
Adaptive Data Center Network Traffic Management
for Distributed High Speed Storage

Madhurima Ray, Joyanta Biswas, Amitangshu Pal, Krishna Kant
Temple University, Philadelphia, PA 19122, USA

Abstract—The emerging high-speed storage technologies and
the ever-growing need for data storage are placing increasing
pressure on data center networks. In this paper, we develop
novel mechanisms for dynamically deciding when to move storage
chunks or alter the number of active copies to alleviate congestion
during high traffic episodes and to enable traffic consolidation
(and hence network energy savings) during low traffic periods.
Both actions are essential due to increasing burstiness of data
center traffic. Using extensive simulations with modified NS3
network simulator we provide deep insights into the migration
vs. replication tradeoff. We also show that under traffic bursts, a
careful replication can provide up to 47% improvement in latency
with read-dominated traffic, and strategic data migration to a low
utilized node can provide up to 22% improvement in delays with
write dominated traffic.

Index Terms—congestion control; FAT tree; replication; incre-
mental optimization; data center network; distributed storage;

I. INTRODUCTION

Storage technologies and protocols in data centers are
undergoing a rapid transformation have already shattered the
conventional wisdom that the networks are fast and the storage
is slow [1]. For example, currently available high-end NVMe
SSDs (e.g. Samsung MZPLL12THMLA) can put out up to 50
Gb/s for large sequential accesses such as streaming media [2].
Thus, a few SSDs in a storage server can overwhelm 100
Gb/s Ethernet. Faster technologies such as Intel Optane
(https://www.intel.com/content/www/us/en/architecture-and-
technology/optane-dc-persistent-memory.html) not only
consumes higher bandwidth, but also compete with end to
end network latencies in larger networks.

Fig. 1. Access time-series based on
Temple University cluster data traces

Fortunately, the average
IO or network traffic in a
data center network is in-
variably very low and the
real issue is not sustained
high traffic but frequent
bursts in traffic due to large
data ingestion or output. We
see this behavior even in
our university cluster traf-
fic. Fig. 1 shows the traffic
pattern of one logical unit (LUN) over 11 hours of a day
which has several sharp peaks. Thus, a well crafted dynamic

This research was supported by NSF grants CNS-1422921 and IIP-1439672

migration (or move) and replication (or copy) of data can deal
with such bursts and minimize QoS violations. At the same
time, consolidation of traffic during low periods is necessary to
(a) avoid additional latency because of (unintended) scattering
of data throughout the network as copies are created, migrated,
or removed, and (b) effectively exploit the low power mode of
the links. Unfortunately, traffic consolidation and congestion
mitigation are conflicting goals thereby requiring careful data
placement and movement techniques.

Achieving this tradeoff involves several challenges. First,
if packet drops are to be avoided, an ongoing flow cannot
use a different copy of the data chunk, instead, any migration
is limited to only new flows. Second, the migration/copy
creation must be very lightweight so that the additional
traffic generated does not worsen the congestion. Third, the
additional overhead of consistency management across chunk
copies in relieving network congestion should not affect the
overall performance. Fourth, the replication/migration used
during congestion episodes should not result in substantial
scattering of data throughout the network as it worsens low
traffic performance and ability to do energy management.

To address all these challenges, we have developed an
incremental chunk management mechanism that adaptively
combines chunk migration and replication, which is the main
contribution of this paper. Extensive simulation shows that
the combined chunk migration and replication mechanism
provides 4x better performance than using them in isolation.
For the simulation, we modify the existing NS3 simulator and
show that in a disaggregated NVMe storage system under
traffic bursts, our mechanism can provide up to 47% im-
provement in latency with read-dominated traffic, and strategic
data migration can provide up to 22% improvement in delays
with write dominated traffic as compared to an optimized
initial placement without any further changes. To the best
of our knowledge, no work has addressed above mentioned
challenges in achieving congestion vs. consolidation tradeoff
in disaggregated NVMe based storage.

The rest of the paper is organized as follows. Section II
explores the background and motivation behind the work.
Sections III and IV discuss the related work and the proposed
chunk management methodology respectively. Section V dis-
cusses the optimal chunk placement and movement mecha-
nisms, including both initial optimal placement and its in-
cremental optimization. The experimental setup and results

978-1-7281-2561-9/19/$31.00 ©2019 IEEE 166

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on December 20,2021 at 10:13:11 UTC from IEEE Xplore. Restrictions apply.

are covered in Section VI and the paper is concluded in
Section VII.

II. MOTIVATION AND BACKGROUND

Fig. 2. Chunk Popularity based on
Temple University cluster data traces

Storage systems are
evolving rapidly from the
slow spinning magnetic
media to high-speed
flash technologies (i.e.,
SSDs) and even higher
speed technologies NVM
technologies (e.g., PCM,
MRAM, etc.), which
can rival DRAM access
latencies. Alongside there
have been rapid developments in storage access protocols
that are much leaner and lower in latency (e.g., the NVMe
protocol that is rapidly becoming ubiquitous). This emerging
high-speed storage will invariably be accessed over the data
center network by many hosts regardless of how it is deployed
(from fully centralized to fully distributed per server storage).
With distributed applications deployed in VMs/containers on
different hosts and accessing large amounts of data, remote
storage access is a norm rather than an exception.

The net result of these trends is that storage systems
can drive tremendous throughputs, although this typically
happens only for brief periods. Furthermore, with storage
device latencies going into 10’s of microseconds or less, the
network latency becomes a significant part of the end to
end latency and needs to be managed carefully, especially
during congestion periods. Thus an intelligent management of
network congestion during burst periods becomes important.
Since the congestion management generally requires spreading
out the data (to spread out the network traffic), we also need
to consider the fact that scattered data becomes undesirable
during low traffic periods (which are dominant) as it interferes
with the ability to achieve low network latency and exploit
power-saving techniques (e.g., sleep modes) for links with low
utilization. Thus, an intelligent mechanism needs to manage
data location (by copying or moving) in a way to both avoid
the congestion and to avoid keeping it scattered throughout
the network.

The dynamic data placement to achieve the congestion
mitigation vs. traffic consolidation tradeoff requires that the
storage be divided up into “chunks” of a suitable size and vir-
tualized so that it is possible to move these chunks dynamically
without any impact on the applications in terms of addressing
or accessing the data they need. Storage virtualization is a
very mature technology and is used extensively. It may be
performed by the host, a virtualization appliance, or the switch.
While each mechanism has its pros and cons in terms of
network impact and delays, we do not delve into those details
here.

Despite virtualization, chunk movement without allowing
ongoing transactions to complete can lead to lost or out

of order network packets. This mobility limitation tends to
make the problem of data movement/copy management more
challenging, as discussed later in the paper. It is also worth
noting that the storage access pattern is generally highly
skewed, which means that a small fraction of chunks will
account for a large percentage of accesses. This is illustrated
in Fig. 2 for our university traffic by plotting the distribution
of chunk popularity. It turns out that approximately 11% of
the LBA (logical block addresses) are responsible for 80%
of the traffic. In fact, the popularity distribution often turns
out to be similar to Zipf. Obviously, only the highly popular
chunks need to be moved or copied to deal with congestion;
however, since highly popular chunks are likely to be accessed
from multiple hosts, managing their mobility becomes quite
challenging.

In addition to the data movement and copying explored
here, dynamic per-flow changes to network routing can also
be used to mitigate congestion and to consolidate traffic. We
have studied this aspect in our earlier work [3]; therefore,
we do not address it here. It is possible to integrate data
movement/copying with intelligent routing, but this is beyond
the scope of this paper. Also, while one of the objectives of
traffic consolidation during low traffic periods is better network
energy management, this paper is not focused on that aspect
either. The copy management discussed in this paper could
make use of the copies normally created for better resilience;
however, our copying is limited only to very hot chunks that
would likely reside in the highest storage tier and extra copies
are likely to be short-lived.

III. RELATED WORK

Several works focus on performance aware data placement
and data replication from different viewpoints. In particu-
lar, references [4], [5] concentrate on placement in a cache
tiering environment to achieve performance in terms of in-
storage access latency, but the network bottleneck issue is
overlooked. References [6], [7] focus on a distributed file
system and database respectively and propose replication with
static workload estimate. However, the authors do not consider
the overhead due to consistency control inside the workload
estimates.

The authors in [8]–[14] focus on the locality-aware data
placement in a distributed storage system. References [8]–
[10] mainly consider distributed big data applications (e.g,
Hadoop and distributed database). In [8], the author uses the
correlation between the number of accesses and concurrent
accesses to find popularity. In [9] the author works on the same
basis (chunk’s popularity), but the popularity is determined
by correlation analysis between access frequency and age of
the file. The work in [10] additionally considers the host’s
capability for hosting the replicas while making the placement
decisions. References [11]–[14] discuss network-aware end-
point consolidation, with references [13] and [14] place VMs
with more mutual communication close to one another to
reduce delay. In [11], authors have extended the work of [15]

167

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on December 20,2021 at 10:13:11 UTC from IEEE Xplore. Restrictions apply.

by considering VM utilization and correlation analysis for
both the VMs and flows in a coordinated manner. Scheduling
the data access can also improve the performance [16], but
in a large distributed storage system this would introduce
additional overhead to manage the coordination.

Locality aware data replication/placement has also been
studied in Wide Area Network [17], [18]. GlobeDB [17] uses
clustering of data chunks based on the read and write amount
conducted by each server and place each chunk cluster to
any single server based on a cost function, which considers
three metrices: read, write and consistency traffic. Reference
[18] studies different heuristics to solve the NP-hard chunk
placement problem.

Contrary to the above approaches, in this paper, we propose
(a) a dynamic data-chunk placement scheme that balances
both congestion and consolidation depending on change in
traffic bursts, (b) adapts to the traffic behavior (read/write) by
using either replication or migration to mitigate congestion;
(c) incrementally reacts to any perturbation in traffic; and
(d) finally addresses all the overheads due to replication,
migration, consistency control.

IV. PROPOSED METHODOLOGY

Fig. 3. An illustration of fat-tree network

We assume a traditional data center network architecture
organized as a ”fat tree” illustrated in Fig. 3. An order k fat-
tree has k pods, each pod contains k switches arranged in
two layers (aggregation and access) with k/2 switches each.
The figure shows a rather small fat-tree of order k = 4. The
leaf nodes connect to top-rack (ToR) switches, and each rack
contains some number of compute and storage servers. All
links are bi-directional and generally have higher bandwidth
at higher levels of the hierarchy. Nevertheless, higher level
links are more likely to be congested if the applications and
the storage used by them are scattered throughout the network.

We assume that all storage is virtualized with the chunk
size of 256KB. Since this paper is only concerned with
storage traffic, we assume separate logical channels carrying
the storage traffic. Such channels can be realized using MPLS
at IP level or through the use of CoS (class of service) feature
in data center Ethernet.

Although any storage chunk can reside on any storage
server, it is desirable to keep the chunks close to the ap-
plications that access them the most while still consolidating
the traffic under normal conditions. This can be done initially
by solving an optimization problem, which we discuss in

section V. Solving such an optimization problem requires
knowledge of various access types and intensities, which may
be available based on historical behavior, however, the access
patterns are likely to change over time. Thus in addition
to the initial placement, we also need a mechanism for
continuous monitoring of the entire network and occasional
incremental optimization that moves or changes the copies of a
certain number of chunks. We expect the need for incremental
optimization to arise only occasionally and likely involve only
a small fraction of all the chunks.

Our monitoring architecture is similar to one proposed
in [19] and involves a local controller (LC) residing at each
switch and a global controller (GC) to coordinate among the
LCs. The GC can run on the centralized management box,
which usually has a logically separate communication path to
all the switches. The well known SDN architecture provides
a suitable paradigm for this [20], where GC can be thought
of as a controller interacting with individual switches with
additional monitoring capabilities.

The prime job of an LC is to collect utilization of its
switch and that of the incoming/outgoing links periodically,
and it can do this without much overhead. A GC occasionally
communicates with the LCs in the system to build the holistic
picture of the network nodes and links. The LCs at ToR
switches (rack level) track the utilization of all the chunks
hosted by that rack. For scalability, the LCs hide the server
level details inside the rack and only expose a consolidated
view of the endpoints externally to the GC. The GC acts upon
the overall rack-level statistics whereas the LC controls any
decision internal to the rack which is essential to keep the GC
overhead under check.

Given this architecture, it is possible to make decisions
about when a chunk should have a copy made, moved, or
a copy deactivated. The overhead of such dynamic replication
includes (a) additional traffic at the time of replication, and (b)
the synchronization traffic at the time of any updates. Other
than the GC and the LC, the Virtualization is responsible for
all the mapping and the translation, where the mapping can be
influenced by the GC or the LCs. But we would not discuss
the API related details here.

To address these, we assume a mechanism that minimizes
replication traffic during high traffic episodes by using either a
reactive or a proactive approach based on the dominant traffic
type as learned from the history of active chunks. The reactive
approach determines the number of extra copies needed for
heavily used chunks during traffic bursts and creates those
copies inline. In contrast, the proactive approach creates, in
advance of the traffic burst and based on historical data, a
small number of copies of the chunks that are known to
be hit heavily. These copies are retained during low traffic
periods but not in fully synchronized state. Instead, they are
synchronized opportunistically in the background using lazy
synchronization. The key advantage of the proactive scheme
is substantially less copy synchronization traffic during burst

168

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on December 20,2021 at 10:13:11 UTC from IEEE Xplore. Restrictions apply.

periods; however, this comes at the cost of higher storage
consumption. With either scheme, once the burst is gone, the
redundant copies are deactivated.

V. OPTIMAL CHUNK PLACEMENT AND MOVEMENT

A. Initial Placement of Chunks

We assume that the applications and the chunks used
by them are placed optimally initially to minimize network
traffic and adjusted incrementally as the traffic or applications
change.

For initial placement, we formulate an optimization problem
where xun is a decision variable which is 1 if either the
application or the chunk u are assigned to node n and 0
otherwise. Suppose ri and ro are the cost of accessing a chunk
that is within and outside the node respectively, i.e. ro > ri. To
linearize the problem, we also introduce an auxiliary decision
variable euv , which is 1 if and only if the application u
and chunk v are placed on different nodes. Let wuv denote
the weight (or relative intensity) of accessing chunk-v from
application-u and Iu the IO demand by the application or
chunk u. We could then define our Traffic-aware Application-
Chunk Placement (TACP) as follows:

Min
∑

(u∈A∧v∈C)

wuveuvro+wuv(1−euv)ri s.t. (1)

N∑
n=1

xun = 1 ∀u ∈ A∨C (2)∑
u∈(A∨C)

Iuxun ≤ L ∀n (3)

wuv = 0 {u, v} ∈ A∨{u, v} ∈ C (4)
euv ≥ xun−xvn, euv ≥ xvn−xun, (5)
euv ≥ xun+xvn−1 ∀u,∀v,∀n (6)
euv ∈ {0, 1}, xuv ∈ {0, 1} ∀u,∀v (7)

Here constraint in eqn(2) states that every application and
chunk copy is assigned to some node. Equation(3) states that
the overall IO rate of the node (denoted L) is respected. The
constraint in eqn(4) states that there is no IO between two
applications or two data chunks. Constraints in (5)-(6) ensure
that if euv = 1, then u and v are placed on different nodes.

The above formulation can be used at multiple levels in
a real network where a node could represent pod in entire
fat-tree, rack within a pod, and servers within a rack. During
the initial placement problem, the TACP is solved twice to
determine in which pods and then which nodes inside that
pod the application/chunks are assigned.

Theorem 1: The problem TACP is NP-hard.

Proof: This can be proved easily by a reduction from the
Minimum K-cut problem (MKP) in a graph representing flows
between nodes. We skip the detailed proof for brevity.

Because of the NP-hard nature of the TACP problem, we
propose the following heuristics to solve it efficiently. We

solve the problem in two stages. First, we assign apps/chunk-
copies to a set of virtual nodes, each of which corresponds to
a real node and has a specified IO capacity (i.e., every node
is assumed to have the same IO capacity). Next, we map the
virtual nodes to the real nodes of the network.

Fig. 4. Assigning apps/chunk-copies to the virtual nodes

In the first step, we construct an affinity graph Fig. 4(a) with
application and data nodes (Ai’s and Cj’s) and weighted edges
showing traffic demand from Ai’s to Cj’s. We then greedily
choose the edge with the highest weight (i.e. A1 → C1 in
Fig. 4(a)) and merge its vertices to create a new composite
vertex, and direct all incoming and outgoing vertices from/to
the merged node to the composite vertex. Fig. 4(b) shows this
with composite vertex v1. The composite node corresponds
to application A1 and chunk C1 being placed on the same
node. The composite vertex is attempted to be merged further
so long as the co-location does not exceed the capacity of
a virtual node. E.g., in Fig. 4(d) merging v3 and C3 would
exceed the virtual node capacity, and thus at this point, the
algorithm looks to a distinct merger (to create another virtual
node). The end result is two virtual nodes v3 and v4 that cannot
be merged further.

At this point, there may be some disconnected components
that are merged/packed into at most N virtual nodes using the
typical bin-packing solution [21]. Thus v∗3 and v∗6 become two
virtual nodes after the first step.

In the second step, the virtual nodes are assigned to the
pods. For this, we start with the n virtual nodes from step 1,
and if n < N , expand them to N virtual nodes by inserting
N−n dummy nodes. We then recursively apply Kernighan-
Lin (K-L) graph bi-partitioning algorithm that minimizes the
cut weights across two partitions. The K-L algorithm divides
these N v-nodes into two partitions each one with a size of
N/2 v-nodes (assuming N is even). The K-L algorithm is
again applied to these two partitions if they have non-zero
virtual nodes. This process is repeated until each partition has
more k virtual nodes. These partitions can now be thought
of individual pods, where the virtual nodes are assigned from
left-to-right based on their app/chunk loads (from maximum
to minimum).

Theorem 2: Assuming N is even, the K-L algorithm will
be called at most

(
N
k −1

)
times.

Proof: The K-L algorithm divides the virtual nodes into
two equal-size partitions. Thus if we start with N virtual
nodes, then from the formulas of G.P. series it is easy to verify
that after

(
N
k −1

)
steps we will get the partitions with the size

of k.

169

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on December 20,2021 at 10:13:11 UTC from IEEE Xplore. Restrictions apply.

Henceforth the term “node” explicitly refers to a “rack”,
since all our strategies beyond this point are based on the
rack-level estimates.

B. Incremental Placement Optimization

Since the application behavior and hence the network traffic
will vary over time, it is essential to monitor the traffic
constantly and incrementally make adjustments to the position
or number of copies of highly used chunks.1

To facilitate chunk migration/replication, we assume that we
initially deploy k copies (e.g., k = 3) for every chunk across
the storage servers. These copies include the initial number
of copies needed in the initial optimization (the active copies)
and a few extra copies (inactive copies). The additional copies,
if any, are placed according to some fair distribution rule, for
which we use a simple hash-based approach described below.
The purpose of the extra copies is to allow for inexpensive
copy activation when required by the high demand without
creating substantial additional network traffic. All inactive
copies are synchronized opportunistically (to minimize acti-
vation cost) but active copies are kept entirely consistent.

In addition, the GC maintain a bitmap BM(c) for each
chunk c where each entry is primarily k bits long (we use
k = 3). Thus if BM(c, i), i ∈ 0..k−1 is 1(0), then a
predefined hash function hi(c) for this position provides the
location for the ith active(inactive) copy of chunk c. The GC
also stores the activation ordering of any chunk using k−1
additional bits which it uses during copy deactivation (thus
each BM entry costs 2k−1 bits for any k). The LCs do not
require access to this bitmap. The mechanism will, however,
require communication between the GC and the virtualization
engine during the time of migration/replication, but detailed
consideration of the overheads of this interaction is beyond
the scope of this paper.

We assume that the episodes involving the arrival of large
traffic bursts and their subsequent dissipation are infrequent,
as observed from several traffic traces. Therefore, the fre-
quency of update of BM is expected to be relatively low.
Nevertheless, in very large data centers, the maintenance of
a centralized data structure such as BM may be undesirable.
This aspect will be explored in our future research.

1) Copy Activation and Deactivation: For both replication
and migration of chunks, we use the following mechanism
based on the traffic monitoring (in bytes/sec) by the LC.
For replication, the LC watches the outgoing traffic of the
node (this is primarily the read traffic), and for migration, the
incoming traffic (this is primarily the write traffic). When this
traffic overshoots a certain high cutoff threshold τh (shown as
75% in Table I), the LC reports the event to the GC along with
the top P highly used chunk numbers with their respective
utilizations.

1It is also possible to occasionally re-run the initial optimization but this
may not be desirable if it leads to substantial data movement.

Suppose that the current utilization of the i-th chunk is Ui.
Then we have the following situations:

Replication: Suppose that chunk i has n active replicas with
evenly distributed load among them. Then, creating another
copy (replica) of that chunk will reduce their estimated load
to approximately n

n+1Ui.

Migration: Migrating the chunk from node m to p will
reduce load Ui from node m and increase Ui at destination
node p. For any chunk with multiple active copies in the
system, the incremental optimization migrates only the copy
from the node that has raised the event, while keeping the
locations of the remaining active copies being unchanged.

Based on this approximation the GC selects chunk from
the list in descending order of their utilization at the nodes
and activates the replicas at some other node that (a) has an
inactive replica of that chunk, (b) can accept a certain amount
of additional load (i.e. n

n+1Ui in case if replicating the i-th
chunk) and (c) has the least load (preferably preoccupied)
satisfying (a) and (b). The GC continues to activate replicas
until the expected load of the congested node goes below the
normal limit of τn2. In case there is no node that satisfies these
conditions, that chunk is not replicated or migrated and GC
moves to the next chunk in the sorted list.

When the traffic surge fades away, our scheme needs to
deactivate some copies activated during congestion so that the
overhead of maintaining the consistency among the replicas
is avoided. A migration also involves a copy creation initially
followed with new traffic directed to the copy. Only when the
ongoing traffic dies down, the original copy is deactivated.
Deactivating extra copies when the traffic subsides can be
rather tricky. Deactivating it too early after the traffic burst
subsides could hurt in terms of delay since there still might a
built-up backlog that must be cleared.

There could be several policies for copy deactivation. Each
of them has its advantages and downsides. It may be difficult
to find a single copy with low utilization under our traffic
forwarding mechanism. So infrequently, the LC updates the
GC with the set of Q chunks having low utilization. From the
list, GC selects only the chunks with multiple active copies. It
then deactivates the last created copy of the chunk and shifts its
load equally to other active copies. (Note that no deactivation
will happen if the remaining copies cannot handle the extra
load).

2) Concurrency Control: Since we use multiple copies as
a way of relieving congestion, we must address the multi-
copy consistency issues as well for chunks that are shared
across applications and thus could get access requests for them
asynchronously from multiple applications. As usual, this can
be achieved in two ways: (a) via locking or pessimistic concur-
rency control (PCC) or (b) via optimistic concurrency control
(OCC) which rolls back any conflicting transactions [22]. It is
well known that the OCC works better in environments with
low contention for the resources. Assuming that the chunk
sharing is not prevalent, the contention is expected to be

170

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on December 20,2021 at 10:13:11 UTC from IEEE Xplore. Restrictions apply.

low, and hence we choose to implement the OCC. In OCC,
the resource access by a transaction must still be monitored;
however, the requester can proceed without locking. When the
transaction is ready to commit, a check is made if any other
transactions have committed since this transaction started. If
so, the transaction is rolled back and may retry after some
delay to avoid the conflict. The transaction also checks for
conflict upon arrival and backs off if another transaction has
already started. Conflicts are still possible since there is a small
gap between determining that there is no conflict and actually
recording that the transaction has started.

It is important to note that our concurrency control operates
at the storage level and is only concerned with individual read
and write operations. Additional concurrency control may be
applied at a higher level (e.g., for database transactions running
on top of the storage system).

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

To comprehensively evaluate the network congestion con-
trol mechanism we have enhanced the popular NS3 network
simulation package to include the modeling of chunk based
storage access, concurrency control, and traffic control via
local controllers (LC) and global controller (GC). We built a
small fat tree infrastructure for k = 4 with 100 Gb/s network
links in the core and the aggregate layer and 10 Gb/s at the
access or edge level.

For the storage, we consider device characteristics similar
to those for currently available low-latency NVMe SSDs.
However, we do not consider or simulate the complexities of
the storage systems here – assuming that the storage device
utilization is kept reasonably low, the effect of queuing for
storage devices is not important to our study. For routing, we
use the Equal-Cost Multi-Path Routing (ECMP) with a point
to point connections. Also to avoid acting upon intermittent
short-lived spikes, we perform exponential smoothing of the
congestion metric. Some of the key parameters for the exper-
imental setup are given in Table I.

TABLE I
SIMULATION CONFIGURATION VALUES

Parameters Values Parameters Values
Fat Tree Size (k) 4 Mid Cut-off (τn2) 55%
Zipf dist.(α) 0.8 Normal Cut-off (τn1) 45%
#application instances 47 Default chunk size 256K
#unique data chunks 1500 SSD Read Latency 25µs
#servers per rack 14 SSD Write Latency 100µs
High Cut-off (τh) 75% Smoothing factor (β) 0.85

1) Application and Data Chunk Model: In our system, we
have M application instances and N data chunks. We define
the data chunk access intensities following a Zipf distribution
over the N (N > M) unique chunks with the decay factor α =
0.8. We then randomly map the applications to the chunks.
Based on the mapping between an application to the set of
chunks, we determine the application frequencies. Without any
sharing on the chunks across applications, the application set

should also follow a Zipf distribution. Additionally, we share
each chunk across a small set of applications.

2) Copy Activation Overhead: As stated earlier we can
either create copies proactively or reactively. Under proactive
control, we decide m alternative locations per chunk using m
hash functions and create copies in advance, which are then
synchronized in the background. In reactive control, we create
copies as needed (i.e., at the time of congestion). Additionally,
under replication, as we keep multiple copies of chunks active
and share them across a small number of applications, we
use Optimistic Concurrency Control (OCC) model to keep the
copies consistent.

3) Chunk size and Metadata Overhead of our Scheme:
The suitable chunk size is configured by the virtualization
layer and it involves balancing the overhead of metadata
maintenance (which prefers large sizes) vs. the overhead of
moving chunks and controlling false data sharing (which
prefers small chunks). For our mechanism, smaller chunks are
preferred, and the chosen size of 256KB is unlikely to be
burdensome in most situations because of the highly skewed
nature of storage accesses. Note that our mechanism only
needs to store the chunk id, offset, and three active locations of
that chunk which results in a few bytes (32 bytes) per chunk.
This has a miniscule storage overhead (0.0125%).

As described in section V-B, for the bitmap GC uses only
5 bits per chunk (for 3 extra copies), hence for a petabyte of
storage with 256K chunk size, the bitmap will require 2GB of
memory space. GC also stores the node level utilization for all
the nodes to decide the best-fit location for the chunk while
replication or migration. LCs do keep track of the chunks
inside a single node which constitutes of chunk number, server
number, and utilization. We make the assumption that at most
10% of the data is active at any point in time for which LC
requires an in-memory monitoring structure. Given the chunk
usage are roughly balanced across the pods in the data center
(but there could be local imbalance inside a pod) each LC will
require 0.5GB to 1.5GB of memory for monitoring.

4) Application Traffic Generation Model: We have largely
used synthetic traffic for our evaluation as it allows for an
easy change in the traffic parameters. We generate traffic
based on the statistical characteristics of real block device
access traces collected from both Temple University Cluster2

and [23]. Analysis of the trace file in section I shows several
periods of high activity, which we term as traffic “burst“, and
develop our traffic generation model around these traces.

In our model, network flow duration follows Pareto distri-
bution with shape=3.5 and mean as 3.6 ms. The bandwidth
of each flow follows a uniform distribution with mean 1Gbps
and a range from 500 Mbps to 1.5Gbps. To avoid the remote
communication latency we keep the bisection bandwidth of
the network topology adequate. We measure performance as –
the average and the maximum observed latency faced by any

2https://drive.google.com/file/d/1gSCToOCk4oigxLd8jKO3LRLlMW
oblr9C

171

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on December 20,2021 at 10:13:11 UTC from IEEE Xplore. Restrictions apply.

application issuing remote storage access request.

B. Experimental Results and Discussion

1) Optimized vs. Random Initial Placement: We start with a
comparison of our optimized initial placement (OIP) against a
uniform random placement (URP) of both the applications and
the chunks. Under 20% utilization, the OIP only occupies 8 out
of 16 available nodes (racks). In contrast, the URP involves
all nodes as expected. We use the same traffic for both the
cases and compare the performance of both the placements.

Fig. 5 shows the comparison of average latency under
changing read fraction (95% to 1%). With bidirectional traffic,
the network link gets congested at the extreme points where
the traffic is either read or write dominated. At 95% read
or 99% write traffic, we achieve the maximum reduction
(approximately 95%) in average latency with OIP. Also OIP
does not have any packet delivery issues whereas URP fails
to deliver approximately 1% of the packets by the end of
the simulation due to long delays. As long as the resources
are available, OIP tries to consolidate the applications with
their associated data chunks and accommodates them in the
same pod (perhaps on the same node) to reduce packet
propagation delay. Although mixed read/write traffic results
in lower congestion due to bidirectional links, OIP can still
achieve 18% reduction in average latency at 50% read traffic.

Fig. 5. Avg. Latency for Random vs
optimized placement

The OIP will no longer
be optimal under traffic
bursts, and incremental op-
timization becomes neces-
sary. It replicates or mi-
grates busy chunks depend-
ing upon which direction
of a bidirectional link is
congested. Both operations
require activation of addi-
tional copies of chunks at
different nodes. In the case of replication, all future requests
are evenly distributed among all active copies. In contrast, in
the case of migration, all new requests go to the new copy,
and when old requests die down, the old copy is deactivated.

2) Impact of Incremental Optimization: Figs. 6 shows the
effect of varying percentage of read on average delay under
20% utilization. At that utilization, our OIP only uses half
the number of nodes, which increases the utilization of those
resources to higher than 20%. The rest of the nodes are
not at all utilized. We assess the performance of incremental
optimization by comparing average latency for the requests
under two cases; in one, we only use the OIP (denoted as ”no
opt”) whereas in the other we use incremental optimization
over the OIP to change the number or location of active copies
to accommodate the change in demand.

a) Change in average delay with changing read fraction:
The following scenario can be treated as the best case for
the incremental optimization where we create inactive copies

proactively and perform lazy synchronization. We create in-
active copies of working set on all the nodes. Hence during
congestion, the traffic that we need to send to activate those
inactive copies is mostly very small. Also, assuming copies
everywhere (”copies everywhere”) gives us the flexibility to
activate the replica on any node. Here in the current experiment
independent of the ongoing traffic characteristics (read/write),
we either only migrate or replicate.

Fig. 6(a) shows the average latency with and without
the incremental optimization following the OIP. With read
dominated traffic, the incremental optimization (which creates
copies of the busy chunks) achieves approximately 47% im-
provement over no opt. This improvement results from the
enhanced parallelism due to the extra copies. However, with
write dominated traffic, extra copies cost additional synchro-
nization traffic which actually increases the delay significantly
as compared to no opt. Instead, a migration under write-heavy
traffic achieves a 22% latency reduction. Obviously, migration
is not helpful under read-dominated traffic. It follows that we
need an adaptive mechanism that can track the congestion and
the nature of the traffic (e.g., read fraction) and accordingly
decides whether to copy or move chunks.

Fig. 7. No. of copies activated with
adaptive control

So we introduce adap-
tive control based on the
read fraction. The system
decides whether we copy
or move the busy chunks.
Fig. 6(b) compares the av-
erage latency of this mech-
anism against no opt. When
the traffic is mostly read;
the system tries to reduce
the congestion by replicat-
ing but when the traffic largely write dominated, the system
reduces the consistency control overhead by migrating the
busy chunks. Please note when there is not much traffic
ongoing in either direction (read% 50-60%), neither copy nor
migration is beneficial as the congestion in both the directions
becomes insignificant.

b) Change in maximum observed latency with changing
read fraction: Fig. 6(c) depicts the change in maximum
observed latency that supports our findings from incremental
optimization (Fig 6(a)). The maximum observed latency for
any flow decreases by 14% compared to no-opt as we replicate
due to parallel request service. However, when we migrate,
the maximum observed latency remains identical to that for
no opt. So by migrating, we do not lose anything in terms
of maximum observed latency, whereas copy creation always
reduces the maximum observed latency. Fig. 6(d) confirms our
findings from Fig. 6(b) when tested under adaptive control and
compared against no opt. It shows improvement in maximum
observed latency is achieved through replication under read
dominated traffic.

c) Number of copies activated vs. read fraction under
different policies: Fig. 7 shows the number of additional

172

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on December 20,2021 at 10:13:11 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c) (d)
Fig. 6. (a,b) Average latency and (c,d) maximum observed latency reduction for various chunk management mechanisms

copies that are activated (and eventually deactivated with
replication) over time. Across all the cases, in the worst case,
we only activate a maximum of 50 additional copies out of
all 1500 chunks. However, copy deactivation in our system
follows a conservative approach. This sluggish deactivation
might not have any impact on read dominated traffic, but it
could increase concurrency control traffic when we replicate
under write-heavy traffic.

Due to the performance advantage of the adaptive mecha-
nism over simple migration/replication, we use the adaptive
mechanism for the rest of our experiments.

From the perspective of efficient copying/migration, we
would like to have a copy of each chunk available at each node.
However, this would require an enormous amount of extra
storage. Hence to keep the number of copies limited, we tested
our system with three (three copies) and five (five copies)
proactively created copies of all the chunks. We compare
the performance of these cases against copies everywhere.
Fig. 8(a) shows that three copies are enough to achieve signif-
icant performance improvement. With mostly read traffic, no
significant performance improvement is observed beyond three
copies. However, with write traffic, increasing the number
of inactive copies can provide better location choices for
migration, but at the cost of increased consistency control
overhead.

Many-a-times the system fails to find a new destination for
a busy chunk due to IO rate limitations at nodes hosting the
inactive copies. Note that we determine the locations of the
inactive copies in advance, and in a highly dynamic system,
it is very likely that the action taken for one busy chunk can
influence the migration/replication decision of another busy
chunk. So if we now compare the number of inactive copies
that are successfully activated during the bursts Fig. 8(b), fewer
chunks are activated with the limited number of copies than
for copies everywhere. For example with 90% read traffic, we
activate 34 total copies with three copies, 35 with five copies
and 49 with copies everywhere.

We do see a few exceptions; e.g., at 40% read, three
copies creates two more copies than copies everywhere, yet the
latency is 2% less in the latter case. This suggests that as the
system fails to find a destination for a busy chunk, it chooses a
less important chunk. Creating copies of such chunks requires
more migrations/replications to bring the congestion down.

Since keeping three copies is enough to handle congestion,

(a) (b)

Fig. 8. Comparing (a) Average delay and (b) number of copy activated under
limited copy approach over copy everywhere

(a) (b)

Fig. 9. (a) Average delay with proactive and reactive control and (b) Increase
in delay during bursts over proactive approach

we use this configuration for further experiments.

3) Impact on Average delay under reactive copy creation
with varying chunk size: Figs. 9 show the impact of increasing
chunk size on average latency with inline copy creation (as
opposed to our proactive method). In Fig. 9(a) we show the
average latency by varying the chunk size from 64k to 512k.
We compare the performance against our proactive approach
with three copies (default chunk size).

As stated above, our default chunk size is 256k. We perform
the test with four different read proportions consisting of either
read or write-heavy traffic. With read dominated traffic, the
delay increases with the chunk size. At 99% read, compared to
the proactive approach, the reactive method with a chunk size
of 512k increases overall latency by 99%. This latency increase
is due to the copy creation traffic that puts additional load on
read path itself. For the same reason, with the write-heavy
traffic, the increase in delay due to reactive copy creation
decreases significantly. With 90% write traffic, we see an
increase of 0.2%, 1%, 5%, 23% in delay with chunk size
64, 128, 256, and 512k respectively. Fig. 9(b) zooms into the
bursts period, and the plot shows the increase in delay over
proactive copy which confirms the same. Here due to bigger
chunk size, the delay increases by 140% at 99% read fraction,
which is more than the increase in overall delay.

173

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on December 20,2021 at 10:13:11 UTC from IEEE Xplore. Restrictions apply.

Fig. 10. Avg latency vs. read fraction

Thus our findings from
Fig. 8 and Figs. 9 indicate
that with write-heavy traffic,
one can afford to have re-
active copies as long as the
chunk size is small to mod-
erate. With limited copies,
activation may fail due to
the shortage of resources at
those nodes. Reactive copies
will reduce the concurrency
control traffic and might provide better locations for migration.
In contrast, with read oriented traffic, it is beneficial to create
copies proactively.

4) Adapting to Traffic type and Intensity Changes: Finally,
we tested our system under not just change in traffic intensity,
but traffic where both the intensity and the read-write ratio
changes. Fig. 10 shows the change in average delay when both
traffic type and intensity changes. We use three cases where
traffic type changes from (1) 99% to 1% (2) 90% to 10% and
(3) 80% to 20% read, with traffic intensity increases as before.
We use three copies and compare the performance against no
opt. Please note that in all our previous experiments, the read
fraction was constant throughout a simulation and only varied
across different runs. However, in this experiment, the read
fraction of the traffic changes within a single run to test the
adaptability. We found that our mechanism adapts nicely by
both migrating and replicating chunks based on the change in
traffic intensity and type. Also, we achieve 30% improvement
over no optimization as we move from completely read to
write heavy traffic.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we discussed an adaptive mechanism to decide
whether to migrate, activate an inactive copy, or reduce the
number of active copies to handle changes in the network
traffic due to variations in network traffic generated by high-
speed storage devices that are becoming the norm in the
data center. Through extensive simulations, we show that
it is possible to achieve near 47% improvement in average
delay with purely read traffic. However, for chunks that are
mostly written, the best strategy is to migrate them out of the
congested node and place them at some low utilized node.

In the future, we would like to study the scalability of the in-
teractions between the GC, LC, and virtualization engine (VE)
in a moderate to large-size data center environment. Assuming
switch-based virtualization, the LC and VE functionalities can
be integrated into a single module which avoids the overheads
associated with separate entities. Furthermore, the GC can use
a federated model whereby each pod has a lower-level GC that
communicates with its peers to keep an overall network view
consistent across all the GCs. However, this straight forward
design still has many challenges that are to be addressed to
achieve performance at scale, which we would like to explore.

In addition, we would like to integrate data migra-
tion/replication with intelligent routing through flow consoli-
dation on network links to design a storage and network-aware
consolidation vs congestion trade-off mechanism.

REFERENCES

[1] R. Pydipaty, J. George, A. K. Saha, and D. Dutta, “The effect of non
volatile memory on a distributed storage system,” in IEEE HiPCW, 2018,
pp. 11–17.

[2] S. Zheng, M. Hoseinzadeh, and S. Swanson, “Ziggurat: A tiered file
system for non-volatile main memories and disks,” in 17th USENIX
(FAST 19), 2019.

[3] M. Murugan, D.Du, and K. Kant, “On the interconnect energy efficiency
of high end computing systems,” SUSCOM, April 2012.

[4] Z. Yang et al., “Autotiering: Automatic data placement manager in multi-
tier all-flash datacenter,” in 2017 IEEE 36th (IPCCC), 2017, pp. 1–8.

[5] T. Wang, J. Wang, S. N. Nguyen, Z. Yang, N. Mi, and B. Sheng, “Ea2s2:
An efficient application-aware storage system for big data processing in
heterogeneous clusters,” in 2017 26th (ICCCN), 2017, pp. 1–9.

[6] J. Xiong, J. Li, R. Tang, and Y. Hu, “Improving data availability for
a cluster file system through replication,” in 2008 IEEE International
Symposium on Parallel and Distributed Processing, 2008, pp. 1–8.

[7] E. Zamanian, C. Binnig, and A. Salama, “Locality-aware partitioning in
parallel database systems,” in Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, 2015, pp. 17–30.

[8] Ananthanarayanan et al., “Scarlett: Coping with Skewed Content Pop-
ularity in MapReduce Clusters,” EuroSys ’11, pp. 287–300, 2011.

[9] C. L. Abad, Y. Lu, and R. H. Campbell, “DARE: Adaptive data
replication for efficient cluster scheduling,” IEEE ICCC, pp. 159–168,
2011.

[10] Xie et al., “Improving MapReduce performance through data placement
in heterogeneous Hadoop clusters,” IPDPSW 2010 IEEE International
Symposium on, vol. 9, pp. 29–42, 2010.

[11] K. Zheng, X. Wang, L. Li, and X. Wang, “Joint power optimization
of data center network and servers with correlation analysis,” in IEEE
INFOCOM, 2014, pp. 2598–2606.

[12] H. Jin et al., “Joint host-network optimization for energy-efficient data
center networking,” in IEEE IPDPS, 2013, pp. 623–634.

[13] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data
center networks with traffic-aware virtual machine placement,” in IEEE
INFOCOM, 2010, pp. 1154–1162.

[14] D. Li, J. Wu, Z. Liu, and F. Zhang, “Joint power optimization through
vm placement and flow scheduling in data centers,” in IEEE IPCCC,
2014, pp. 1–8.

[15] X. Wang, Y. Yao, X. Wang, K. Lu, and Q. Cao, “Carpo: Correlation-
aware power optimization in data center networks,” in IEEE INFOCOM,
2012, pp. 1125–1133.

[16] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica, “Delay scheduling: A simple technique for achieving locality
and fairness in cluster scheduling,” in ACM EuroSys, 2010, pp. 265–278.

[17] S. Sivasubramanian, G. Alonso, G. Pierre, and M. van Steen, “Globedb:
Autonomic data replication for web applications,” in Proceedings of the
14th International Conference on World Wide Web, 2005.

[18] M. Karlsson and C. Karamanolis, “Choosing replica placement heuristics
for wide-area systems,” in 24th International Conference on Distributed
Computing Systems, 2004. Proceedings., 2004.

[19] J. Biswas, M. Ray, S. Sondur, A. Pal, and K. Kant, “Coordinated power
management in data center networks,” SUSCOM, vol. 22, pp. 1 – 12,
2019.

[20] M. Kobayashi, S. Seetharaman, G. Parulkar, G. Appenzeller, J. Little,
J. Van Reijendam, P. Weissmann, and N. McKeown, “Maturing of open-
flow and software-defined networking through deployments,” Computer
Networks, vol. 61, pp. 151–175, 2014.

[21] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H.
Freeman & Co., 1990.

[22] H. T. Kung and J. T. Robinson, “On optimistic methods for concurrency
control,” ACM Trans. Database Syst., vol. 6, no. 2, pp. 213–226, Jun.
1981.

[23] A. Verma, R. Koller, L. Useche, and R. Rangaswami, “Srcmap: Energy
proportional storage using dynamic consolidation,” in 8th USENIX FAST,
Berkeley, CA, USA, 2010, pp. 20–20.

174

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on December 20,2021 at 10:13:11 UTC from IEEE Xplore. Restrictions apply.

