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Abstract—Applications and network services in enterprise
cloud environments have direct and indirect dependencies. The
configuration of these services varies based on business needs.
However, accurate and complete documentation of the configu-
ration may not exist at all times. Thus, failure diagnosis becomes
further complex with such unknown/uncertain dependencies. To
cope with this, some probing stations need to be installed in
suitable locations in the network to provide full monitoring
and diagnosing capability. In this paper we develop a novel
CloudMiner architecture for failure diagnosis in enterprise
clouds that consist of developing intelligent probing station
selection, failure detection and diagnosis across the network com-
ponents using the minimum set of network probes, considering
the inter-dependencies across the network services/components.
Extensive simulation results show that CloudMiner can always
identify the faulty components among the list of a small set of
suspected components, the size of which is as low as ∼3 for a
network with 460 components.

I. INTRODUCTION

A. Overview

Recently more and more enterprises are moving their ap-
plications to cloud for flexibility, scalability and lower cost [1].
The increasing dependence on computerized cloud services
requires the operators to keep the resources operational and
responsive at all times. Guaranteeing availability and services
is thus a big challenge for cloud providers. Basic network
services are often specified a lofty availability target of five
9s, i.e., 99.999 percent or more availability; which means a
downtime of less than 5.25 minutes per year. Unfortunately,
downtime incidents commonly violate such goals.

The key difficulty in achieving high availability is an
extensive set of dependencies for any given service, and
continued increase in these dependencies as services become
more sophisticated. Large cloud providers have hundreds and
thousands of applications and services. The operations of an
application may depend on multiple network services and
components spanning multiple virtual and physical hosts and
complex dependencies among these services. The identification
of these dependencies is non-trivial, error prone and may
take long time [2], [3]. Therefore, accurate and complete
documentation of the configuration may not exist at all times.
Failure detection and localization become further complex with
the increase of the complexity of the configuration and with the
lack of proper documentation. As a result, the dependencies
are often not known or fully understood and may come into
play under certain circumstances.

For a service to work properly, all the software and hard-
ware components that it depends on must also work properly.
Thus the increasing dependencies not only increase the chances

of malfunction but also expand the associated downtime be-
cause of the difficulty in identifying which component is faulty
and in what way. This makes the task of fault diagnosis very
difficult and time consuming, and hence hinders in achieving
the high availability requirements.

Towards this end, we propose a systematic failure diag-
nosis framework in an enterprise cloud environment, named
CloudMiner that can proactively discover the likelihood that
a network component is faulty or misconfigured. However,
since we do not know a priori where the problem is, an
intelligent selection of probes is crucial subject to suitable
access constraints. These represent the key research aspects for
making our CloudMiner work effectively. Fault diagnosis
comprises of two phases, monitoring to detect the misbehavior
and troubleshooting to diagnose and localize the fault. We
define a probe as a testing transaction that interacts with
multiple components and has a result of pass or fail. A
diagnosis is the analysis of the results of a collection of probes.
Some simple examples of probes are the ICMP “ping” message
and the trace-route to test the connectivity and reachability
of nodes in the network or a HTTP/SOAP request to test the
service functionality. The probes are sent from probing stations
in various locations of the network. One drawback of probing
is the additional generated traffic in the network in which has
to be minimized. In general, the testing may require multiple
probes launched from multiple “probing stations”. The proper
location of probing stations is also crucial since the location
determines what kinds of probes can be launched and what
they can access.

To this end the key contributions of CloudMiner are
as follows. First, we devise an efficient algorithm to select
minimum number of probing stations that can monitor all
components in the network. Second, we generate a minimum
set of probes that the CloudMiner needs to run occasionally
to perform detection and diagnosis of the faults in an enterprise
cloud environment. CloudMiner does this by modeling the
unknown dependencies across the network components using
uncertainty theory [4], which is a novel alternative theory of
measuring indeterminacy. Third, we perform extensive simula-
tions that show that CloudMiner provides a set of suspected
components which consists of the actual faulty component. The
size of this suspected set is as small as ∼3 for a network size
of 460 components.

B. Related Work

Various approaches have been proposed in previous works
on IP network failure detection and localization. Ozmutlu et.
al. [5] studied the probe selection problem for network moni-
toring to predict the delay between a source and a destination
as well as to identify anomalies in a network. Zheng et. al. [6]This research was supported by the NSF grant CCF-1407876.



studied the probe selection problem for detecting large-scale
router failures and localizing the failed routers. Rish et al. [7],
[8] proposed some heuristic based approaches for probes set
selection for detection and localization of failure in distributed
systems and adaptive probe selection approach to select new
probes based on the results of previous ran probes.

Various works have been proposed to solve the testing sta-
tion selection problem. References [9] and [10] use explicitly
routed probes to reduce the number of required testing stations.
However, to perform this, a source routing must be enabled
in the network which is usually disabled to prevent IP source
route attacks. Jeswani, Deepak, et al. [11] solved the minimum
testing station selection problem by a systematic reduction to
the Minimum Hitting Set problem but assumed static single-
path routing which is not practical in large networks that
mostly use dynamic routing and multiple paths for resiliency.

Different problems have been investigated using the un-
certainty theory which was founded by Liu [4] in 2007 and
subsequently studied by many researchers. Han et al. [12]
investigated maximum flow problem. Zhang and Peng [13]
discuss uncertain optimal assignment problem in which the
profit is uncertain. Chen et al. [14] present an uncertain
programming model for minimum weight vertex covering
problem.

In this paper, we assume that the network topology is
known and uses dynamic routing that selects shortest paths,
and we also assume that the source routing is disabled. We
rank potential fault locations similar to the approach that
is used in software testing by Jones and Harrold [15]. Our
approach addressed the diagnosis of network nodes, links and
services. All of the previous works assume that the services
dependencies are known which is not realistic in practice, since
the configurations are usually unknown, largely due to slow
drift of configurations from initial known configurations [16].

C. Paper Organization

The remainder of the paper is organized as follows: Sec-
tion II describes different types of network service depen-
dencies and presents concepts about uncertainty theory to
model these unknown dependencies. Section III provides the
detail overview on our CloudMiner framework. Section IV
presents our detailed experimental evaluations. We conclude
the paper in Section V.

II. PRELIMINARIES

In this section, we explain the service dependencies and
provide examples. Then, we briefly state some fundamental
concepts about uncertainty theory, which are excerpted from
Liu [4] and about submodular functions which will be used
throughout the paper.

A. Dependency Characterization

Most systems have a hierarchy of services, with higher
level services built on top of, and therefore, dependent upon,
lower level services. For example, a web application may rely
on many supporting services, such as Domain Name System
(DNS), Active Directory (AD) and Kerberos, and database
(DB). A failure of any supporting service would cause requests
to the web application to fail.

A higher level service such as a payroll service would
comprise of a web server, application, and a database. All of
these components must be installed and configured correctly
for the service to run correctly. Moreover, other system and
network settings should be configured correctly as well, such
as a server(s) operating systems, DNS records, firewall and
NAT (network address translation) rules. Another example is
MS SharePoint. Fig. 1 shows a possible configuration of MS
SharePoint 1. It comprises of web servers, application servers,
and database servers. Based on the size of the installation,
it may also require dedicated servers for search components.
Additionally, the SharePoint and many other services in a Mi-
crosoft environment heavily depend on Microsoft AD (active
directory) for user authentication and authorization. Further-
more, each service requires computing, storage, and network
resources. Some of these components are direct dependencies
while others are indirect dependencies. All components of a
service, and its hosting server(s) and the network services must
be running and configured correctly; otherwise, the service will
not satisfy the user needs.

Following [3], we represent a dependency as A → B,
where A is a depending service and B is a depended ser-
vice. A service (or an application) may have direct and
indirect dependencies. A direct dependency is required by a
service/application to perform its functionality such as a web
application For example a service A retrieves data from the
database B. If the database stops working, the application
will fail to return the required information to the client. An
indirect dependency is required by the client accessing the
service/application such as resolving the URL name of a web
application (service) at the DNS or passing through a firewall
or a proxy server to reach the service. The client can access
A after it has successfully accessed B. In [17], the authors
classified the direct dependencies as local-remote and indirect
dependencies as remote-remote.

As an example, Fig. 2 shows an example of service
dependencies. Let’s assume that the node B is an AD domain
controller server which provides network services such as DNS
and authentication. When a client A accesses an application
C, it will resolve C’s name and authenticate at B after that
it can access C, and then C would resolve D’s name at B
and then access and retrieve or update data in the DB at D. In
this case, there are indirect dependencies C → B and D → B
and a direct dependency is C → D. Notice here that B is
a depended service for both C and D, hence it has specific
settings for each one of them. In other words, malfunctioning
of B could affect both C and D or only one of them; C or
D. In the rest of the paper we use service and application
interchangeably.

The dependencies are not always as simple as shown in Fig.
2. For instance, in a Microsoft network environment, the AD
has logical and physical structures. The logical structure in-
cludes forest, domains, child-domains, organizational units and
global catalogs. The physical part includes domain controllers
and sites (locations in which the domain controllers run). There
is no correlation between these two structures. The AD Domain
Services require a DNS service, and it will automatically
create a DNS delegation and configuration when creating a

1Technical diagrams for SharePoint 2013, https://technet.microsoft.com/en-
us/library/cc263199.aspx, accessed on May 31st, 2017
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TABLE I. AD SERVICES WHICH ARE RUNNING ON THE HOST PHILADELPHIA.EXAMPLE.COM

_Service._Protocol.DnsDomainName Priority Weight Port Num Target host
_ldap._tcp.example.com 0 0 389 philadelphia.example.com
_kerberos._tcp.example.com 0 0 88 philadelphia.example.com
_ldap._tcp.dc._msdcs.example.com 0 0 389 philadelphia.example.com
_kerberos._tcp.dc._msdcs.example.com 0 0 88 philadelphia.example.com

Fig. 1. MS SharePoint Components

Fig. 2. Simple service dependencies

new domain. Based on the AD size and number of users and
services in the environment, multiple domain controllers may
be required in each domain, and multiple domains and child-
domains may exist. The DNS and the various AD services may
or may not run on the same hosts. In large enterprise networks
and data centers, identifying the services and its dependencies
is non-trivial.

The following example illustrates the combined informa-
tion that is contained in DNS records of a domain controller
named Philadelphia in the domain example.com and has an
IP address of 10.0.0.1. It registers in the DNS the following
A record philadelphia.example.com A 10.0.0.1
and SRV records in Table I. Any misconfiguration to any of
these records would have an impact on the associated services
reachability and to any other service that depends on it. Other
complex dependency scenarios may exist with services in
load balancing and load sharing configurations and in security
configurations.

B. Modeling Indeterminacy in Dependencies

Definition 1 (Indeterminacy): Indeterminacy is the phe-
nomena whose outcomes cannot be predicted in advance. Toss-
ing a coin, rolling a dice or stock prices are real examples of
indeterminacy. In order to deal with an indeterminate quantity,
there exists two mathematical systems, namely probability
theory and uncertainty theory.

Definition 2 (Probability Theory): A probability of an
event with finitely many outcomes is the number of outcomes
favorable to that event, divided by the total number of out-
comes. Thus the probability theory deals with the frequency
of outcomes of the event.

Definition 3 (Uncertainty Theory): A fundamental
premise of applying probability theory is the fact that the

estimated probability is close to the long-running frequency.
Probability theory is no longer applicable if the law of large
number is not valid. In reality, we are very often lack of
observed data in regards to a real event. That is where the
uncertainty theory comes into the picture. In such cases we
need to take some expert’s view on the outcome of an event,
which we define as belief. A belief degree is defined by the
strength of someone’s belief that the event will happen. A
belief degree is assigned a number between 0 and 1: higher
the belief degree is, more strongly someone believes that the
event will happen. Thus the belief degree is the empirical
basis of uncertainty theory, as opposed to frequency of
outcomes in case of probability theory.

Definition 4 (σ-algebra [4]): Let Γ be a non-empty set. A
collection L of subsets of Γ is called a σ-algebra if (a) Γ ∈ Λ,
(b) if Λ ∈ L then Λc ∈ L, and (c) if Λ1,Λ2, . . . ,Λn ∈ L, then⋃n
i=1 Λi ∈ L.

Definition 5 (Uncertainty space): Let Γ be a nonempty
set, and L be a σ-algebra over Γ, and M be an uncertain
measure. Then the triplet (Γ,L,M) is called an uncertainty
space.

Definition 6 (Uncertain measure): Let Γ be a nonempty
set, and let L be a σ-algebra over Γ. Each member Λ ∈ L
is called an event. A set function M : L → [0, 1] is said to be
uncertain measure if it satisfies the following four axioms:

Axiom 1: (Normality Axiom) M{φ} = 0 (for null set φ)
and M{Γ} = 1 (for the universal set Γ).

Axiom 2: (Duality Axiom) M{Λ}+M{Λc} = 1 for any
event Λ.

Axiom 3: (Subadditivity Axiom) For every countable se-
quence of events Λ1,Λ2, . . ., we have

M

{ ∞⋃
k=1

Λk

}
≤
∞∑
k=1

Mk{Λk}

These 3 axioms are intuitive and are satisfied by the
probability theory as well. The next axiom, which relates to
the product space of multiple uncertainty spaces. That is, if
Γi is the i-th uncertainty space (i = 1 . . . n), then the product
Γ =

∏n
i=1 Γi represents the basis containing an ordered set

occurrences, one from each of the n spaces.

Axiom 4: (Product Axiom) Let (Γk,Lk,Mk) be uncer-
tainty spaces for k = 1, 2, . . . The product uncertain measure
M is an uncertain measure satisfying

M

{ ∞∏
k=1

Λk

}
=

∞∧
k=1

Mk{Λk}

where Λk are arbitrary chosen events from Lk for k =
1, 2, . . ., respectively. In the next axiom, the

∧
represents the

3



minimum operator. This axiom says that the belief level in an
ordered set of events is the minimum of the beliefs of those
events.

How probabilistic measure is different from uncertainty
measure? We take an example to establish how probability
measures are different than the uncertainty measure. Assume
that we do not know whether service B depends on service
A or not. So we assume that the belief that B depends on
A is denoted as η which is equal to 0.5. Suppose we want
to find out the belief that out of 100 attempts, service B will
be always called by service A. Using the probability theory
(assuming that B depends on A with a probability of ξ =
0.5) we will find that this event happens with a probability

of
100∏
k=1

ξ = (0.5)100 = 7.8 × 10−31 ≈ 0, i.e. this event

happens with a negligible probability. On the other hand using
the Axiom 4 of uncertainty theory reveals that event happens

with a certainty of
100∧
k=1

η = 0.5. Thus probability theory and

uncertainty theory results in contradictory results. Notice that
if the dependency exists invoking A will always call service B,
if not then B will never be called. This phenomenon cannot
be modelled by the probability theory as it is not based on
frequency of outcomes.

III. CLOUDMINER : OVERVIEW AND MODEL

We represent the enterprise cloud network as a graph G =
(V, E), where V = {vi : i = 1, . . . , nV} denotes a set of
vertices which are routers and hosts, and E ⊆ V×V denotes a
set of edges that interconnect the vertices V . To represent the
service dependencies we define GD = (VS , A), where VS ⊂ V
denote the service vertices and A = {aij : i, j ∈ VS} denotes
the dependency between services. Let C = V ∪ E denotes the
set of all components for failure diagnosis.

We assume that the network topology is configured with
dynamic routing (i.e., Open Shortest Path First (OSPF) or
Routing Information Protocol (RIP)) which usually selects and
installs the shortest paths to all destinations. The dynamic
routing automatically reconverges and selects the next shortest
path if the shortest path failed. Also, we assume that the source
routing, where the sender can partially or wholly specify the
route the flow can take to the destination, is not allowed.

Fig. 3. Diagnosis Approach for CloudMiner

Fig. 3 shows the outline of our proposed CloudMiner
framework. We first discuss our approach for placing the

minimum number of probe stations assuming the network con-
nectivity is known. We next propose our approach for finding
the minimum set of probes for detecting the faulty components
with some level of certainty. CloudMiner generates these
set of probes in some periodic intervals. If one or more probes
fail, then CloudMiner generates more probes aggressively
around the suspected components, for diagnosing the faulty
components. Finally CloudMiner generates a score for the
components that are likely to be faulty. The detailed stages are
summarized in the following subsections. Table II depicts the
necessary notations.

TABLE II. TABLE OF NOTATIONS

C , Set of components
P , Set of potential probing stations
T , Set of all probes

nT , Total number of probes
ρi , Cost (or length) of running probe i

xi ∈ 0, 1 , Whether or not probe i is chosen
ti , i-th probe
bci , Uncertain measure of detecting a failure at component

c by probe ti
LOS(c) , Level of suspiciousness of component c

P(c)/F(c) , Number of passed and failed test cases corresponding
to the component c

TP /TF , Total number of test cases that pass/fail

A. Different types of probes

There are two types of probes; network probes and service
probes. A network probe tests the reachability of the destina-
tion router or host using ping or trace-route probe. The ping
probe passes if and only if there is at least one path to the
destination and the destination is alive and working properly.
The trace-route probe provides the status of every hop in the
path to the destination, and thus it checks a specific way of
reaching the destination, rather than any working path. The
trace-route probe is a slow probe because it checks the status
of each hop along the path and cannot be used to probe services
and their dependencies.

A service probe tests the reachability of the destination
service similarly, but it uses a service probe (i.e., HTTP,
FTP, SMTP). Note that in addition to the path/node issues,
a service probe would fail if any of its direct dependencies
is not working correctly. For example, if the service depends
on a database, it will fail if the database did not respond. A
service can also be tested by a probe that does not interact
with its direct dependencies. For example, a probe could be
sent to test the service up/down without interacting with the
database.

B. Probe station placement

For full diagnosing capability, we need to have a sufficient
number of probing stations in appropriate locations in the
network to ensure that failure at any component can be
detected. Fig. 4 shows the limitations of using a small number
of testing stations. Assume that we just install a testing station
at node 1. Now the probing station at node 1 can send a ping
probe to check whether node 2 is alive. On the other hand by
sending a trace-route to node 2 it can find out whether the
edge (1, 2) is working properly (if the link (1, 2) is down then
the trace-route will take the next shortest path 1 → 3 → 2 to
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reach node 2). Similarly the probe station can detect whether
the edges (1, 3) and (2, 5) are alive.

However a probe station at node 1 cannot guarantee
whether failure at edges (3, 4) and (2, 4) will be detected.
This is because there are two shortest paths (with equal costs)
between node 1 and node 4 (through nodes 2 and 3). Thus
analyzing a trace-route through a path does not reveal whether
the edges in the other path are alive. Due to this ambiguity,
detecting failures at edges (2, 3), (2, 4), (3, 4), (4, 5) are not
guaranteed by installing a testing station at node 1. Installing
another station at node 3 breaks this ambiguity for edges
(2, 3), (3, 4), as shown in Fig. 4(b). However it still cannot
resolve the issue for edges (2, 4), (4, 5). Finally Fig. 4(c) shows
that by installing probing stations at nodes 1, 3, 4, we can
indeed achieve full diagnosis capability. In the following we
propose a scheme for installing the probing stations at few
strategic locations.

(a) (b) (c)
Fig. 4. Edge coverage with different number of probing stations

Let P denotes the set of all potential probing stations
locations. Given the potential locations we select the minimum
number of probing stations, P ′ ⊆ P , such that we can
detect failures at all components in the network. We model
this problem as a minimum set cover problem, which is a
well known NP-hard problem [18]. The components that are
detected by probing any station p ∈ P are kept in a subset;
we define that p covers the components in that subset. Let
δ(p) denotes the subset of components that are covered by
the probing station p. δ(p) can be computed by finding the
shortest paths from p to each vertex in the graph G. If there are
multiple shortest paths of equal cost, then p can reliably cover
the components that fall in the intersection of these paths. We
thus add the components in the intersection to δ(p). In case
there exists a single shortest path, we add the components in
the shortest path to δ(p).

Now given the set of components C and the subsets δ(p)
corresponding to each p ∈ P , the probing station placement
problem is to find a collection of these subsets that covers
all the components. The problem can be solved efficiently
using the standard greedy heuristics for the set cover problem,
depicted in Algorithm 1. Algorithm 1 starts with an empty
set P ′ (line 1) and picks the probing station that covers the
maximum number of uncovered components at each iteration
(line 2-5). The process goes on until all the components are
covered. The greedy algorithm in Algorithm 1 is a (ln|C|+1)-
approximation of the optimal set cover problem [19].

C. Select probes for failure detection

After selecting the probing stations, we generate the set of
all possible probes T = {ti : 1 ≤ i ≤ nT } from those probing
stations. We generate the probes based on the knowledge of
G and GD, which we assume remains fixed (with some of the
dependencies as uncertain) during the period of the testing.

Algorithm 1 Installing the Probing Stations
Input: Set of components C, collection δ(P ) ;
Output: P ′;

1: P ′ = ∅;
2: while |δ(P ′)| < |C|) do
3: Select a p ∈ P that maximizes |δ(P ′ ∪ p)− δ(P ′)|;
4: P ′ = P ′ ∪ p;
5: end while
6: return P ′;

As mentioned earlier, although shortest paths are chosen
by the probes in the normal operation, in case of failures the
probes take other paths to reach the destination. Consider the
topology in Fig. 5 with shortest path routing. We have two
services s1 (web-server) and s2 (database) with dependency
s1 → s2, and three probing stations p1, p2 and p3. A HTTP
probe (p1, s1) would not detect the failure of the edge (1, 2),
because the routers will find another route through node 3.
Even if both edges (1, 2) and (3, 2) fail, the HTTP probe
(p1, s1) would find a route through 4 and would still pass.
However, if we are certain about the existence of the depen-
dency s1 → s2, then the HTTP probe (p1, s1) would detect
any failure to any of the components {1, 2, 5, s1, h1, s2, h2}
even if certain edges fail. For example, in Fig. 5 with k = 3,
the k-shortest paths of the probe (p1, s1)={〈 1, (1, 2), 2,
(2, h1), (s1, h1), s1, h1 〉, 〈 1, (1, 3), 3, (3, 2), 2, (2, h1),
s1, h1 〉 〈 1, (1, 3), 3, (3, 4), 4, (4, 2), 2, (2, h1), (s1, h1),
s1, h1 〉 }. We notice that the intersection of the three probes
is {1, 2, (2, h1), (s1, h1), s1, h1}, thus, we are confident that
the probe (p1, s1) will always detect any failure in these
components (with some certainty) in the intersection.

On the other hand, a trace-route probe (p1, s1) will detect
a failure at the edge (1, 2) as mentioned in section III-B.
However, trace-route probe (1, 4) cannot guarantee detecting
failures in the edges (3, 4) and (2, 4), due to the presence of
multiple equal-cost shortest paths.

In light of the above, we first generate the k-shortest paths2

from each probing station p ∈ P ′ to all other vertices (routers,
hosts, and services) in the graph G. For any probe between
any probe station and network vertices, the components that
belong to the intersection of k-shortest paths can be detected
with some level of certainty. In case of trace-route probes, a
probe can detect components that are on the unique shortest
path. Otherwise in case of multiple shortest paths (with equal
cost), the trace-route probe detects failures at the components
that fall in the intersection of these paths. The uncertainty
measures corresponding to the components are assigned based
on the inter-dependencies between the services. Networks, data
centers, and services configuration usually follow regulations
and industry best practices. We will assume that the certainty
is derived based on these best practices. In addition to that
the inter-dependency information in between the services can
also be derived using tools like NSD-Miner [2], [3]. However,
the detailed procedure of finding the uncertainty measures
are beyond the scope of this paper. The network probes
are constructed from each probing station to all non-service
vertices, whereas the service probes are constructed from the
probing stations to all services.

2k can be any number
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Fig. 5. An illustrative example of service dependency and probe selection

Next we select the minimum set of probes for network
monitoring and failure detection such that if any component
c ∈ C failed, at least one probe will fail. Suppose that we have
a total of nT probes, and xi is a binary variable which is 1
if probe ti is selected and 0 otherwise. Also assume that bci is
the uncertainty measure of detecting a failure at component c
by probe ti. Then the total certainty is simply the maximum
over all the probes selected, which can be expressed as:

Rc = bc1x1

∨
bc2x2

∨
bc3x3 . . .

∨
bcnT

xnT
=

nT∨
i=1

bcixi (1)

We assign each probe ti with a price function ρi which
depends on its length, as well as the type of the probe (i.e.
HTTP probe or trace-route probe). Running trace-route probes
result in higher cost/overhead than the HTTP probes. With this
we define the following optimization problem which selects the
set of probes that minimizes the cost of running them, while
ensures that the reliability index for detecting any component
is more than a predefined threshold α1.

Min
nT∑
i=1

ρi.xi subject to (C1): Rc ≥ α1 ∀c ∈ C (2)

For ρi = 1 and bci = α1 = 1, Problem 2 becomes a min-
imum set cover problem which is NP-hard. We thus propose
the following heuristic. Let χ(T ) denote the total uncertainty
measure of detecting failures across all the components for a
probe set T , i.e.,

χ(T ) =
∑
c∈C

∨
ti∈T

bci (3)

Then we can devise a greedy heuristic shown in Algorithm 2.
Here T is the set of all possible probes that the test stations
can run. Initially we start with an empty set T (line 1) and
iteratively add the probes in T which minimize the cost of
running them divided by the reliability gain (line 2-4).

Lemma 1: With bci = α1 = 1, problem 2 becomes a min-
imum weighted set-cover problem. In that case Algorithm 2
returns a set cover of weight at most 1

Υ times that of the
optimal, where Υ is the size of the largest subset size.

Proof: When bci = 1, χ(T ∪ ti) − χ(T ) generates the
number of components in ti that are not yet covered by T . Thus
Algorithm 2 becomes the greedy solution for the minimum set
cover problem as mentioned in [20], which is proven to be at
most 1

Υ times that of the optimal.

Algorithm 2 Minimum Probe Selection
Input: Set of components C, Probe set T ;
Output: Selected set of probes T ;

1: T = ∅
2: while Constraint (C1) is not satisfied do
3: Select a probe ti ∈ T that minimizes the price per

reliability gain, i.e. ρi
χ(T∪ti)−χ(T ) ;

4: T = T ∪ ti;
5: end while
6: return T ;

D. Select more probes aggressively for diagnosing the failures

The selected probes are run periodically; the diagnosis
phase starts whenever one or more probes fail. The compo-
nents which are covered by the failed probe(s) are marked
as “suspected” components. Assume that ζ is the set of the
suspected components, and S is the set of probes which covers
at least one of suspected components with some certainty. We
next run more probes aggressively that are targeted only for
the components in ζ only. We define the following reliability
index Γc corresponding to component c which has stricter
requirement than that in equation(1):

Γc = η-max
(
bc1x1, b

c
2x2, b

c
3x3 . . . b

c
|S|x|S|

)
(4)

With this we define the following optimization problem which
selects the minimum set of probes that ensure that failure at
each component in ζ is detected by at least η probes with an
uncertainty measure more than α2.

Min
∑
ti∈S

xi subject to (C2): Γc ≥ α2 ∀c ∈ ζ (5)

The approximation algorithm corresponding to Problem 5 is
identical to Algorithm 2 and thus is ignored for brevity.

E. Ranking of suspected nodes

The pass/fail information of the probes from different probe
stations along with the components that are executed by each
test cases, are next used to narrow down the problematic
components. Due to the lack of accurate and ambiguous
dependency information, and because of the fact that a test
can fail due to any problem somewhere down the dependency
chain, accurately finding out the problematic components are
non-trivial. We thus use a metric named likelihood of sus-
piciousness (LOS) of a components c being problematic as
follows:

LOS(c) =
%passed(c)

%passed(c) + %failed(c)
=

F(c)/TF
P(c)/TP + F(c)/TF

(6)

where P(c) and F(c) are the number of passed and failed
test cases corresponding to the component c respectively, and
TP and TF are the total number of test cases that pass and
fail respectively. The intuition behind the LOS calculation
is that the components that are executed primarily by failed
test cases are highly suspicious as being faulty, whereas the
components that are executed primarily by passed test cases
are not likely to be faulty. Notice that due to uncertainties
in calculating dependencies and ambiguities, a passed probe
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does not always mean that all the components under that
probe is well-configured. That is where the relevance of
likelihood arises. Such matrices are extensively used and tested
in localizing faults in software [15], [21], [22], however,
their effectiveness in locating the failures/misconfigurations in
enterprise environment is quite new.

Thus the LOS specifies a ranking of components that are
under scanner of suspicion. Using the LOS score, the set of
components that have the highest suspiciousness values are
first considered by the operator for checking the failures. If the
highest LOS component is configured properly, the remaining
components should be examined in the sorted order of the
decreasing suspiciousness values.

TABLE III. SUSPICIOUSNESS SCORE FOR THE TOPOLOGY IN FIG. 5

Components Probes LOS1 2 3 4 5 6 7
(2, 4) • 0.00
1 • • • 0.00
2 • • • • 0.67
3 • • • 0.75
4 • • • 0.00
5 • • • 0.00
h1 • 0.00
(h2, 5) • 0.00
(1, 2) • 0.00
(2, h1) • 0.00
s2 • 0.00
h2 • 0.00
(s1, h1) • 0.00
(s2, h2) • 0.00
(3, 4) • 0.00
(2, 3) • 1.00
(2, 5) • 0.00
(1, 3) • 0.00
s1 • 0.00
(4, 5) • 0.00
Pass (P)/Fail(F) P P P P F P P

Table III illustrates an example for depicting the suspi-
ciousness, using the network topology of Fig. 5. Assume
that there are seven probes for monitoring all components. In
Table III (•) denotes the components that are covered by the
corresponding probes. One component is randomly selected
as failed. As a result, one probe fails. The LOS scores are
calculated accordingly that help localizing the failure. The
table shows that the components that are not suspicious has 0
score and do not need fixing. The components with higher LOS
are most likely failed components. Whereas, the components
that are less scores have passed some probes and therefore are
likely to be okay.

IV. EXPERIMENTAL EVALUATION

Simulation environment: To evaluate the performance of
CloudMiner we used BRITE [23] to randomly generate
network topologies with 10, 20, 50, and 100 routers as shown
in Fig. 6. In BRITE generated networks, the number of edges
is double the number of nodes. We generate additional nodes
for services and hosts and connect them to the network. In
this evaluation, we chose to add 40% of the number of routers
as hosts. Each host runs one service. We randomly connect
the hosts to one of the routers and each host connects to its
service. We also generate a directed graph to represent the
services’ dependencies with random weights in the range (0,
1) on the arcs to represent the uncertainty of the dependencies.
For example, the network with 10 routers has 20 edges to
interconnect the routers, 4 services, 4 hosts, 4 edges to connect

(a) (b)

(c) (d)
Fig. 6. Illustration of the topologies with (a) 10, (b) 20, (c) 50, and (d) 100
routers used in the simulations.

services to hosts, and 4 edges to connect hosts to a network
router. Table IV summarizes the configuration of the evaluation
cases, where |N | and |E| denote the number or routers and
edges of the BRITE topology, |H| denotes the number of hosts,
|S| denotes the number or services, |(s, h)| and |(n, h)| denote
the number of service-to-host edges and host-to-network edges,
and |C| denotes the number of components. The price function
of the probes are assumed to be equal to their length for
simplicity.

TABLE IV. EVALUATION CASES

Case |N | |E| |H| |S| |(s, h)| |(n, h)| |C|
Topo-1 10 20 4 4 4 4 46
Topo-2 20 40 8 8 8 8 92
Topo-3 50 100 20 20 20 20 230
Topo-4 100 200 40 40 40 40 460

Number of probing stations: We assume that we can
connect a probing station to each BRITE network router. Thus,
we start the evaluation with |P | = 10, 20, 50, 100. Fig. 7 shows
the sizes of the initial set of probing stations and the minimum
set of probing stations that are capable to detect failures in any
component in the generated networks. From this figure we can
observe that by using intelligent probe station placement, we
can reduce the number of probe stations by ∼2-17 times.

Number of probes: After selecting the minimum number
of probing stations, we ran Algorithm 2 assuming α1 = 0.8 to
select the minimum number of probes for failure detection.
We compare the number of probes for the minimum and
the maximum number (i.e. probing stations at all possible
locations) of probing stations. Obviously, using more probing
stations reduces the number of probes, as shown in Fig. 8.
However, the gain in number of probes may not be worthwhile.
For example in case of topology-4, an increase in number of
probing stations from 6 to 100 reduces the number of probes
by ∼27%.

Fig. 9 shows the number of probes for α1 = 0.8
1.0, i.e., for partial and full knowledge regarding the inter-
dependencies. Obviously, the number of probes is lower in the
latter case because of exploiting the complete knowledge of
dependencies.
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Fig. 7. Min vs. all probing stations Fig. 8. Min probes with min vs. all probing stations Fig. 9. Min num of probes with different certainty

Fig. 10. Number of components within ζ, with LOS score above 0.75, and
with LOS equal to 1.

Number of suspected components: Next we introduce a
random fault within the network components and computed
their LOS scores assuming α2 = 0.8. We have considered
single-fault scenario for simplicity. We repeated this process
50 times and recorded the suspected components. Fig. 10
shows the comparison of the number of suspected components
in ζ, the number of components whose LOS score is more
than 0.75, and the number of components with LOS equal
to 1. From Fig. 10 we can observe that the diagnosis phase
reduces the number of components further by ∼2-3 times.
We have also observed that the failed component is always
in the suspected components and has an LOS equal to 1. We
can also observe that the number of components with LOS
equal to 1 is as low as ∼3 for topology-4 that consists of
a total of 460 components. This shows that CloudMiner
can effectively diagnose the failed components in an enterprise
cloud environment.

V. CONCLUSION

In this paper, we have addressed the problem of selecting
the minimum number of probing stations in an enterprise cloud
environment and studied its impact on selecting the minimum
number of probes for failure detection and diagnosis. Also, we
studied the impact of having partial knowledge of the inter-
dependencies among the network services and how to model it
using a novel uncertainty theory. Further, we defined the failure
localization problem in the presence of uncertainties and
proposed an efficient heuristic algorithm for solving it. In the
future, we would like to emulate such diagnosis scenarios in
Common Open Research Emulator (CORE) [24]. In this way
we will implement and validate our detection and localization
solutions in an cloud environment that is closer to real-life.
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