the problem is NP-hard we propose a heuristic so-

lution for assigning the sensor nodes to the boxes, which

is discussed in Algorithm 1. The idea is to consider

S
a and B

a as two directed graphs, and then to best

match the vertices of these two graphs. We thus pro-

pose a graph matching scheme which is inspired by [28].

We first modify the objective function of equation(4)

E =
∑A

a=1

∑N
i=1

∑N
g=1

∑N
f=1

∑N
l=1 xigxflS

a
ifB

a
gl using

Taylor series expansion as follows:

E =

A∑

a=1

N∑

i=1

N∑

g=1

N∑

f=1

N∑

l=1

xigxflS
a
ifB

a
gl

≈
A∑

a=1

N∑

i=1

N∑

g=1

N∑

f=1

N∑

l=1

x0
igx

0
flS

a
ifB

a
gl +

N∑

i=1

N∑

g=1

Qig

(
xig − x0

ig

)
(8)

where Qig = ∂E
∂xig

∣∣∣
xig=x0

ig

=
∑A

a=1

∑N
f=1

∑N
l=1 x

0
flS

a
ifB

a
gl.

In equation(8) x0
ig is assumed to be the initial estimate of

xig . Thus maximizing the above Taylor expansion is equivalent

to maximizing
∑N

i=1

∑N
g=1 Qigxig , which is an assignment

Fig. 9. Methods of images [30].

problem and can be solved by using the Hungarian assign-
ment scheme [29]. We thus propose an iterative procedure

as follows: we first start with an initial value of xig and

expand the first order Taylor series by taking the partial

derivative to calculate Qig . We next use the Hungarian scheme

corresponding to that Qig to get an initial assignment. This

assignment or xig is next used to calculate the modified Qig

from equation(8). This process is repeated until the solution

converges or a maximum number of iterations Imax is reached.

Algorithm 1 Assignment scheme from the sensor nodes to individual
boxes

1: INPUT : A number of anchors, Sa order matrix of the sensor nodes
corresponding to anchor-a, Ba order matrix of the boxes corresponding
to anchor-a, M is a large number.

2: OUTPUT : Assignment of the sensors to the boxes.
3: x0 is initialized to any random assignment matrix;
4: while x is not converged or number of iterations < Imax do
5: Qig =

∑A
a=1

∑N
f=1

∑N
l=1 x

0
flS

a
ifB

a
gl ∀ i, g;

6: Use Hungarian method with cost cig = M−Qig to get an assignment
xig ;

7: x0
ig = xig , ∀ i, g;

8: end while

D. Effects of the truck walls

Localization of boxes carried on a carrier (e.g., truck) may

be thwarted by the ferromagnetic (mild steel) materials inside

walls of truck since the anchors will be mounted on those

walls. Suppose that an anchor coil (with current I) is placed

at a distance z0 from the truck wall. Then the key question

is how this wall distorts the magnetic field, and what errors

would it introduce in localization? Our preliminary theoretical

analysis suggests – rather surprisingly – that the wall will not

have a detrimental effect for the localization accuracy of our

proposed scheme, but this needs to be investigated further. The

key to analyzing this situation is the classical image theory,

which suggests that a ferromagnetic wall of finite width w will

result in an infinite number of mirror coil images as shown in

Fig. 9 [30]. There will be a mirror image at -z0 with current

αI , which we call primary image. In additional to that there

will be infinite number of secondary image coils carrying a

current α2n−3(1−α2)I , for n ≥ 2. Each of these mirror coils

will be found at a distance z = −(2nw+z0). Here α = μr−1
μr+1 ,

where μr is the relative permeability of the truck material.

Using this phenomenon, we argue that the relative order-

ing of sensors (derived from signal strength) will remain

unchanged. This is because the relative permeability μr for

such ferromagnetic materials is very high, exceeding 1000,

which means α ∼1. Thus the effects of the secondary images
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(a) (b)

Fig. 10. (a) Percentage of wrong assignment when 125 boxes are kept in a
5×5×5 grid, and the (b) corresponding average normalized error.

(a) (b)

Fig. 11. (a) Percentage of wrong assignment when 250 boxes are kept in a
10×5×5 grid, and the (b) corresponding average normalized error.

become insignificant, and moreover, the primary image helps

strengthen the anchor signal. These results really apply to

infinite, perfectly smooth walls, and real conditions may cause

some difficulties (e.g., at the corners) which is subject to

further investigations. However the presence of the ferro-

magnetic objects makes our proposed localization scheme

particularly apt1, rather then the distance based localization

schemes studied in [22], [8]. On the other hand for the trucks

with wooden walls, the relative permeability becomes so low

that the effect of walls become insignificant, i.e. a wooden

wall hardly induces any eddy current from the nearby current

carrying objects.

VI. PERFORMANCE EVALUATIONS

We study the accuracy of the proposed MI based

localization scheme using Matlab simulations. The simulated

system topology along with the anchor’s placement is similar

to that in Fig. 1. We simulate two cases: in the first case 125

boxes are placed in a 5×5×5 grid, whereas in the second

environment we consider 250 boxes placed in a 10×5×5

grid. The boxes are assumed to be cubic and symmetric

with dimension Δ, however the proposed scheme is equally

applicable for boxes with different dimensions. We assume

the minimum Δ to be 0.25 meter as the worst case scenario,

however in reality the boxes are even more the 0.5-1 meter. We

record two indicators to analyze the accuracy of the proposed

scheme. The first indicator is the percentage of sensor nodes

that are assigned in wrong boxes by our localization scheme.

The second indicator is the normalized error which is equal to

1Our proposed localization scheme is also application when all the nodes
have identical orientations, which is possible for a more futuristic, completely
automated packing environment. Notice that in case of identical node ori-
entations, a single coil (instead of 3-coils) can also be used for successful
communication and localization.

(
distance error between actual and prescribed box centers

Δ

)
.

The normalized error gives an estimation that if a spoiled

package is not found in its prescribed box, then how many

neighboring boxes need to be searched to find that package.

A. Results for 125 boxes

Fig. 10(a)-(c) show the accuracy of the proposed scheme

in case of 125 boxes. From Fig. 10(a) we can observe that

the percentage of wrong assignment is zero as far as Δ is

more than or equal to 0.5 meter. In case of Δ = 0.25 meter

the amount of wrong assignment reduces by ∼55% as the

number of anchors increase from 4 to 12. Fig. 10(b) shows the

average normalized error with different number of anchors and

Δ. When the number of anchors is less than 5, the percentage

of wrong assignment is above 40% with Δ = 0.25 meter as

seen from Fig. 10(a). However even in such cases the average

normalized error is less than 2, i.e. the targeted box can be

found within 2 boxes in the neighborhood of the prescribed

box. The average normalized error reduces by ∼85% when

the number of anchors is increased from 4 to 12.

B. Results for 250 boxes

Fig. 11 shows the performance of the proposed scheme for

250 boxes. From Fig. 11(a) we can observe that with Δ =

0.25 meter, the percentage of wrong assignment is significantly

high when the number of anchors is low. However the average

normalized error is still less than 2 in all cases. The amount

of miss-assignment is reduced significantly (∼50%) when the

number of anchors is increased from 4 to 12. We have also

observed that with 12 anchors and Δ = 0.25 meter (not shown

in the figures), for more than 90% of the sensor nodes the

normalized error is less than 1, even the maximum error is

less than 2.

The percentage for wrong assignment is significantly lower

and goes to zero as long as the Δ is more than or equal to 0.5

meter. In all of these scenarios, the sensor nodes are localized

with sufficiently high level of accuracy as far as Δ is more than

or equal to 0.5 meter. In reality large boxes carrying multiple

small packages are indeed more than 0.5-1 meter, thus the

proposed scheme can be effectively useful in the real world

food logistics with reasonable accuracy to localize and isolate

the nearly spoiled or contaminated boxes.

C. Comparison with RF localization scheme

We next compare our proposed localization scheme with a

hypothetical isotropic RF scenario. For RF channel modeling

we assume a log-normal shadowing model to calculate the path

loss; the path loss exponent and standard deviation of the log-

normal fading model for tissue medium is assumed to be 4.26

and 6 dB respectively [16], [31]. The reference distance loss

at 50 mm is assumed to be 49.81 dB. The path loss exponent

is assumed to be known and is used to calculate the distance

estimation in between the sensor nodes and the anchors. This

distance estimate is used in a multilateration scheme [32], [33]

to calculate the estimated positions of the sensor nodes. We

construct a bipartite graph of N sensor nodes and boxes, with
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(a) (b)

Fig. 12. Comparison of RF and MI based localization schemes: (a) percentage
of wrong assignment, and (b) average normalized error with different Δ.

the edges (or costs) in between them representing the distance

between the estimated position of the sensor nodes and the box

centers. We next implement the Hungarian scheme to assign

the sensor nodes to individual boxes.

Fig. 12 shows the comparison of the proposed MI based

and RF localization schemes in presence of 4 and 12 anchors

respectively. We assume 250 sensor nodes (or boxes) in this

case. From Fig. 12 we can observe that in case of RF the

localization accuracy does not improve with the increase in Δ.

The reason is mainly because of the shadowing effects which

disturb the RSSI of the individual sensor nodes. On the other

hand in case of magnetic communications, the localization

accuracy improves significantly and goes to zero as the Δ
increases due to smaller number of outliers as observed from

Fig. 7.

VII. CONCLUSIONS

In this paper, we developed a sensing and localization

mechanism for MI-based communications in fresh food trans-

portation environments. We first described an isotropic mag-

netic communication framework so that the signal can be

received at all directions irrespective of the orientations of

the sensor antennas. By considering the unknown orientations

and channel models in food transportation environments, we

proposed a localization scheme for the sensor nodes in indi-

vidual boxes carrying perishable food packages. The major

outcome of the simulation experiments is the fact that the

sensor nodes are localized with acceptable accuracy as far as

the box lengths are more than 0.5 meter or above. We also

show that such sensor nodes can last for several years without

any battery replacement. As stated in section II, simple and

inexpensive sensors are already beginning to show up in retail

meat packages. Therefore, an important line of investigation

is to consider future scenarios where the entire sensor module

(including the radio) is inexpensive enough to be embedded in

each package or multiple packages within a box. We also plan

to develop experimental setup to validate the performance of

the proposed sensing and localization scheme in a real-world

scenarios. We will study the effects of metallic walls on the

accuracy of the proposed localization scheme using such setup.
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