
EFFECT: Energy-efficient Fog Computing
Framework for Real-time Video Processing

Xiaojie Zhang�, Amitangshu Paly, Saptarshi Debroy�
�Computer Science, City University of New York, New York, NY, USA
yComputer and Information Sciences, Temple University, Philadelphia, USA

Email: xzhang6@gradcenter.cuny.edu, amitangshu.pal@temple.edu, saptarshi.debroy@hunter.cuny.edu

Abstract—Energy efficient task offloading within a fog com-
puting environment comprising of end-devices and edge servers
remains a challenging problem to solve, especially for real-time
video processing applications due to such tasks’ strict latency
deadline demands. In this paper we propose an Energy-efficient
Fog Computing framework (EFFECT) for real-time applications
within mission-critical use cases. The proposed framework runs
a Unified Resource Broker (URB) that implements: a) central-
ized sub-channel and transmission power allocation as well as
end-device/edge server computation speed allocation algorithms,
along with b) distributed multi-device, multi-server task offload-
ing game based Directed Acyclic Graph (DAG) partition and
edge server selection algorithms. The framework is designed,
developed, implemented, and evaluated on an Amazon EC2
virtual testbed built using Apache Storm, which is a distributed
computing platform. The results from the testbed experiments
along with realistic simulations validate the utility of EFFECT
task offloading strategy in minimizing energy consumption yet
satisfying latency deadlines.

Index Terms—Energy efficiency, task offloading, edge comput-
ing, real-time applications, video processing, Nash equilibrium

I. INTRODUCTION

In order to provide rapid situational-awareness to mission-
critical use cases (e.g., emergency response and tactical
situations), reconnaissance missions employ fog computing
environments. Such fog environments host real-time video
applications where: i) raw video data with complex and real-
time processing needs are captured by speciality end-devices
(e.g., drones, robots); ii) speciality on-premise (e.g., hosted
on vehicles) edge nodes/units equipped with wireless access
points (AP) and computation servers (CPU/GPU) are deployed
to process the raw video data on-demand and iii) ground
consumers of the data (e.g., tactical or first responder units)
visualize the processed video on their hand-held devices as
shown in Fig. 1. In recent times, adoption of fog environment
based real-time video processing applications over traditional
cloud-based solutions for reconnaissance missions is motivated
by: a) often unreliable network connectivity between the
mission site and cloud data center during emergency situations
and b) potential long end-to-end delays in enterprise network
when supporting data-intensive video processing application
workflows.

A. Challenges of video processing at fog

However, resource management in such fog environments
in terms of network, compute, and energy resource alloca-

Fig. 1: An exemplary fog computing based real-time video processing
application

tion for real-time video applications is non-trivial and offers
the following unique challenges. Firstly, traditional fog/edge
computing resource allocation techniques [1], [2] recommend
offloading all compute-intensive tasks to edge servers for end-
devices’ energy preservation. However, inherent fluctuations in
wireless channel quality caused by phenomena such as, multi-
path propagation, shadowing, and fading result in varying
end-to-end latency. This in turn adds to the transmission
cost of task offloading as well as end-devices’ energy ex-
penditure - thus outweighing offloading energy preservation
benefits. Secondly, reconnaissance missions often involve
multiple agencies/stakeholders (different tactical units or first
resoponder agencies) demanding resources from a common
resource pool with little to no cooperation among them. This
lack of cooperation results in individual video applications
selfishly trying to preserve latency deadlines and end-devices
seeking to minimize their own energy consumption. This in
turn results in limited fog resources (unlike unlimited cloud
resources) to be used inefficiently. Finally, most complex
video applications require multi-stage computation where joint
optimization of energy-efficiency and deadline satisfaction is
non-trivial especially for multi-resource environments due to
their diverging nature. Although there are significant strides
made in energy-efficiency within fog/edge environments, few
efforts have addressed the issue of joint optimization.

B. Our contribution

In this paper, we propose EFFECT, an Energy-efficient Fog
Computing framework to support real-time video process-

493

2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid)

978-1-7281-9586-5/21/$31.00 ©2021 IEEE
DOI 10.1109/CCGrid51090.2021.00059

20
21

 IE
EE

/A
C

M
 2

1s
t I

nt
er

na
tio

na
l S

ym
po

si
um

 o
n

C
lu

st
er

, C
lo

ud
 a

nd
 In

te
rn

et
 C

om
pu

tin
g

(C
C

G
rid

) |
 9

78
-1

-7
28

1-
95

86
-5

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
C

G
rid

51
09

0.
20

21
.0

00
59

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on December 20,2021 at 10:00:22 UTC from IEEE Xplore. Restrictions apply.

ing applications. The proposed EFFECT framework runs a
centralized Unified Resource Broker (URB) within the fog
environment. This URB solves the aforementioned challenges
by decoupling the energy-efficiency problem into two inter-
connected sub-problems. For the first sub-problem, EFFECT
employs a centralized resource provisioning algorithm to op-
timize: i) sub-channel and transmission power allocation at
the end-devices and ii) CPU speed allocation at both end-
devices (local) and servers hosted at the edge nodes/units
(remote). The algorithm runs on individual edge servers using
‘Helper’ modules and the optimized results are passed to the
second sub-problem. Here, EFFECT implements a distributed
multi-device and multi-server task offloading game aimed at
tackling multi-stage computation partition and server selection
problems. For this, end-devices running competing video ap-
plications obtain their favorite task offloading strategy from the
first sub-problem and then propose a strategy update request to
the URB. In EFFECT framework, an energy-efficiency based
priority mechanism is adopted to select and accept the pro-
posed update requests. The framework only accepts the request
with highest priority and modifies the global strategy profile
upon that request. Finally, the URB broadcasts the updated
global strategy profile to edge servers when the EFFECT
framework runs the first sub-problem algorithm again. This
inter-exchange terminates when the system reaches a Nash
Equilibrium (NE) - thus achieving optimal energy-efficiency.

We design, develop, implement, and evaluate the EFFECT
framework on a virtual testbed running on Amazon EC2 using
Apache Storm [3] distributed computing platform. We run
competing video processing applications on the testbed in
order to evaluate the performance of EFFECT framework’s re-
source allocation. The results show the EFFECT framework’s
success in terms of optimal task offloading decision-making.
Compared to fair allocation, the EFFECT algorithm achieves
considerable energy consumption by jointly considering the
natures of applications and their real-time requirements. We
also perform extensive simulations in order to verify the
schedulability, the benefits of partial task offloading, and
system convergence under a large number of applications
and varying edge resources. These results demonstrate the
high energy efficiency of the EFFECT framework in handling
unpredictable system environment.

C. Paper organization

The rest of the paper is organized as follows. Section II
presents the related work. Section III proposes the system
model and problem formulation. Section IV presents the
centralized resource allocation algorithm. Section V discusses
the distributed task offloading game. Section VI discusses
EFFECT evaluation. Section VII concludes the paper.

II. RELATED WORK

Video analytics is one of the emerging use cases for
deploying and utilizing fog/edge resources. In VideoStorm [4]
and VideoEdge [5], the trade-off between query accuracy and
resource demand is extensively studied. The authors in [6]

consider bandwidth-efficiency in real-time drone video analy-
sis. In [7], the authors propose a visual fog-cloud computing
architecture for 3D visualization for incidence support. Works
such as [8] and [9] propose learning based frameworks for
video processing at the network edge, while [10] develops an
online algorithm for joint configuration adaptation and band-
width allocation. However, the above works use pre-configured
resource requirement as a problem evaluation metric which
does not always capture the heterogeneous geo-distributed
network resources.

Based on task offloading model in fog/edge systems, most
of the related literature can be grouped into following three
categories. First, works [1], [2] that consider task offloading
as a deterministic problem, i.e., offload or do not offload.
Reference [11] proposes a framework that determines whether
to execute the task on the edge device or in the cloud.
Second group of papers [12]–[15] formulates their problems
in “computing while transmitting” paradigm by enabling local
computation on devices. In addition to the above, the third
group of works [16]–[18] expresses the tasks as Directed
Acyclic Graphs (DAG) consisting of multiple computation
components where unlike previous models, task components
are placed across the edge servers. However, such works do
not aim at solving resource allocation problems for multi-stage
computations in multi-server environments which is precisely
our problem environment.

Game theory as a powerful tool for distributed resource
allocation has been adopted in recent times in works, such
as [19]–[23]. Authors in [19], [20] propose decentralized
computation offloading games based on network resource
sharing. Others, such as [21]–[23] consider both CPU and net-
work resource limitations within edge environments for their
problem formulation. However, to the best of our knowledge,
none of the aforementioned works address both the multi-
resource (e.g., sub-channel, CPU frequency and transmission
power) allocation problem and multi-component task place-
ment problem across multiple servers at the same time.

III. SYSTEM MODEL AND PROBLEM FORMULATION

EFFECT is a fog computing framework which consists of
a centralized URB, a set of end-devices N = {1, 2, ..., N},
and a set of edge nodes/units K = {1, 2, ...,K}. We assume
that each edge node contains 1 computing server and 1 AP that
connects to end-devices via wireless. In this paper, we describe
the offloading decision (edge node, i.e., server selection) by
end-device as an ∈ A

∆
= {0, 1, ...,K} with the following

definition

an =

{
0 if end-device n executes task locally
k if end-device n executes task on edge server k

In order to simplify the expression, we define symbol
Ifan=xg ∈ {0, 1} as the event indicator ∀x ∈ A. Ifan=xg = 1
signifies decision an = x; otherwise Ifan=xg = 0.

494

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on December 20,2021 at 10:00:22 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: An exemplar linear topology for face recognition used in this work

A. Task Partition and Partial Task Offloading

In EFFECT, we consider recurring tasks with linear topol-
ogy as concurrent or parallel tasks can be serialized by works
such as [17]. The task topology is described by a DAG. We
assume that task execution constraint Dn (in seconds) and the
task release period (recurring) are the same. This constraint
captures the recurring nature of the real-time processing of the
application. We denote Mn as the number of jobs (vertices)
in task DAG. One such exemplar linear topology is shown in
Fig. 2 where the DAG of a face recognition [24] task contains
three jobs (Mn = 3) which are executed sequentially, viz.,
1) face detection, 2) feature encoding, and 3) face matching.
EFFECT supports partial task offloading where jobs of tasks
can be partitioned into local-processing jobs and remote-
processing jobs to achieve specific cost minimization. An
example is shown in Fig. 3. Here, the end-device runs the
first three jobs and sends the intermediate data (e.g., face
encoding list from Fig. 2) to the edge server. After receiving
the intermediate data, the edge server starts to execute the rest
of jobs.

Fig. 3: An example of task partition and partial task offloading. The first three
jobs are executed locally and the remaining jobs (from job 4 to job M) are
processed at the edge server

The purpose of partial task offloading is to reduce the energy
spent on data transmission by running certain lightweight pre-
processing jobs on the devices. In this paper, we only focus on
partitions that can significantly reduce the transmission energy
cost while the energy consumption of local computation is
small. For example, in face recognition from Fig. 2, we
should let end-device run the face detection (lightweight)
and edge server execute feature encoding and face matching
after receiving the facial images sent by the device. Since
the end-device only needs to transmit the detected facial
images, this method greatly reduces the transmission cost.
Other partitioning options (i.e., running face detection and

feature encoding on the device) can be considered useless in
terms of saving time and energy.

B. Execution Profiles

Task Partition Model: We use symbol m as the selected
index which signifies that only the last m jobs are executed
on the edge server. Therefore, m = Mn indicates full task
offloading and m = 0 indicates local-only computation;
otherwise 0 < m < Mn stands for partial task offloading.
We denote Xn,m and Yn,m as the computation complexity of
processing the remote and local jobs, which are measured by
the number of CPU cycles. We also define Zn,m as the size
of data for transmission (in bits).

EFFECT assumes that end-devices have perfect knowledge
of their tasks and available partitions. The end-devices store
such information in execution profile set which is defined as
follows:

Jn = { (Xn,m, Yn,m, Zn,m) | m ∈ [0,Mn], Zn,m ≤ Zn}

where Zn is the size of task input data (original). As we
discussed in the above subsection, the constraint Zn,m ≤ Zn
is used to filter partitions that are not energy efficient. In
EFFECT, end-devices are first randomly connected to a nearby
AP which is used to upload their execution profiles along with
the execution constraint. From this point, the AP forwards the
execution profiles to the URB. Once the URB receives all the
profiles, it performs resource allocation to minimize the system
energy consumption while satisfying the execution constraints.

C. Communication Model

Implemented within a stand-alone fog environment, EF-
FECT enforces Orthogonal Frequency-Division Multiple Ac-
cess (OFDMA) communication system where the APs have
certain amount of sub-channels to be used for application data
transmission. Once an end-device decides to offload its task
to an edge server (i.e. Ifan=kg = 1), the URB assigns several
sub-channels through the AP for data transmission between the
device and the AP. We denote Ck as the number of available
sub-channels at AP k. We assume that the AP has perfect
knowledge of sub-channel gain hn,k. Therefore, the aggregated
data rate for data transmission from device to AP is modeled
as:

rn,k = bn,kB0 log2

(
1 + pn,kh

2
n,k/N0

)
(1)

where B0 denotes the sub-channel bandwidth, bn,k is the
number of sub-channels assigned to end-device n by AP k,
pn,k is the transmission power used on a single sub-channel
(i.e. the total transmission power is bn,kpn,k), and N0 is the
white noise power spectral density. Since one sub-channel
can only be used by one end-device at any time instance,
N∑
n=1

bn,k ≤ Ck holds for all APs with the fog environment.

The energy spent on transmitting data from end-device to AP
under given execution profile Jn,m and sub-channel allocation
bn,k is expressed as:

EDn,k (Jn,m) = bn,kpn,kZn,m/rn,k (2)

495

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on December 20,2021 at 10:00:22 UTC from IEEE Xplore. Restrictions apply.

D. Computation and Energy Model

Remark1: With EFFECT, when an end-device decides to
execute a task locally (i.e., Ifan=0g = 1 and m = 0), the
minimal energy consumption w.r.t. the task latency constraint
can be computed by ELn = κ (Yn,0) [Yn,0/Dn]

2 where κ =
10�28 J/cycle is a constant related to the chip architecture [12],
[25]. In EFFECT, a task can be executed locally if and only if
the maximum CPU speed of device satisfies Yn,0 ≤ fmax

n Dn.

In EFFECT, the computation follows the model described
in [25] that allows end-devices to adjust their CPU speed for
energy saving based on Dynamic Voltage Scaling (DVS) tech-
nique. When an end-device selects task offloading Ifan=kg =
1 to server k and set fNn,k as the end-device CPU speed, the
energy consumption for local computation is ECn,k(Jn,m) =

κYn,m[fNn,k]2. The total energy consumption is the sum of
transmission cost and computation cost, which can be ex-
pressed as:

En,k(Jn,m) = EDn,k(Jn,m) + ECn,k(Jn,m) (3)

E. Problem Formulation

The objective of EFFECT framework is to find the best
execution profile and the optimal offloading decision. We also
seek the optimal resource allocation strategy for end-devices
and edge servers. Therefore, EFFECT’s energy-aware multi-
device and multi-server task offloading optimization problem
can be represented as:

min
R n,an,
Jn,m

N∑
n=1

K∑
k=1

En,k(Jn,m)Ifan=kg

s.t. C1:
N∑
n=1

bn,kIfan=kg ≤ Ck, ∀k ∈ K

C2:
N∑
n=1

fKn,kIfan=kg ≤ Fk, ∀k ∈ K

C3:
K∑
k=1

(
Yn,m
fNn,k

+
Xn,m

fKn,k
+
Zn,m
rn,k

)
Ifan=kg ≤ Dn,∀n ∈ N

C4:
K∑
k=1

En,k(Jn,m)Ifan=kg ≤ ELn , ∀n ∈ N

C5:
Yn,0
Dn

Ifan=0g ≤ fmax
n , ∀n ∈ N

C6:an ∈ {0, 1, 2, ...,K}, Jn,m ∈ Jn (P1)

where Rn = {fNn,k, pn,k, fKn,k, bn,k} denotes the resource
allocation profile and fKn,k is the CPU speed allocated to end-
device n from server k. In (P1), constraints C1 and C2 limit
the number of sub-channels and the CPU capacity used by
the edge servers, constraints C3 and C4 specify the execution
deadline and the energy saving constraints for an offloading
decision and the constraint C5 represents Remark 1.

Fig. 4: Interrelationship between CRA and DSM in EFFECT

F. Problem Decoupling: CRA and DSM
EFFECT’s multi-device and multi-server task offloading

optimization problem (P1) is non-trivial to solve because of its
Mixed-Integer Nonlinear Programming (MINLP) nature - the
number of sub-channels, the execution profile selection, and
the task offloading decision making are all discrete integers. It
is well known that solving such NP hard problems with closed-
form expressions is very challenging. Thus, in EFFECT, we
divide the optimization problem into two sub-problems:

DSM:Distributed︷ ︸︸ ︷
argmin
an,Jn,m

{
argmin
Rn

N∑
n=1

En,k(Jn,m)Ifan=kg, ∀k ∈ K︸ ︷︷ ︸
CRA:Centralized

}
(4)

The outer sub-problem of Distributed Strategy Making (DSM)
is a distributed game where end-devices are modeled as selfish
in nature and always tending to select the best offloading
strategy to minimize their energy consumption. Whereas the
inner sub-problem of Centralized Resource Allocation (CRA)
consists of K independent but identical sub-sub-problems that
are centralized (at each edge node) to minimize the overall
energy consumption of offloaded tasks. The interrelationship
between DSM and CRA is shown in Fig. 4. The solution to
P1 is obtained by alternatively performing DSM and CRA
until convergence. Next, we discuss sub-problems CRA and
DSM individually.

IV. CRA: CENTRALIZED RESOURCE ALLOCATION WITH
FIXED OFFLOADING STRATEGY

The sub-problem CRA represents a group of offloaded tasks
denoted by Nk = {n | Ifan=kg = 1, n ∈ N} - the objective
being the minimization of total energy consumption by end-
devices in Nk. In this section, we will first remove the integer
constraints C1 and C6 from (P1) in order to convert sub-
problem CRA into a convex optimization problem. To this
end, EFFECT first pre-allocates several sub-channels to each
offloaded task and generates an initial resource allocation pro-
file R0

n. After that, EFFECT performs a heuristic sub-channel
allocation that dynamically assigns sub-channels to the most
desirable end-devices and continuously updates R0

n → Rtn
until convergence.

496

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on December 20,2021 at 10:00:22 UTC from IEEE Xplore. Restrictions apply.

A. Problem Transformation: CRA

We denote auxiliary variables τDn,k and τCn,k as the data
transmission and edge computation times and define function
g(r) = N0

(
2rn,k/bn,kB0 − 1

)
that is a monotonically decreas-

ing function in terms of achievable data rate rn,k. Based on
Eq. (1), the transmission power can be expressed as:

pn,k = min

{g(
Zn,m

τD
n,k

)

h2
n,k

,
pmax
n

bn,k

}
(5)

where the maximum transmission power for each end-device
is pmax

n . Now the sub-problem CRA transforms to:

min
Rn

∑
n2Nk

(
κYn,m

[
fNn,k

]2
+
bn,k
h2
n,k

g

(
Zn,m
τDn,k

)
τDn,k

)

s.t. C1:
bn,k
h2
n,k

g

(
Zn,m
τDn,k

)
≤ pmax

n , ∀n ∈ Nk

C2:
∑
n2Nk

Xn,m

τCn,k
≤ Fk

C3: τDn,k + τCn,k +
Yn,m
fNn,k

≤ Dn, ∀n ∈ Nk
(P2)

The Hessian matrix of (P2) being positive semi-definite makes
it a convex problem w.r.t. resource allocation profile Rn.
Therefore, applying Karush-Kuhn-Tucker (KKT) conditions
yields the optimal resource allocation profile R�n. Introducing
Lagrangian multipliers � , � and � , the Lagrange function of
problem CRA can be expressed as:

L(Nk) =
∑
n2Nk

(
κYn,m[fNn,k]2 +

bn,k
h2
n,k

g

(
Zn,m
τDn,k

)
τDn,k

)

+λn,k

(
bn,k
h2
n,k

g

(
Zn,m
τDn,k

)
− pmaxn

)
+ νk

(∑
n2Nk

Xn,m

τCn,k
− Fk

)

+µn,k

(
τDn,k + τCn,k +

Yn,m
fNn,k

−Dn

)
(6)

B. Transmission Time and Transmission Power

Based on the KKT conditions, the optimal data transmission
time (denoted by τDn,k

(�)) can be computed by solving the
following two expressions:

∂L (Nk)

∂τDn,k
(�) = (1 + λn,k)

bn,k
h2
n,k

(
g

 Zn,m

τDn,k
(�)

− Zn,m

τDn,k
(�) g0

 Zn,m

τDn,k
(�)

)+ µn,k = 0

(7)

and

λn,k

 bn,k
h2
n,k

g

 Zn,m

τDn,k
(�)

− pmaxn

 = 0 (8)

We first define f (x) = g(x)−xg0(x). Thus, from Eq. (7), we
obtain:

f

 Zn,m

τDn,k
(�)

 = −
µn,kh

2
n,k

(1 + λn,k) bn,k

The function of data rate and transmission time can be derived
by using the Lambert function W0 [12], [26] and it be stated
as:

f�1(y)
∆
=

Zn,m

τDn,k
(�) =

B
[
W0

(
y+N0
�N0e

)
+ 1
]

ln(2)

Since an end-device has to transmit at least Zn,m bits of
data during τDn,k

(�), it provides the lower bound of τDn,k
(�)

when the end-device uses its maximum transmission power
pmaxn resulting in maximum data rate rmaxn,k . Thus, the optimal
transmission time can be stated as:

τDn,k
(�)

= max

{
Zn,m × ln(2)

B
[
W0

(
µn,kh2

n,k

(1+λn,k)bn,kN0e
− 1

e

)
+ 1
] , Zn,m
rmaxn,k

}
(9)

Upon obtaining this optimal transmission time, the transmis-
sion power can be computed from Eq. (5).

C. CPU Speed Allocation

Similar to the analysis in IV-B, the optimal CPU speed at
an end-device can be expressed as:

fNn,k
(�)

= min

{[µn,k
2κ

] 1
3
, fmax
n

}
(10)

Whereas, the optimal CPU time at an edge server is:

τCn,k
(�)

=

[
νkXn,m

µn,k

] 1
2

=
Xn,m

fKn,k
(�) (11)

It is evident that the edge server should allocate all its
CPU to the offloaded tasks resulting in tasks having higher
computation requirement Xn,m getting more resources. There-
fore, in Eq. (11), we can substitute multiplier νk with∑
n2Nk

fKn,k
(�)

= Fk. Thus, the optimal CPU speed allocated

to each offloaded task in an edge server can be calculated as

fKn,k
(�)

=

√
Xn,mµn,k

P

n2N k

√
Xn,mµn,k

× Fk.

D. Heuristic Sub-channel Allocation

The EFFECT framework provides a low complexity sub-
channel allocation by periodically running a heuristic with an
interval of Tch. To do that each end-device n calculates the
gain function for getting the next sub-channel from AP k,
which is defined as:

Gn,k = P (bn,k)− P (bn,k + 1) (12)

where

P (bn,k) =
bn,k
h2
n,k

g

(
Zn,m
τDn,k

)
τDn,k

497

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on December 20,2021 at 10:00:22 UTC from IEEE Xplore. Restrictions apply.

The algorithm runs through all the sub-channel and the end-
device which has the highest Gn,k, ends up receiving a sub-
channel. The sub-channel allocation strategy can thus be stated
as:

b
(�)
n,k =

b
(�)
n,k + 1 if n = argmax

n
(Gn,k)

b
(�)
n,k otherwise

(13)

E. Joint Resource Energy Efficient Allocation

Once Rn is obtained, we can use a sub-gradient method to
update � and � . The update rules are:

1) For λn,k, when bn,kpn,k 6= pmaxn , we set λn,k = 0;
otherwise

λt+1
n,k =

[
λtn,k + ∆λ(t)

(
bn,k
h2
n,k

g

(
Zn,m
τDn,k

)
− pmaxn

)]+

(14)
2) For µn,k, it follows

µt+1
n,k =

[
µtn,k+∆µ(t)

(
τDn,k + τCn,k +

Yn,m
fNn,k

−Dn

)]+

(15)
As shown in Eq. (14) and (15) ∆(t) is the diminishing
step size. The joint resource and energy allocation algorithm
is described in Algo. 1 and ensures a convergence rate of
O(1/ε2) iterations to achieve ε-suboptimal solution [27]. That
is all tasks can be finished within Dn − ε.

Algorithm 1: Joint Resource and Energy Allocation
1 Given a list of offloaded tasks N k , stop point � , step control

t = 0
2 Initialize multipliers f � n j8n 2 N k g and f � n j8n 2 N k g
3 Initialize resource allocation profiles fR n j 8n 2 N k g
4 while True do
5 stop = True
6 for each task n 2 N k do
7 Update � t

n;k and � t
n;k based on (14) and (15)

8 Update R t
n

9 if jcompletion time of task n � D n j > � then
10 stop = False

11 if stop then
12 break
13 if t % Tch == 0 then
14 Run Heuristic Sub-channel Allocation from (13)

15 t = t + 1

16 return fR t
n j 8n 2 N k g

V. DSM: MULTI-DEVICE AND MULTI-SERVER
DISTRIBUTED TASK OFFLOADING GAME

The sub-problem DSM is solved by performing a multi-
device and multi-server task offloading game, where end-
devices always offload their tasks to the edge servers based
on their current preferences. It considers the following char-
acteristics: 1) The edge servers’ objective is to reduce the
overall system energy consumption i.e., with sub-problem

CRA, EFFECT minimizes the energy consumption of all end-
devices in a centralized manner and 2) The end-devices are
inherently selfish; thus they are only concerned about reducing
their own energy consumption i.e., with sub-problem DSM,
EFFECT minimizes the energy consumption of all devices
in a distributed manner. 3) Any unilateral strategy update
may affect the preferences of all end-devices and may lead
to continuous updating of individual strategies. In EFFECT,
we aim to find a Nash equilibrium (NE) for the proposed
offloading game and analyze the convergence of such strategy
update process.

A. Game Formulation

In order to formulate a game for task offloading sub-
problem DSM, we use a 3-dimensional strategy space which is
defined as S ∆

= [A,J ,R]. The strategy of end-device n at up-
date iteration t is denoted by sn(t) = [an(t), Jn,m(t),Rn(t)].
It indicates the offloading decision an(t), the execution profile
Jn,m(t), and the resource allocation profile Rn(t) that are
made by end-device n. In EFFECT, a global strategy profile
is generated and maintained by the framework URB, which is
defined as S(t) = {s0(t), s1(t), .., sN (t)}. We define s�n(t)
as the set of offloading strategies made by all other end-
devices except for end-device n. Thus, the energy consumption
function for end-device n can be formulated as:

ηn(sn(t), s�n(t)) =

{
ELn if Ifan(t)=0g = 1

En,k(Jn,m(t)) if Ifan(t)=kg = 1
(16)

The multi-device and multi-server task offloading problem
is formulated as a strategic game with individual utilities
calculated by Eq (16). Given s�n(t), each end-device chooses
a best strategy sn(t) to minimize its own energy consumption
(in a selfish manner) where ∀n ∈ N ,

sn(t) = argmin
sn(t)2S

ηn(sn(t), s�n(t)) (P3)

It is to be noted that (P3) can be treated as N parallelized sub-
sub-problems sharing the same global strategy profile S(t),
thereby significantly reducing the computation overhead.

Remark2: In any energy-aware framework, having end-
device run optimization algorithms can be counterproductive.
Thus EFFECT employs Helper processes that can concur-
rently make task offloading decisions for all devices. Helpers
(as shown in Fig. 5) reside within edge nodes and provide
energy optimization service for a set of end-devices. To
avoid redundant computation during game iteration, a central
database is used for caching historical optimization outcomes
(from Algo. 1) and is shared among all the Helpers.

In accordance to Remark 2, EFFECT framework URB
assigns a Helper process to each end-device (randomly or from
the nearest edge node) and applies the Best Response Strategy
algorithm (in response to s�n(t)) on Helpers in order to find
the best strategy sn(t) for individual devices. At the same
time, the URB broadcasts the current global strategy profile

498

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on December 20,2021 at 10:00:22 UTC from IEEE Xplore. Restrictions apply.

S(t) to all the Helpers. The Best Response Strategy algorithm
running on Helpers is described in Algo. 2.

Algorithm 2: Best Response Strategy For Device n
1 Receive strategies made by other end-devices s� n (t) from

URB; Initialize minimal energy consumption E � = E L
n

2 for each edge server k 2 K do
3 Get the list of offloaded tasks on server k: N k
4 for each Jn;m 2 J n do
5 Run Algo. 1 to find the best R n , then calculate En;k
6 if E � > E n;k then
7 E � = En;k , sn (t) = [k; Jn;m ; R n]

8 return sn (t)

B. Nash Equilibrium and Convergence

Here we explore the Nash Equilibrium (NE) characteristics
for EFFECT’s proposed multi-device and multi-server task
offloading game. As mentioned earlier, EFFECT assumes that
the end-devices belonging to individual teams/agencies are
selfish in nature and are only concerned about their own energy
consumption.

Theorem 1: The multi-device and multi-server task offload-
ing game with a global cost function φ(S) defined in Eq. (17)
is a potential game which always has a NE.

φ(S) =

N∑
n=1

(
κYn,m[fNn,k]2 + pn,k

Zn,m

B0 log2

(
1 +

pn,kh2
n,k

N0

))
(17)

Proof: The details of the proof is trivial and so is skipped
for the sake of brevity. For now, we will assume that the game
will always have a NE S� and the finite improvement property
(FIP) [19], [20].

C. Priority Based Request Update Policy

Fig. 5: The logical diagram of proposed distributed multi-device and multi-
server task offloading game components within the EFFECT framework

Algo. 3 describes the proposed multi-device and multi-
server offloading strategy that the EFFECT framework applies

to find the improvement path that leads to the NE (based on
FIP) built upon Algo. 2. In Algo. 3, steps 6-9 are distributed
on individual Helpers (i.e., DSM) that send update requests
sn(t) to the URB. However, only one request is accepted by
the URB at each iteration among all end-devices’ requests that
want to change their offloading decisions (sn(t− 1) 6= sn(t)).
Compared to the random request selection policy used in [19],
[20], EFFECT rather adopts an energy-efficiency priority
based request update policy. In order to satisfy the objective
of CRA, the priority is maintained according to:

ρn(t) = ELn − ηn(sn(t), s�n(t))

It indicates the energy saving obtained from task offloading
against local-only computation (i.e., an(t) = 0). In EFFECT,
the request with highest ρn(t) is accepted. The algorithm
terminates when there are no more update requests or the
algorithm has reached the maximum number of iterations
tmax, whichever comes first.

Algorithm 3: Game-based Task Offloading Algorithm
1 Collect execution profiles from APs as described in section

III-B.
2 Initialize a global strategy S� with all devices selecting the

local-only model.
3 Assign Helper process to each task.
4 while t < t max or not all tasks are completed by the

deadline do
5 request = ;
6 for each device n 2 N do
7 Send s� n (t � 1) to Helper(Algo. 2) of device n and

get sn (t)
8 if sn (t � 1) 6= sn (t) then
9 request:add(sn (t))

10 if request 6= ; then
11 Accept request: s�

n sn (t), where
n = argmax

n 2N
� n (t)

12 else
13 break
14 t t + 1
15 return S�

VI. PERFORMANCE EVALUATION

In this section, we present EFFECT framework prototype
and experimental results; followed by simulation results.

A. Testbed Design, Implementation, and Experiment Results

In order to evaluate the performance of the EFFECT
resource management on ‘near real-world’ edge computing
platform, we design a small virtual testbed using Amazon EC2
service with 6 end-device instances (@2.3 GHz 1 vCPU), 2
edge server instances (the performance has been adjusted to
@2.3 GHz 8 vCPUs and @2.3 GHz 6 vCPUs), and 1 URB
instance (@2.3 GHz 1 vCPU) as shown in Fig 6. We use
TCP/IP socket programming to simulate the message passing
on the control channels for EFFECT framework described in

499

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on December 20,2021 at 10:00:22 UTC from IEEE Xplore. Restrictions apply.

Fig. 5 (sub-channel bandwidth is simulated as 125 KHz and
the maximum transmission power is assumed to be 1 watt).

Fig. 6: EFFECT framework prototype implementation and testbed design

1) Testbed design and implementation: In order to imple-
ment a multi-device, multi-server task offloading game on a
practical development platform, we choose Apache Storm [3],
[28] as the distributed stream processing computation platform
for the testbed design. In Apache Storm, the communication
between jobs are described as data streams. Jobs can either
be spouts, i.e., a source of streams or bolts, i.e., consume
and process input streams with the major roles being Nim-
bus, Zookeeper, and Supervisor. The role-matching (shown in
Fig. 6) between Apache Storm and EFFECT are described as
follows:

1. The edge servers within the edge units and end-devices
are registered as Supervisor nodes. However the end-device
Supervisors only provide service to their own local-processing
jobs. These nodes contain a list of “worker” processes,
whereas each worker process executes a subset of task jobs.

2. The URB works as the Nimbus as well as the Zookeeper
that distributes the tasks and coordinates the communication
between the nodes. The end-devices submit their task topology
source files alone with the estimated execution profile list
(from subsection VI-A1) to the Nimbus.

3. A custom scheduler that runs the EFFECT algorithms is
deployed to perform server selection and job assignment. CPU
allocation is performed using cpulimit [29] tool.

Fig. 7: Applications with different image quality and frame resolutions used
for the testbed

In order to mimic computation-intensive and real-time video
processing tasks, we implement 6 applications with 2 jobs, as
shown in Fig 7. The first job of each application (except APP6)
is a lossy PNG compression (often the first stage of video
processing) with different image quality options in pngquant
algorithm [30]. The second job is objection detection through
YOLOv3 algorithms [31] using different frame resolutions.

Fig. 8: Computation resource requirement estimation for different applications

For the experiments, we first have to generate the numeric
values for execution profiles Jn. Thus, we run pngquant
and YOLOv3 with different configurations on server1 inde-
pendently without running the background processes. With
the help of cpulimit tool, we monitor the execution latency
under different CPU utilization and estimate the computation
complexity of each stage by taking the product of delay and
the CPU usage. The computation needs of both jobs and data
sizes for each application are given in Fig. 8. In Fig. 8 (a)
we see that YOLOv3 consumes much more CPU resources
than pngquant and the CPU demands of YOLOv3 alter greatly
when the input frame uses different resolutions. Among all the
applications, the APP3 has the heaviest computation tasks with
intensive YOLOv3. On the other hand, in Fig. 8 (b) we see
that if devices choose to conduct partial task offloading by
running pngquant locally, the data-transmit requirement can
be significantly reduced (70%− 80%).

2) Experiment results: We study 4 cases where the avail-
ability of network resources is at different levels while main-
taining the same amount of computation resources (CPU
cycles). Case 1 and Case 2 use EFFECT for CPU and sub-
channel allocation, while in Case 3 and Case 4, we perform a
competing fair CPU allocation, where the CPU resources are
evenly allocated to the offloaded task without considering the
task deadline.
Case 1: In this case (as shown in Fig. 9 (a) and (e)) we
see the application task behavior with EFFECT when network
resource availability is sufficient, e.g., 48 sub-channels. From
Fig. 9 (a) we see that with EFFECT each tasks are allocated
enough sub-channels (i.e., 15+). Thus they are more likely to
select full task offloading (i.e., no local computation as shown
in Fig. 9 (e)) as energy consumed by data transmission only
accounts for a small part of the total energy consumption.

500

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on December 20,2021 at 10:00:22 UTC from IEEE Xplore. Restrictions apply.

Fig. 9: Computation and network resource allocation for different applications; Case 1: (a), (e); Case 2: (b), (f), Case 3: (c), (g), Case 4: (d), (h))

Case 2: As shown in Fig. 9 (b) and (f), in this case we
instrument fewer sub-channels for data transmission (only 15
sub-channels in comparison to Case 1). Therefore in Fig. 9 (b)
and (f), all applications barring APP6 (which only has one job)
perform partial task offloading (i.e., some local computation)
to reduce the data transmission requirements causing fewer
sub-channel allocation.

Case 3: In order to make this case of fair allocation (as
shown in Fig. 9 (c) and (g)) comparable to Case 1, we
ensure sufficient network resources by keeping number of
sub-channels to 48 with the sub-channel allocation process
still following (13). We see that with fixed CPU allocation,
APP1 and APP3 exhibit significant domination in terms of
sub-channel occupancy as such applications must use more
sub-channels to make up for the lack of computing resources.
This in turn has a negative effect on channel efficiency.

Case 4: In this fair allocation scenario with 15 sub-channels
(as shown in Fig. 9 (d) - (h)) comparable to Case 2, we see
that APP1, APP2, and APP4 conduct partial task offloading by
running pngquant locally, while APP3 and APP6 offload all
computations to the edge servers resulting APP5 processing
all the jobs locally. This signifies the inefficiency of fair CPU
allocation caused by not considering the nature of applications.

Fig. 10: a) Energy consumption on data transmission for individual applica-
tions. b) Energy consumption of all applications combined for different cases.

The comparison of energy consumption between the four
cases are shown in Fig. 10. As excepted, the availability
of edge resources (specifically sub-channels in these cases)
plays a significant role in task offloading. Between Case 1
and Case 2, the energy consumption can be largely reduced
when there are more sub-channels in the system. This is
especially true for APP6 which is unable to reduce its data
transmission requirement by task partition (from Fig. 10 (a)).
In comparison, all applications need to spend more total energy
and on data transmission under fair CPU allocation (Case 1
vs. Case 3 and Case 2 vs. Case 4) as shown in Fig. 10 (b).
Overall, compared to fair CPU allocation, EFFECT saves 40%
(in sufficient network resource scenarios) to 60% (in limited
network resource scenarios) on the total energy consumption.

B. Simulation Results

We also evaluate EFFECT performance against a larger set
of applications and edge servers via simulation. In the simula-
tion, the bandwidth of each sub-channel is set to 2 MHz. The
channel gains are modeled by independent Rayleigh fading
with average power loss set to 10�3 and the white Gaussian
noise N0 is configured at 10�9 W [26]. The computation
capacity of end-devices are set between 1.75 GHz and 2.5
GHz that match with general processing speeds of commodity
smartphones. The frame sizes and the deadlines are set to 500
- 1000 KB and 0.5 - 1 seconds respectively. Here, we measure
the computation capacity of the edge server by counting the
number of computational units (e.g., vCPUs). It is assumed
that the computation speed of each vCPU is tuned at 1.5
GHz. The stop point ε from Algo. 1 is set to 1 ms which
signifies that all tasks should be finished within 1ms before
their corresponding deadlines in order to ensure energy saving.

1) Evaluation of sub-problem CRA: The evaluation uses
10 end-devices with fixed execution profiles Jn,m (pre-
confirmed). The summation of computation complexity of
processing the remote and local jobs are uniformly distributed
between 0.2 × 109 cycles and 0.75 × 109 cycles (for Xn,m

and Yn,m). We compare EFFECT to the following strategies:

501

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on December 20,2021 at 10:00:22 UTC from IEEE Xplore. Restrictions apply.

1) Local: All tasks are executed on-device, the computation
speeds are configured according to Remark 1.

2) Joint Resource with Fair Sub-channel Allocation
(JR/FS): The resource allocation profile Rn is obtained
by Algo. 1, however the sub-channels are evenly as-
signed to each offloaded task.

3) Joint Resource with Proportional Computation Alloca-
tion (JR/PC): The resource allocation profile Rn is
obtained by Algo. 1, however the sub-channels are
evenly assigned to each offloaded task and the amount of
computation resources obtained by each task is directly
proportional to their computation demands.

Fig. 11: The energy saving evaluation of CRA. a) The computation capacity
is selected as 8 vCPUs. b) The number of sub-channels is fixed at 40.

Local vs. Edge: We now seek in which scenarios task offload-
ing is beneficial to end-devices compared to local computation.
We first compare the energy consumption under different
number of sub-channels and vCPUs. Fig. 11 (a) shows the
impact of data transmission. With fewer sub-channels in the
system, the energy spent on data transmission outweighs
the energy preservation benefits of remote computation. To
ensure energy saving compared to local computation mode, the
strategy JR/PC requires at least 34 sub-channels, while JR/FS
and EFFECT need 29 and 26 sub-channels, respectively. On
the other hand, Fig. 11 (b) shows that the computation capacity
of edge servers plays a great role in energy saving. In order to
save energy, it shows that JR/FS and EFFECT require at least
5 vCPUs, while JR/PC needs at least 7 vCPUs. In all cases,
EFFECT consistently outperforms the other two strategies.

Fig. 12: The schedulability evaluation of sub-problem CRA. a) Results with
5 vCPUs and 40 sub-channels. b) Results with 8 vCPUs and 20 sub-channels.

Schedulability: The schedulability of execution profiles in
terms of deadline satisfaction against different resource al-
location strategies are shown in Fig. 12. The JR/PC strategy
suffers from poor schedulability as it ignores the heterogeneity
of execution profiles. Whereas, EFFECT jointly optimizes the
sub-channel and transmission power allocation as well as the
device and edge server computation speed allocation, thus
guaranteeing very high schedulability. While JR/FS strategy
performs a similar high schedulability, it consumes more
energy cost compared to EFFECT as shown in Fig. 11.

Fig. 13: The energy consumption comparisons between full and partial
offloading with amount of saved energy.

Full vs. partial offloading: As it is non-trivial to measure
and compare full and partial task offloading when execution
profiles have arbitrary computation demands and data sizes, we
define a tuple metric (rD, rC) to indicate the partial offloading
features in order to perform meaningful evaluation. Here, rD

denotes the ratio of intermediate data size to raw data size
with rC implying the ratio of local-processing computation to
total computation. We then compare the energy consumption
between the two offloading strategies under different number
of sub-channels as well as different (rD, rC) combinations.
For this simulation, the edge server computation is fixed at 5
vCPUs. Fig. 13 (a) shows that in cases with execution profiles
(rD = 75%, rC = 30%) and with more than 25 sub-channels,
full offloading provides a better energy saving solution, while
in Fig. 13 (b), partial offloading can save more energy (denoted
by colored areas) with (rD = 60%, rC = 20%) . Evidently, the
lower the ratio of (rD, rC), the higher the priority of adopting
the partial task offload strategy.

2) System convergence: We next evaluate the performance
of EFFECT Algo. 3 for sub-problem DSM by showing the
system convergence. In this simulation, each edge server has
10 to 20 sub-channels and 3 to 5 vCPUs. The task execution
profiles are generated by DAGs with 2 to 4 jobs and the job
complexity varies between 0.2× 109 and 0.75× 109 cycles.

The objective of this evaluation is to show that the task
offloading game algorithm terminates after few iterations and
no device can further reduce its energy consumption by
unilaterally changing its strategy, i.e., all end-devices reach
NE. Fig. 14 (a) shows that all devices select local computation
model (i.e., an(0) = 0) at the very beginning of the game.
Based on FIP (in Section IV), the improvement path shown in

502

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on December 20,2021 at 10:00:22 UTC from IEEE Xplore. Restrictions apply.

