
DC-PoET: Proof-of-Elapsed-Time Consensus with
Distributed Coordination for Blockchain Networks

Amitangshu Pal and Krishna Kant
Computer and Information Sciences, Temple University, Philadelphia, PA 19122

Abstract—Blockchain technology has gained a significant
amount of interest in recent years due to its decentralized control,
immutability, transparency and robustness. In this paper we
propose an enhancement to BlockChain built using proof-of-
elapsed-time (PoET) consensus protocol to further increase its
efficiency and transaction throughput. The proposed scheme,
called DC-PoET, exploits distributed coordination (DC) among
the nodes to avoid unnecessary transmission of conflicting blocks
inspired by a similar mechanism in WiFi networks. We show that
DC-PoET can support around 465 transactions per seconds with
30 MB block size, and even higher for larger blocks. We have also
developed detailed analytical modeling for the performance of
DC-PoET scheme using a two-dimensional Markov Chain, along
with the validation of such modeling using Matlab simulations.
The security analysis of our proposed scheme is also discussed.

I. INTRODUCTION

The Blockchain (BC) technology was originated with the
goal of developing a cryptocurrency (bitcoin) not controlled
by any central authority. The technology has since attracted
a lot of interest in building decentralized systems including
financial, manufacturing, transportation, agriculture, supply
chain etc. Thus, the performance of BC is becoming more
crucial, which is a topic that we address in this paper.

Related works and their limitations: A BC network can
be either permissionless or permissioned; in a permissionless
network such as those for cyptocurrencies, anyone can join
the network and issue transactions. Traditionally, such net-
works have used a “proof-of-work” (PoW) mechanism (such
as solving a mathematical puzzle) to decide who gets to
create the next block [1]. In a permissioned network, the
identity of each participant is known and can be authenticated
cryptographically which in turn can be used to control who
can (a) read and append to ledger data, (b) issue transactions,
(c) administer participation in the BC network.

As more applications are built on top of blockchain based
systems, performance becomes a major bottleneck both in
terms of throughput and latency of individual transactions. A
PoW based consensus mechanism for such applications is not
only unconscionably wasteful of computing power and energy
but also unnecessary. Recently many other mechanisms have
been offered as more efficient alternatives to PoW, such as
proof-of-stake (PoS), proof-of-burn, “useful” proof of work,
combined PoS and PoW, proof-of-space etc. However, the
throughout limitations and higher energy consumption remains
a key challenge of PoW consensus and its variants.

Another approach is to follow some variant of Byzantine
fault tolerance (BFT) [2], usually the Practical BFT (PBFT)

[3] where by disallowing equivocation, t faults can be tolerated
with only 2t + 1 nodes. Unlike PoW based protocols, BFT
protocols assume that the number of participants are known,
and so are applicable for permissioned blockchains. BFT also
involves 3 rounds of communications and thus does not scale
well in number of participants [4].

Another approach, proposed by Intel to securely generate
a random waiting time and then choose a node with the
smallest waiting. The resulting proof-of-elapsed-time (PoET)
consensus mechanism requires a trusted execution engine
(TEE) [5] to execute critical parts of the protocol to ensure
fairness and block all potential pathways of cheating. Such
a mechanism is well suited for permissioned chains where
“bad actors” who might go to extreme lengths to break the
security (e.g., by modifying hardware) can be tracked. While
PoET resolves the energy consumption problems of PoW
based mechanisms, the throughput is still limited by heavy
duty processing and conflict resolution requirements.

DC-PoET and our contributions: In this paper, we en-
hance the PoET scheme using mechanisms similar to those
for distributed arbitration in wireless networks such as WiFi
and show that the improved system significantly reduces the
probability of orphan blocks and also improves the throughput.
In this context our main contributions are as follows. First, we
develop a proof-of-elapsed-time with distributed coordination
(DC-PoET) based consensus mechanism that can achieve (a)
high throughput that is limited by the validation speed of
the network, with (b) low orphan risk that is limited by the
network latency, along with (c) low energy usage and (d) high
scalability. Second, we developed a detailed analytical model
of the DC-PoET scheme using a two-dimensional Markov
chain model and validated it with Matlab simulations. Through
simulations we have shown that DC-PoET can achieve a
transaction throughput of ∼465 transactions per seconds with
a block size of 30 MB and even more with larger blocks. The
orphan risk of DC-PoET also remains low and independent
of block size, which is a major advantage of DC-PoET as
opposed to other consensus mechanisms. Third, we have
conducted detailed security analysis of DC-PoET both in case
of uncompromised TEEs, along with the scenarios where some
TEEs are compromised. To the best of our knowledge this is
the first proposal that provides comprehensive blockchain con-
sensus protocol based on distributed coordination mechanism
inspired by WiFi along with its performance/security analysis.

Paper organization: The outline of the paper is as follows.
Section II describes some details of PoET and the SGX
security enclave. Section III briefly describes the distributedISBN 978-3-903176-39-3 c© 2021 IFIP

20
21

 IF
IP

 N
et

w
or

ki
ng

 C
on

fe
re

nc
e

(IF
IP

 N
et

w
or

ki
ng

) |
 9

78
-3

-9
03

1-
76

39
-3

/2
1/

$3
1.

00
 ©

20
21

10
.2

39
19

/I
FI

PN
ET

W
O

RK
IN

G5
20

78
.2

02
1.

94
72

78
7

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on July 22,2021 at 13:48:09 UTC from IEEE Xplore. Restrictions apply.

coordination mechanism and its application to improve PoET.
Section IV presents a mathematical modeling of the proposed
mechanism. Section V describes the performance evaluations
of DC-PoET, along with its security and robustness. Finally,
section VI concludes the paper.

II. TRUSTED COMPUTING AND POET CONSENSUS

A. Trusted Execution Environments

Given the vulnerability of the Operating System (OS) to
attacks due to weak security model and/or bugs in the OS
code, it is usually not possible to ensure the integrity or
trustworthiness of the OS or the applications supported by
it. The trusted execution environment (TEE) address this issue
by creating a secure container or “enclave” to both hold secret
data such as keys and code/data used in trusted execution. The
enclave is carved out of a memory region at boot time and is
isolated from direct access to or by the OS. Both the ARM
and x86 ecosystems provide provide such features, namely,
ARM Trustzone, AMD SEV (secure encrypted virtualization),
and Intel SGX (Software Guard Extension) [6].

TEEs are designed for secure remote computation where the
owner of code (and possibly data) wants to execute the code
on a remote machine owned by an untrusted party with some
integrity and confidentiality guarantees. For example, a remote
node with Intel SGX establishes a secure container, called en-
clave, into which the remote code/data is loaded and executed
without perturbation from or disclosure to the machine owner.
SGX relies on software attestation via cryptographic signature
that certifies the hash of the secure container’s contents. Also,
all of the enclave memory contents remain encrypted and so do
all data transfers over the busses, so that any snooping does not
offer valuable data. Execution flow can only enter an enclave
via special CPU instructions similar to those for switching
from user mode to kernel mode. Enclave execution always
happens in protected mode, in ring 3, and uses the address
translation set up by the OS kernel and hypervisor. SGX
also uses cryptographic protections to assure confidentiality,
integrity and freshness of the enclave pages while they are
stored in untrusted memory. All IO and communications from
and to the enclave is authenticated, encrypted and can be
further protected by using trusted IO drivers.

B. SGX Based Proof of Elapsed Time

SGX provides BlockChain support through the “Sawtooth
Hyperledger” that implements PoET based consensus protocol,
designed for permissioned blockchains. A Sawtooth partici-
pant first must join the network and is authenticated via the
PKI mechanism (private/public key pair). The key aspect in
PoET is to securely generate a “waiting-time” within SGX
for which the node must wait before attempting to commit a
block. As such, PoET1.0 is defined to generate waiting-time
with shifted exponential distribution given by [7]:

waitTime = MinimumWait− LocalMean. log(d) (1)

where MinimumWait is a constant system parameter that
represents the shift, LocalMean is the mean of the exponential

distribution, and d ∈ (0, 1), the uniformly distributed random
number. The LocalMean is kept roughly proportional to the
network size so as to maintain a constant inter-block interval
as the network grows.

Although PoET specification ties itself to the shifted ex-
ponential distribution in couple of places (e.g., generation of
waiting time, estimation of population, etc.), it is easy to alter
it to work for any distribution. For simplicity in the analysis,
we assume a uniform distribution (with specified minimum
and mean) in this paper. We believe that the resulting limit
on waiting time and uniformity are helpful in permissioned
networks. Like other consensus mechanisms, in PoET also the
conflicting version of BCs (i.e. “forks) can be resolved using
the longest chain rule.

C. Security of SGX and PoET
Since its launch in 2015, the security of SGX has been

examined extensively and numerous side-channel attacks have
been explored [8], [9]. Unfortunately, the standard security
analysis (e.g., resistance against chosen plaintext attacks) pro-
vides no information about the side-channel attack possibilities
that exist with any cyber system. For example, the timing
analysis and the power trace of the device computing the
cryptographic operation can leak the secret key [8], [9]. Also,
by monitoring cache usage, it is possible to effectively “read
the memory” of another process since the read-latency depends
on the cache contents, and there is dependence on this between
different processes [10]. Such an attack does not require
physical access to the machine running the victim code but
do require co-location of attacker and the victim.

In view of this, it is important to make a protocol like
PoET tolerant of a few nodes. Reference [7] has attempted to
quantify the number of SGX based PoET nodes that need to
be compromised in order to compromise the entire distributed
system. It banks on the idea that a statistical test (such as
the z-test used by PoET) is necessarily limited in its ability
to determine whether the samples come from the assumed
waiting time distribution. It shows that by compromising
a fraction θ (log logn/ log n) of the n PoET nodes it is
possible for the bad nodes to put blocks as fast as the fastest
node. It is hard to pin down the precise number, but it can
be less than the 50% compromise needed with PoW based
blockchain. Although the practicality of coordinated attack
by many compromised nodes in a permissioned BC remains
unclear, it is concluded that a lower variance of waiting time
distribution would require a higher level of collusion though
at the cost of more collisions [7].
D. Issues with PoET Based BlockChain Consensus

Because of the fully distributed operation, conflicting up-
dates to local BCs by different nodes are inevitable in PoET.
However, such a scheme wastes both processing and communi-
cation resources due to “orphan blocks”, i.e., conflicting blocks
that are eventually rejected (or replaced by other blocks). The
primary reason for this the transit/processing delay of blocks,
and increases with the increase in network size and the physi-
cal extent of the network. The signal propagation time is 5 µs

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on July 22,2021 at 13:48:09 UTC from IEEE Xplore. Restrictions apply.

SIFS

SIFS SIFS SIFS SIFS SIFS SIFS

DIFS

DIFS DIFS

DIFS DIFS RTS RTS

RTS

DATA DATA

DATA

CTS CTS CTS ACK ACK

NAV (RTS) NAV (RTS) NAV (RTS)

D

C

B

A

Elapsed Residual

Fig. 1: IEEE802.11 DCF mechanism.

per Km in fibre cables, and the cables may take roundabout
paths to distant places. So, a one way propagation delay within
USA mainland could be 30 ms or more. Mathematically, we
express the transmit time can be expressed as

δ = δ0 + zB (2)

where δ0 is the network latency1, whereas B is the number
of bytes in the block and z is an empirical constant. Similar
models are used in [11], [12]; the value of δ0 is assumed
to be 1 second and 10 seconds in [12] and [11] respectively,
however, can be even lower for permissioned blockchains. The
probability of orphan block generation is the probability that
some other node in the network commits another block into
the blockchain within the transit time, which is expressed by

Porphan =

∫ δ

0

1

T1
e
t
T1 dt = 1− e−

δ
T1 = 1− e−

δ0+zB
T1 (3)

where T1 is the average block interval (of the network).
Notice that Porphan is a function of B, i.e. higher is the

block size, higher will be the possibility of orphan risk. The
primary goal of our consensus mechanism is to ensure that
Porphan is independent of block size.

III. EXPLOITING DISTRIBUTED COORDINATION IN
BLOCKCHAIN

Distributed coordination function (DCF) is the fundamental
medium access control (MAC) technique of the IEEE 802.11-
based WLAN standard (including WiFi). We describe this in
the following and show how similar ideas can be exploited to
make PoET more efficient.

A. IEEE 802.11 DCF

In IEEE 802.11 DCF when a station wants to transmit, it
first checks whether a channel is idle for a Distributed Inter-
Frame Space (DIFS) period. If the channel is not idle (either
immediately or during the DIFS), it senses the channel until
it becomes idle for a (DIFS) period. At this point the station
goes into random backoff, and when the backoff timer expires,
it transmits. The purpose of this random backoff is to avoid
collision among multiple contending stations. The backoff
timer freezes whenever the channel is sensed to be busy, and
resumes after a DIFS period from the time when the current
transmission finishes. If a packet is received successfully by

1The network delay is the time taken by a (short) message to travel from an
originator to any other active nodes in the overlay network through flooding.

the receiver, the receiving station sends back an ACK after a
short inter-frame space (SIFS) period.

DCF adopts an exponential backoff scheme, where the
backoff timer is randomly chosen between 0 to w − 1 with
w being the contention window size. In the beginning w is
set to the minimum contention window size, i.e W0; after
every unsuccessful attempt, the window size is doubled up
to a maximum value of Wm.

In addition the above-mentioned basic backoff based mech-
anism, DCF also provides an optional RTS-CTS based hand-
shake, which is depicted in Fig. 1. In RTS-CTS based
handshake mechanism, if a station wants to transmit, it waits
until the station is sensed idle for a DIFS, goes to random
backoff and when the backoff timer expires, transmits a short
frame called request to send (RTS). After receiving the RTS,
the receiving station waits for a SIFS period, and then sends
a clear to send (CTS) frame. After receiving the CTS, the
transmitting station waits for a SIFS before sending the actual
data packet. Both RTS and CTS carry the length of the packet
to be transmitted, thus the listening stations can update their
network allocation vector (NAV) which contains the time the
medium will remain busy. For example in Fig. 1, station C
starts its NAV after receiving RTS from stations A and D.

In the following, we use some of these ideas to generate
two variants of PoET, collectively called DC-PoET, or PoET
with distributed coordination. These two variants differ in the
way they resolve conflicts, we describe them as DC-PoET1

and DC-PoET2 in sections III-B and III-C respectively.

B. DC-PoET1 with exponential backoff

The key proposed change to PoET protocol is the use of
equivalent of RTS before the block transmission. In particular,
whenever the wait-timer expires, a node sends an RTS to all
other nodes. The reception of RTS by a node is a cue to
other nodes not to send a conflicting block and thus reduce
chances of orphan block transmission and processing. The
RTS originating node sends the block shortly thereafter with-
out any CTS-like exchange. As discussed in section III-D, we
deliberately keep the RTS processing lightweight, so that its
overall transit delay δRTS is close to the (rather large) assumed
network delay δ0. In the following, we draw further parallels
between wait-timer in PoET and DCF, and characterize the
DIFS, SIFS and NAV periods for DC-PoET.

In DC-PoET1 the MinimumWait is equivalent to the DIFS
period. Thus, generating the waitTime from the enclave is
equivalent to waiting for a DIFS period along with a random
backoff, i.e. in DC-PoET1 the expression of wait-time is:

waitTime = MinimumWait︸ ︷︷ ︸
DIFS period

+ randomBackoff︸ ︷︷ ︸
Backoff timer

(4)

Before committing a block into the chain, each node first waits
for a DIFS period, if it does not receive anything during this
period, it waits for a random backoff randomBackoff. When
the backoff timer expires, it transmits the RTS that contains
the NAV. In DC-PoET1 the NAV is set to the maximum block
transit time. The nodes that receive the RTS freeze the timer

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on July 22,2021 at 13:48:09 UTC from IEEE Xplore. Restrictions apply.

RTS

RTS

NAV(RTS)

BLOCK RTS

NAV(RTS)

SIFS SIFS

SIFS

C
on

fli
ct

Residual

Elapsed

A

B

Others

DIFS

DIFS

DIFS

Fig. 2: An illustration of DC-PoET1 mechanism.

and stay silent during the entire NAV. Unlike 802.11 DCF,
there is no CTS and ACK exchanges in DC-PoET1.

If the committed node does not receive RTS from any
other nodes within the SIFS period (which is equal to the
upper bound of δRTS), then it commits the block into the
blockchain2. If it receives one or more RTS during the SIFS
period, it leads to a conflict (which is equivalent to collision
in 802.11 DCF). Notice that the probability of conflict in the
first attempt is much less than that of PoET or other consensus
mechanisms as δRTS << δ. In case of a conflict the node
goes in random backoff with a contention window equal to
the double of the current contention window (until the window
size equals to Wm), and after that sends another RTS message.
In this way DC-PoET1 tries to resolve the conflicts among the
nodes; after N attempts if the conflict is not resolved, then the
conflicting nodes commits their blocks into the blockchain,
which results in forks; however, such cases arises with very
little probability. Also unlike 802.11 DCF, after a conflict the
conflicting nodes do not start another DIFS, rather directly
start the backoff timer.

The entire scheme is depicted in Fig 2. In this figure
the RTS from nodes A and B results in a conflict in the
first iteration, however the conflict is resolved in the next
iteration. Other stations that receive RTS message from A
and B remain silent for the entire NAV during the course of
the block transmission. Also notice that in DC-PoET1 if the
RTS transmission is a success, then the following committed
block transmission will be conflict-free, which is not the case
of PoET. Thus the effect of block size does not affect the
possibility of conflict in DC-PoET1.

C. DC-PoET2 with TEE timestamp

To to reduce the orphan risk further, we propose another
variant of DC-PoET, called DC-PoET2, that works as follows.
The key issue is the expiry of wait-timers of two nodes within
the δRTS time, which will result in a conflict. Since the RTS
carries the wait-certificate, the intermediate nodes can use it
as follows: if (a) this is the first RTS in that round, or (b) its
recorded waiting time is less than the previously forwarded
RTS of that round, then forward the RTS. Thus, at the end of
the RTS propagation, the RTS with minimum waiting time
will reserve the NAV time for its sender. Note that even if
multiple nodes send their RTS within δRTS, the one with
minimum waiting time will win. In this case the conflict

2Notice that due to network uncertainty, the RTS transmitted from an
originator may not be received by some nodes, which may result in a fork;
however, such cases will be limited in normal situation.

happens when the timer of two nodes will generate the exact
time, the possibility of which is almost zero.

D. Details of Changes to PoET Protocol
To avoid the misuse of RTS or its use as an attack vehicle,

it too must be properly authenticated and protected by SGX.
In particular, the generation of RTS follows the following
protocol:
1) Enter PoET SGX enclave, assemble a proposed block

(outside the enclave).
2) Generate a wait certificate containing the mean wait

time (“LocalMean”), the generated (random) wait time,
BlockID, BlockNumber, and ValidatorID.

3) Sign wait certificate with the private key of originating SG
enclave (PSK) and wait for the generated random time
(outside the enclave).

4) When the timer expires, broadcast 〈waitCertificate, RTS,
PPK〉 over the P2P overlay network. Here PPK is the
public key corresponding to the private key PSK.

5) Exit PoET SGX enclave.
In the above we still prepare the block as in the original
protocol, but do not compute its signature for now. We will
do that while waiting for SIFS period after sending RTS.

The block is assigned a BlockID and a BlockNumber. Al-
though the latter is chosen locally by each node, it is intended
to be eventually consistent with the global BlockNumber, or
the Blockchain head. Both are sent out with RTS so as to
unequivocally tie RTS and the block transaction that will come
later. As in PoET, the enclave stores the wait certificate and
the BlockNumber in a table so as to tie the two together. The
certificate will be needed for block transmission.

When another node in the network (the “validator”) receives
the RTS message, it checks conducts the following checks
before propagating it to its neighbors.
1) Verify the PPK belongs to a registered miner by checking

the EndPoint registry.
2) Verify that the BlockNumber corresponds to the highest

block number that the validator has. This ensures that a
node does not accept bogus RTS messages.

3) Verify that the “LocalMean” in the wait certificate is cor-
rect by comparing against LocalMean computed locally.

4) Verify the sender has been winning elections according to
the expected distribution using the z-test. This test thwarts
early sending of RTS.

5) Exit PoET SGX enclave.
After sending the RTS, the originator does the following:

1) Wait for SIFS period (outside SGX) and then enter PoET
SGX enclave.

2) Generate blockDigest of the block by hashing the block
with SHA256 and then encrypting it with OSK. This is
originator’s private key (different from that of the SGX
hosting it).

3) If an RTS is received by the originator during the SIFS
period, restart the wait timer with doubled time period
(exponential backoff). If RTS is received by another node
that is waiting for its timer to expire, its timer is frozen.

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on July 22,2021 at 13:48:09 UTC from IEEE Xplore. Restrictions apply.

(a) (b)
Fig. 3: Comparison of Porphan for PoET and DC-PoET with (a) z = 17 s/MB
and (b) z = 1.7 s/MB respectively. The values (x, y) within the brackets are
T and δ0 respectively. Notice that the green line is not visible, as the cases
(10 mins, 10 s) and (1 min, 1 s) become identical because of same δ0

T
.

4) Retrieve the wait certificate for the last BlockID and add
to it transaction hash and the blockDigest.

5) Sign wait certificate with the private key of originating SG
enclave (PSK).

6) When SIFS timer expires, broadcast 〈waitCertificate, sig-
nature, block, OPK, PPK〉 over the P2P overlay network.
Here PPK and OPK are the public keys of the originating
SGX enclave and and miner respectively.

7) Exit PoET SGX enclave.
When a validator receives the block, the actions are the same

as in normal PoET except for two differences: (a) the check
on LocalMean is skipped since it is already done in step 3
of RTS processing, and (b) if no prior RTS was received, the
block is rejected. One of the steps in block handling procedure
is to check if a block has arrived too early, and if so, hold it
for some time.

E. Orphan Block Probability in DC-PoET

Given the small size and low processing cost of RTS, the
orphan risk of the DC-PoET scheme is given by

PMorphan = 1− e−
δ0
T2 (5)

where T2 is the average block interval. Notice that PMorphan

is independent of B, and thus is only limited by the network
latency.

We now compare the orphan risk of PoET and DC-PoET
mechanisms using equation (3)-(5). Assume that T1 and T2

are the block intervals of PoET and DC-PoET respectively.
With the same level of orphaning risk, T1 = T2

(
1 + zB

δ0

)
;

thus, DC-PoET scheme reduces the average block time by a
factor of

(
1 + zB

δ0

)
, i.e. the transaction rate is also improved

by that amount. Assuming a block size B = 35 MB, z = 17
s/MB and δ0 = 10 s [11], the transaction rate of DC-PoET
scheme is increased by ∼60 times. This improvement will be
even more with lower δ0 and larger B.

Fig. 3(a) shows the comparison between PoET and DC-
PoET where z is assumed to be 17 s/MB. The maximum value
of block interval T is kept as 10 mins, which is the average
block interval of Bitcoin network. The average transaction size
is assumed to be 571 bytes [13]. From this figure we can
observe that in PoET the Porphan goes beyond 10% if the

block size exceeds 3 MBs. On the other hand, in case of DC-
PoET the Porphan is independent of block size and remains
at 1.6% when T and δ0 are 10 mins and 10 secs respectively.
If δ0 is reduced from 10 secs to 1 sec, the the average block
time can be reduced to even 1 min without compromising the
orphan risk. On the other hand, reducing T to 5 mins in DC-
PoET increases the orphan risk to ∼3.5%, but still remains
much lower than PoET.

Fig. 3(b) shows the performance with z = 1.7 s/MB, which
is much faster block validation rate as compared to the Bitcoin
network, and is more applicable for permissioned blockchain.
Notice that with z = 1.7 s/MB the orphan risk of PoET is
lower as compared to Fig. 3(a), due to lower transit time of
the block propagation but that of DC-PoET remains constant
as evident from eqn (5). Therefore,

Remark 1: The orphan risk of DC-PoET is independent of
the block size, and is limited by the overall network delay of
small packets.

IV. ANALYTICAL MODELING OF DC-POET MECHANISM

In this section we present the analytical modeling of the
DC-PoET considering the fact that there is a fixed number of
nodes, all in saturated conditions, i.e. they all have blocks in
their queue that they want to commit into the blockchain.

A. Modeling of DC-PoET1

In case of DC-PoET1 we study the effect of the backoff pro-
cess of a node using a two-dimensional Markov chain model,
which is influenced by the pioneering work of Bianchi [14]
for modeling IEEE 802.11 DCF.

1) Modeling the probability of conflict: Assume that there
are n contending nodes each always having some blocks to
commit. We also assume a discrete and integer timescale,
i.e. the backoff timer decrements at the beginning of each
time slot, where a slot can be either empty, contains a
successful commit, or a conflict. According to the discussion
in section III-E, the backoff window in the i-th step, denoted
Wi, increases exponentially from a minimum size W0 as
Wi = 2iW0 until it reaches the maximum size Wm, after
which it stays constant. We model this backoff process using
Bianchi’s Markov model [14] where each node is modeled by
a pair of integers (i, k). The back-off stage i starts at 0 at the
first attempt to transmit a RTS and is increased by 1 every time
a transmission attempt results in a conflict, up to a maximum
value of m. It is reset after a successful transmission. The
counter k is initially chosen uniformly between [0,Wi − 1],
where Wi = 2iW0 is the range of the counter. The counter
is decremented when there is no RTS/NAV reservation. The
station transmits when k = 0.

The resultant Markov process is depicted in Fig. 4. As-
suming the probability of conflict as p, the state-transition
probabilities in Fig. 4 are given by:

P{i, k|i, k + 1} = 1 k ∈ (0,Wi − 2), i ∈ (0,m)

P{0, k|i, 0} = (1− p)/W0 k ∈ (0,W0 − 1), i ∈ (0,m)

P{i, k|i− 1, 0} = p/Wi k ∈ (0,Wi − 1), i ∈ (1,m)

P{m, k|m, 0} = p/Wm k ∈ (0,Wm − 1)

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on July 22,2021 at 13:48:09 UTC from IEEE Xplore. Restrictions apply.

𝑝/𝑊1

𝑝/𝑊𝑖

𝑝/𝑊𝑖+1

𝑝/𝑊𝑚

𝑝/𝑊𝑚
𝑝/𝑊𝑚

𝑝/𝑊𝑚

𝑝/𝑊𝑖

𝑚,𝑊𝑚 − 1 𝑚, 𝑊𝑚 − 2 𝑚, 0 𝑚, 1 𝑚, 2

𝑖, 1 𝑖, 2 𝑖, 0 𝑖, 𝑊𝑖 − 2 𝑖, 𝑊𝑖 − 1

𝑖 − 1, 0

1 1 1 1

1 1 1 1

(1 − 𝑝)/𝑊0
(1 − 𝑝)/𝑊0

0, 0 0, 1 0, 2 0, 𝑊0 − 2 0, 𝑊0 − 1

1 1 1 1

Fig. 4: Representation of DC-PoET1 using Bianchi’s model. The (i, k) pairs inside
the circle represents the backoff stage, and the counter value in that stage respectively.
W0 is the minimum contention window size, which is doubled after every conflict
will each reaches Wm.

Fig. 5: Comparison of DC-PoET1 with varying n; simulations
vs modeling. In this figure M and S denote “modeling” and
“simulation”. The three parameters within braces are B (in
MB), T (in minutes), and σ (in seconds).

Following the above derivations, the block commitment
probability τ in a generic slot time can be written as [14]:

τ =
2(1− 2p)

(1− 2p)(W0 + 1) + pW0 (1− (2p)m)
(6)

Notice that τ depends on the values of p (assuming W0 and
m are predefined). The probability of conflict p is equal to the
probability that at least one of the n−1 remaining nodes send
RTS in that slot (assuming that an empty slot time ≈ δRTS).
Thus

p = 1− (1− τ)n−1 (7)

The nonlinear equations(6)-(7) can be solved together for two
unknowns τ and p.

As opposed to 802.11 DCF, in DC-PoET1 W0 is not a
constant, but depends on the number of active miners; i.e.
when the number of miners increase, W0 will increase and
vice versa. In practical scenario, W0 can be adaptively updated
similar to PoET [7]. Mathematically, if n miners choose a
continuous random numbers {Y1, Y2, . . . , Yn ∈ U(0,M)},
then the block generation time Ln = min{Y1, Y2, . . . , Yn ∈
U(0,M)} follows an exponential distribution with mean M

n
(see [13] for proof). If Ttarget is the targeted block-generation
time, i.e.

Ttarget ≈
M

2n
⇒M ≈ 2nTtarget ⇒W0 ≈

M

σ
=

2nTtarget

σ
(8)

2) Block Transaction Rate: Now we derive the expression
of the transaction rate (i.e. the number of bits committed
per second). Assume that the average slot time is T , which
can either be empty, include a successful commit, or have a
conflict. These can occur with probabilities 1−Ptr, PtrPs and
Ptr(1−Ps) respectively, where Ptr represents the probability
that there is at least one commitment in a time slot and Ps
denotes the probability of successful block commitment (i.e.
no conflict). Hence,

T = (1− Ptr)σ + PtrPsTs + Ptr(1− Ps)Tc (9)

where σ is the duration of an empty time slot and is ≈ δRTS.
Ts is the average slot time because of a successful transmis-
sion, Tc is the average slot time because of a conflict. The
expressions of Ts and Tc can be written as

Ts = DIFS + ζRTS + SIFS + δ(B)

Tc = SIFS (10)

where δ(B) is the transit delay of a block with block size
of B. Notice that the block transit delay δ(B) = δ0 + zB is
a function of block size, i.e. transit delay increases with the
increase in block size. Here ζRTS is the RTS preparation time
by the enclave at the originator, expected to be quite small.
Notice that unlike 802.11 DCF, the DIFS duration is not added
with Tc, as every successful block commitment is preceded by
a DIFS period (i.e. the MinimumWait time).

Also, Ptr can be written as:

Ptr = 1− (1− τ)n (11)

The probability of success Ps is given by the probability that
exactly one node commits, conditioned on the fact that there
is at least one commit, i.e.,

Ps =

(
n

1

)
τ(1− τ)n−1

Ptr
=
nτ(1− τ)n−1

1− (1− τ)n
(12)

To calculate the transaction rate, we observe that during an
average slot period T , a winner station commits a block with
a probability of PsPtr. Hence, for an average block size of B
(in bits), with a block transit delay of δ(B), the transaction
rate (number of bits in unit time) is represented as

SDC−PoET1 =
PsPtrδ(B)B

T
(13)

where δ, Tc, Ts and σ are in same units.

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on July 22,2021 at 13:48:09 UTC from IEEE Xplore. Restrictions apply.

3) Validation of Analytic Model: To validate the modeling
of DC-PoET1, we develop a Matlab simulator imitating the
proposed mechanism. Fig. 5 shows the validation of achievable
transactions per second (TPS) with different number of miners.
We assume the mean transaction size of 571 Bytes, which is
representative of bitcoin network [13]. From this figure we can
observe that because of the adaptation of W0 in equation (8),
the TPS stays almost identical with the variation of n. With
the block size of 1 MB, Ttarget of 10 minutes, and σ = 10
secs, the TPS varies close to 5 TPS which is close to what the
Bitcoin network achieve. However, with the increase in block
size to 30 MB, and by decreasing Ttarget and σ to 1 minute
and 1 sec respectively, the TPS can be increased to more than
95/sec.

B. Modeling DC-PoET2

Let us now calculate the TPS of DC-PoET2 mechanism.
Assume that the nodes choose the random wait time within
(0, M). As the waiting time is a chosen from a continuous
distribution, ideally the conflict probability is 0. However, a
small M may result in more RTS message transmissions;
thus we keep M equal to 2nTtarget, which results in one
committed block after ∼ Ttarget time instance. The maximum
block interval in DC-PoET2 is then given by

T = DIFS +M/2 + ζRTS + SIFS + δ(B) (14)

and thus the throughput is given by SDC−PoET2 = B
T .

Remark 2: With large block size B and a low probability
of conflict, the maximum TPS of DC-PoET is limited by the
block validating power z of the blockchain network.

Proof 1: Notice that with low probability of conflict, the
throughput of SDC−PoET1 converges to that of SDC−PoET2 .
In that case the throughput becomes

SDC�PoET =
B

T
=

B

DIFS +M/2 + ζRTS + SIFS + δ0 + zB

=
B

Γ + zB
=

1

Γ/B + z
→ 1

z
(15)

as the block size B becomes large. In equation(15), Γ =
DIFS + M/2 + ζRTS + SIFS + δ0. Thus the throughput is
limited to the block validating power z of the blockchain. If the
average number of transaction per block is χ, the transaction
rate is given by TPS = 1

χz .

V. PERFORMANCE EVALUATION AND SECURITY ANALYSIS

A. Transaction speed of DC-PoET

For our performance evaluation we vary the block size from
1 MB to 30 MB, which is in the similar range assumed in [11].
The maximum block size in Bitcoin network is 1 MB; one of
the reasons of this is the increase in orphan risk beyond few
MBs as observed in Fig. 3(a)-(b). However, in DC-PoET the
orphan risk is independent of block size, thus we can increase
the block size further to improve the transaction rate; however,
very large block sizes may lead to unacceptably large commit
delays. In fact few blockchains like Multichain proposed larger
blocks size; it limits the maximum block size to 32 MB, with
a possibility of further increase [15]. However, keeping a large

block size allows an attacker to send rogue, flooding messages
which will unnecessarily increase the validation overhead of
the network nodes. The mean transaction size χ is kept to 571
Bytes. The values of DIFS and SIFS are kept same as δ0,
whereas m is assumed to be 6. ζRTS is quiet low as compared
to the network latency and so is neglected.

Fig. 6(a)-(b) show the variation of TPS with different block
sizes in case of DC-PoET1 and DC-PoET2, where the number
of miners are kept as 10k. z is assumed to be 17 s/MB.
From this figure we can observe that the TPS of both DC-
PoET1 and DC-PoET2 are almost identical as far as Ttarget

is more than 1 minute. This is because of the fact that
with Ttarget equal to 1 minute or more, the probability of
conflict is extremely small (below 2%) and so both schemes
provide almost similar throughput. However, reducing Ttarget

significantly results in more chance of conflict, which leads to
more backoff, retransmission of RTS; thus results in reduced
throughput in case of DC-PoET1 as compared to DC-PoET2,
as observed from Fig. 6(b). However, reduced Ttarget indeed
result in more TPS for both the schemes. Although there
is (almost) no conflict in DC-PoET2, Ttarget should not be
reduced significantly as this will result in large number of
RTS transmissions from multiple nodes.

From Fig. 6(a) we can also observe that when when Ttarget

and δ0 are 10 mins and 10 secs respectively, the achievable
throughput goes upto 46 TPS with a block size of 30; while
reducing them by 1

10 -th increases the throughput almost 95
TPS. The throughput can be improved further by reducing
Ttarget further, which is observed from From Fig. 6(b).

Fig. 6(c) shows the transaction speed of two protocols with
z = 1.7 s/MB. From this figure we can observe that with B =
30 MB, the TPS of DC-PoET can reach to ∼465 TPS and can
go even higher with higher B. In fact as mentioned in Remark
2, the TPS of DC-PoET with z = 1.7 s/MB can reach up to
1
χz , i.e. ∼1030 transactions per second with larger blocks.

Notice that even if DC-PoET2 performs almost similar
or better than that of DC-PoET1, the applicability of DC-
PoET1 is more generic as compared to that of DC-PoET2.
For example, the backoff mechanism of DC-PoET1 can also
be used in PoW and its variants in a permissionless blockchain,
however, DC-PoET2 strictly requires TEE.

B. Security of DC-PoET with uncompromised TEE

We first delve into the scenario where the TEEs are not
compromised, but still some miners are able to launch suc-
cessful attacks by colluding. Two most fundamental attacks on
blockchain network are double-spending attacks and selfish
attacks [16], which are applicable to DC-PoET as well. In a
double-spending attack [1], the attacker purchases something
from a seller using transaction T. Assume that before the
transaction, the last block of the main-chain was B0. After
the transaction, the honest miners add their blocks H1, H2, . . .
after B0, where the block H1 carries transaction T. On the
other hand, the attackers can form a pool and privately mine
an alternate fork after B0, producing blocks A1, A2, In
the attackers private chain, suppose A1 carries a transaction T̂

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on July 22,2021 at 13:48:09 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c)
Fig. 6: Comparison of DC-PoET1 and DC-PoET2 with varying B. The values (x, y) within the brackets are Ttarget and δ0 respectively. Notice that in (a)
and (c) the performance if DC-PoET1 and DC-PoET2 is almost identical, so the lines come on top of each others.

that conflicts with T in the main-chain; i.e. the attacker can
avoid paying the seller through transaction T̂. To thwart the
attack, the seller waits for z blocks after B0 before releasing
the item. On the other hand, to make a successful double-
spending attack, the attacker keeps A1, A2, . . . private and
commits them into the main-chain when its length grows to
atleast z + 1 and is also longer than the honest miner’s main
chain. At this stage, the honest miners will adopt the blocks
A1, A2, . . . that has the conflicting transaction T̂, which leads
to a successful double-spending attack. Notice that a larger
value of z decreases the probability of a successful double-
spending attack.

On the other hand, in a selfish mining attack an attacker
tries to improve his relative proportion of blocks (or rewards)
by wasting resources of the honest miners. In [17] the authors
have shown that an attacker pool with minority population can
still launch selfish mining attack in a blockchain. The crux of
this attack lies in the following: a mining pool consisting of
a bunch of selfish miners collude and keep their discovered
blocks private. When the honest miners continue to mine on
the public chain, the selfish mining pool mine but keep the
blocks on their own private branch. If the pool discovers more
blocks, it develops a longer lead on the public chain; when the
public branch approaches the pool’s private branch in length,
the selfish miners commit their blocks from their private chain
to the public. As the length of their private blocks is longer
than the current public chain, all the blocks in the public chain
are replaced. If this happens very often, then the honest miners
(a) may stop mining as they spend their electricity for mining
blocks that are replaced by the selfish miners, or (b) they
start joining the selfish pool for profit, which monopolizes
the process in favor of the selfish mines.

In both of these above mentioned attacks, a minority attack-
ers pool cannot create a longer fork than the honest miners in
long-term, however, the attacker can still get lucky to make
some short-term gains. We argue that the success from such
double-spending and selfish mining can be very limited in
schemes like DC-PoET. First, in DC-PoET the TEE can put
a timestamp at the time of the certificate generation with the
attestation; the most recent block committed by a miner cannot
be older than some threshold. Thus the selfish miner takes
more risk by holding the most recent block.

Second, we show that with a minority pool, the chances
that the attacker can produce more blocks than the majority
honest miners decreases exponentially with time, as well as
with the number of blocks. Suppose the number of miners in
the honest and selfish pools are ph and ps respectively. In [13],
the authors have shown that the inter-arrival process of the
blocks in these two pools follows an exponential process with
an arrival rate of r1 = ph

M and r2 = ps
M respectively (where

the nodes waiting time is uniformly distributed in between 0
and M), i.e. the arrival process follows the Poisson process
with the same arrival rates. We assume that X = Poisson(r1t)
and Y = Poisson(r2t) are independent random variables with
arrival rates r1 and r2, where r1 > r2 and t is a time interval.
Then the probability that after an interval t, the selfish miners
chain will remain longer than that of the honest miners is given
by [18]:

Prob(Y −X ≥ 0) ≤ e(
√
r1t−

√
r2t)

2

= e(
√
r1−
√
r2)2t (16)

which shows that the chances drops exponentially with t. In
fact Y −X , which is the difference between two independent
Poisson-distributed random processes follow a Skellam distri-
bution having the probability mass function (PMF) as follows:

Prob (Y −X = k) = e−(r1t+r2t)

(
r2

r1

)k/2
Ik (2
√
r1r2t)

(17)
where Ik(z) is the modified Bessel function of the first
kind [19]. Fig. 7 shows the variation of PMF with different
k and different proportion of attacker and honest miners. In
Fig. 7 t is assumed to be 5 hours, and the overall block
generation rate is assumed to be 1/10 minutes. From this
figure we can observe that the probability that a pool of
minority attackers to produce a chain that is longer than the
honest miners remains below 6% even with an attacker pool of
45% miners, and reduces almost exponentially with increasing
difference in the number of blocks between the attackers chain
and the main chain. In fact with 30% miners, the attackers
chain can grow longer than the main chain with a probability
of less than 1%.

Third, as opposed to bitcoin mining, in DC-PoET the miners
do not spend energy/power for mining. Thus there is no point
for the honest miners to stop mining even if they start losing.

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on July 22,2021 at 13:48:09 UTC from IEEE Xplore. Restrictions apply.

Fig. 7: Probability of selfish miners producing more blocks with different k,
and different proportion of attacker (A) and honest (H) miners.

So the chances of monopolize the chain in favor of selfish
miners is much limited.

Like any other blockchain networks, PoET network with
or without modifications is susceptible to eclipse attacks [20]
where an adversary takes over all connections to and from a
victim node. However, such an attack is unlikely in permis-
sioned network, particularly in an organizational network.

C. Robustness of DC-PoET Under Compromised SGX

In this section, we briefly discuss how DC-PoET will
behave in an environment where some SGX nodes may be
compromised and deliberately try to exploit the protocol to
their advantage. We do not consider Denial-of-Service (DoS)
attacks here as they are possible in most situations and can be
handled using standard mechanisms [21].

The main protection offered by PoET against compromised
nodes includes the following: (a) Use of two PKIs with secret
keys PSK (for the enclave) and OSK (for the originator), both
of which need to be stolen, (b) agreement on BlockNumber
to stay on the main chain w/o majority collusion, (c) z-
test to ensure that the waiting times conform to the desired
distribution, and (d) holding off of early arriving blocks.

With DC-PoET, the RTS phase checks the LocalMean and
also does the z-test on the waiting time. Thus if a compromised
node sends RTS too early, it will get through but subject to
z-test, but an early block transmission will still be held back.
The reception of an early RTS by an honest node (during its
SIFS period) will cause it to backoff and double its waiting
time. The compromised node could then safely increase its
block transmission time so as to still pass tests (c) and (d).
With only one compromised node, this attack rapidly becomes
unlikely as the network size increases due to the z-test on
RTS as well; also, the honest validator will disallow repeated
winning by the same node. For large scale collusion, the result
in [7], should still apply.

Another potential situation is where a compromised node
exploits an arriving RTS as cue to send its own (likely
conflicting) block immediately thereby making the originator’s
block stale; if no RTS was sent thus far, it is sent first to avoid
reject of the block. This attack too becomes rapidly ineffective
with increasing number of nodes due to checks (c) and (d).
Also, the result in [7] applies for large scale collusion.
among all neighbors of a node. This is similar to the eclipse

A compromised intermediate node could forward or hold
back RTS based on the identity of the originator (and in DC-
PoET2 based on the waiting time), thereby favoring or working
against a given node. To succeed, this requires collusion

attack, except it depends on compromise to selected overlay
nodes rather than an indiscriminate blocking of IP addresses.

VI. CONCLUSION

We have proposed a modification to the proof of elapsed
time (PoET) blockchain consensus protocol to substantially
reduce the orphan blocks and thus improve the transaction
rate. The proposed mechanism achieves ∼465 transaction per
second with 30 MB block size and even more for larger blocks.
It is also robust against the double spending and selfish-mining
attacks. Its robustness against node compromises also remains
unaltered. In the future, we will examine ways to make
the protocol even more efficient by building the blockchain
overlay network more intelligently and dynamically. We will
also analyze the performance of DC-PoET with more general
waiting-time distributions than uniform.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2009.
[Online]. Available: http://www.bitcoin.org/bitcoin.pdf

[2] S. Liu et al., “XFT: practical fault tolerance beyond crashes,” in USENIX
OSDI, K. Keeton et al., Eds., 2016, pp. 485–500.

[3] M. Castro et al., “Practical byzantine fault tolerance and proactive
recovery,” ACM Trans. Comput. Syst., vol. 20, no. 4, pp. 398–461, 2002.

[4] T. T. A. Dinh et al., “BLOCKBENCH: A framework for analyzing
private blockchains,” in ACM SIGMOD, 2017, pp. 1085–1100.

[5] B. Curran, “What is proof of elapsed time consensus?
(poet) complete beginner’s guide,” 2018. [Online]. Available:
https://blockonomi.com/proof-of-elapsed-time-consensus/

[6] R. P. Pires, “Distributed systems and trusted execution environments:
Trade-offs and challenges,” arXiv preprint arXiv:2001.09670, 2020.

[7] L. Chen et al., “On security analysis of proof-of-elapsed-time (poet),”
in SSS, vol. 10616, 2017, pp. 282–297.

[8] Y. Lindell, “The security of intel sgx for key pro-
tection and data privacy applications,” 2018. [Online].
Available: https://cdn2.hubspot.net/hubfs/1761386/security-of-intelsgx-
key-protection-data-privacy-apps.pdf

[9] V. Costan et al., “Intel sgx explained.” IACR Cryptol. ePrint Arch., vol.
2016, no. 86, pp. 1–118, 2016.

[10] E. Tromer et al., “Efficient cache attacks on aes, and countermeasures,”
Journal of Cryptology, vol. 23, no. 1, pp. 37–71, 2010.

[11] P. R. Rizun, “Subchains: A technique to scale bitcoin and improve the
user experience,” Ledger, vol. 1, pp. 38–52, 2016.

[12] V. K. Bagaria et al., “Prism: Deconstructing the blockchain to approach
physical limits,” in ACM SIGSAC, L. C. et al, Ed., 2018, pp. 585–602.

[13] S. Kasahara et al., “Effect of bitcoin fee on transaction-confirmation
process,” Journal of Industrial and Management Optimization, vol. 15,
pp. 365–386, 2019.

[14] G. Bianchi, “Performance analysis of the ieee 802.11 distributed coor-
dination function,” IEEE Journal on Selected Areas in Communications,
vol. 18, pp. 535–547, 2000.

[15] “Maximum blocksize - post alpha26.” [Online]. Available:
https://www.multichain.com/qa/3780/maximum-blocksize-post-alpha26

[16] G. Bissias et al., “Bobtail: Improved blockchain security with low-
variance mining,” in NDSS, 2020.

[17] I. Eyal et al., “Majority is not enough: Bitcoin mining is vulnerable,”
in FC, vol. 8437, 2014, pp. 436–454.

[18] G. M. Kamath et al., “Optimal haplotype assembly from high-
throughput mate-pair reads,” CoRR, vol. abs/1502.01975, 2015.
[Online]. Available: http://arxiv.org/abs/1502.01975

[19] J. G. Skellam, “The frequency distribution of the difference between
two poisson variates belonging to different populations,” Journal of the
Royal Statistical Society, vol. 109, no. 3, p. 296, 1946.

[20] E. Heilman et al., “Eclipse attacks on bitcoin’s peer-to-peer network,”
in USENIX Security, J. Jung et al., Eds., 2015, pp. 129–144.

[21] T. Mahjabin et al., “A survey of distributed denial-of-service attack, pre-
vention, and mitigation techniques,” International Journal of Distributed
Sensor Networks, vol. 13, no. 12, pp. 1–33, 2017.

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on July 22,2021 at 13:48:09 UTC from IEEE Xplore. Restrictions apply.

		2021-07-07T12:00:46-0400
	Certified PDF 2 Signature

