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Abstract—This paper provides a novel solution for devel-
oping a virtual keyboard and mouse (VKM) system that is
easily manageable and portable. The traditional keyboards and
mouse devices take up valuable desk space and are not easily
customizable to different languages. On-screen keyboards and
3-D cameras are alternatives, but they also have drawbacks.
Our proposed method makes use of computer vision techniques
and calls for a mini-projector and a web camera as necessary
hardware. The system tracks hand keypoints to detect real-
time touch events and uses the Mediapipe tool to detect hands
and keystrokes. The mouse functionality is also implemented by
monitoring the finger hovering. Through experimentation, we
show that our VKM solution can provide an accuracy of >90%
for detecting the correct keystroke, with a typing speed of ~55
letters/min.

Index Terms—Virtual keyboard, user interface, computer
vision, hand gesture, touch detection

I. INTRODUCTION

Electronic devices have undergone a tremendous change
over the past several decades, with ever-increasing computing
power and decreasing size. In the computing world, machines
have become more compact with time, where the efforts were
to carry out complicated operations with the smallest equip-
ment possible. Some sophisticated computers can combine
the CPU and monitor into a single unit. However, there hasn’t
been a reliable replacement for the reliance on conventional
keyboards and mouse devices which still take up significant
desk space. Conventional keyboards also lack versatility and
support a limited number of languages. However, we may
get around this restriction and enable cross-lingual typing
by using “projected keyboards”, giving users the comfort of
typing in their native tongues. While on-screen keyboards
provide a partial answer, they frequently take up a sizable
area on the screen.

Existing approaches and their limitation: Numerous
studies have been conducted in this field, with the broad goal
of developing a virtual keyboard and mouse system that does
away with the requirement for physical input devices [1]-
[5]. The main technology used in these earlier attempts to
accomplish this goal is through the use of laser keyboards,
but these devices are rather slow and error-prone [2]. Apart
from laser keyboards, many of the other works use expensive
devices like depth cameras, touch gloves, or sensors like
the Leap Motion sensor. This makes the solutions far more
expensive than typical keyboards and mouse devices; for
example, the Asus Xtion depth camera used in [1] costs
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Fig. 1. (a) Our experimental setup for the Virtual keyboard. Illustration of
the projected keyboard for (b) English and (c) Japanese languages.

>$400 [6], whereas the Leap Motion sensor used in [3] costs
>$100 [7]. Therefore, these solutions necessitate costly initial
setups and are impractical for general deployment.

Our contribution: In this context, we develop a virtual
keyboard and mouse (VKM) solution — the proposed tech-
nique uses computer vision concepts and provides a more
reasonably priced solution that only needs a mini-projector
and a web camera, which incur an additional hardware cost
of <$100. The overall model is shown in Fig. 1(a). The mini-
projector projects a keyboard onto the table surface, where
the user is willing to type, whereas the camera captures the
hand movements. The camera inputs are then analyzed to
accurately track the coordinates of hand keypoints by using
the Mediapipe hands algorithm [8]. A Dynamic Time Warping
(DTW) technique [9] is then used to find real-time touch
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events and detect keystrokes, by examining the changes in
the angles created by these keypoints over time. The corre-
sponding fingertip coordinate is then used to infer the typed
key. With extensive experimentation, we demonstrate that the
proposed VKM solution achieves an accuracy of >90% with
a typing speed of ~55 letters/min, and even higher at a slower
typing speed. VKM is also flexible enough to include various
customization, like multiple languages, shapes, etc., as shown
in Fig. 1(b)-(c). We also include features like mouse usage
and left/right clicks in our VKM solution.

Paper organization: The paper is organized as follows.
Different stages of our proposed VKM scheme is discussed
in section II. Section III summarizes our detailed experimental
evaluations. The paper is concluded in section IV along with
some future scope for improvements.

II. FRAMEWORK FOR OUR VIRTUAL KEYBOARD

Our hardware setup consists of an external webcam and a
mini-projector; we specifically use the Livato T300 Mini (800
Im / Remote Controller) Portable Projector (Black) [10] with
the Logitech C270 Digital HD camera [11]. An HDMI cable
is used to connect the projector to the nearby laptop or PC,
and a USB connector is used to attach the webcam. White
sheets are attached to the area below where the keyboard
is displayed, to ensure that the user can see the projected
keyboard clearly. The projector and camera are attached
together and set up at a height of roughly 60 cm above the
surface as shown in Fig. 1(a). Below we discuss various steps
of VKM system’s implementation in detail.

A. Detection of keyboard coordinates

Notice that the distance between the surface and the hard-
ware (consisting of the camera and the projector) may change
in a real setting. Therefore, to make the approach versatile,
we need to make sure that the scheme works across numerous
settings. To automatically find out the projected keyboard size,
the four corners of our keyboard are designed with certain
shapes: a triangle at top left, a hexagon at top right, an octagon
at bottom left, and a pentagon at bottom right as shown
in Fig. 1(b)-(c). These shapes are immediately recognizable
within the image and can be located using a general shape
identification technique [12] that makes use of contours,
allowing our solution to acquire the coordinates for each
shape. We next determine the relative coordinates of the keys
with respect to these discovered shapes. When the keyboard’s
size changes, the coordinates are scaled accordingly. This
strategy guarantees that the requisite relativity in our keyboard
coordinates are preserved.

B. Detection of the hands

The user then presents his hand to the camera in the
following step, during which we’ll figure out how to recognize
the hand and pinpoint important features like the tips of the
fingers. For hand detection, we use the “MediaPipe Hands”
framework [8], a transfer learning model developed on a
sizable dataset made up of millions of hand samples. This
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(@) (b)
Fig. 2. Joints corresponding to different fingers provided by the Mediapipe
tool; the figures are adapted from [8] (licensed under CC BY 4.0 DEED).
The red dots show different joints, whereas the black circles around the red
dots show the selected joints for (a) model-1, (b) model-2, and (c) model-3.
| 4
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(b)
Fig. 3. Z-axis coordinates of a hand from the same camera height in different
times instances (a)-(b).

structure works well in a variety of lighting conditions and
with different hand textures. For this model to work well,
we need to adjust two crucial parameters: (a) the minimum
detection confidence and (b) the minimum tracking confidence.
Below we summarize these two tuning parameters.

Detection confidence threshold: The minimal confidence
threshold is used to identify the detection of a hand. A
detected hand will not be regarded as a valid detection if
its confidence score is below this limit. Raising this amount
boosts the likelihood that hands will be detected correctly,
but it also raises the risk that they won’t be detected if the
confidence ratings fall short of the higher threshold., i.e. the
higher values denote a stricter confidence level.

Tracking confidence threshold: Once a hand is iden-
tified, hand tracking is used to keep track of the hand’s
landmarks (such as the locations of the fingertips and palm)
over succeeding frames. The minimal confidence threshold is
used to successfully perform the hand tracking. Increasing
this threshold improves tracking accuracy but may lessen
sensitivity to minute hand movements.

Both of these parameter’s range vary from O to 1, however,
can be adjusted depending on the application’s needs and
current circumstances. In our configuration, the minimum
tracking confidence is set to 0.6, and the minimum detection
confidence is set to 0.7. Depending on the camera quality,
these numbers may need to be adjusted; greater values may
be used for the high-quality cameras, while lower values may
be suitable for the lesser-quality ones.

C. Touch detection on a surface

We now use the webcam images and perform some intuitive
analysis using the MediaPipe tool to register touches. The
wrist point, index fingertip, and thumb tip are just a few of
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Fig. 4. Mediapipe finger tracking when the index finger types the letter ‘t’; the numbers show the angles created by joints 8, 7, and 5 (a) before, (b) during,

and (c) after the touch.

the 21 critical points that the MediaPipe hands architecture
generates for each hand after successfully detecting the user’s
hands. We examine how these landmarks enable touch recog-
nition, i.e. when a finger is touching the surface or typing a
letter. We begin by obtaining the coordinates of three finger
joints because they are essential to the calculations that follow.
These three joint coordinates provide angular changes during
flexes while performing a touch. These angular changes must
be significantly high in order to perform correct predictions.
Therefore, we need to target heavy-usage finger joints and not
the stationary ones.

As observed from Fig. 2, each of the five fingers has four
joint points (including one for the tip), plus a fifth point
for the wrist joint. We can record the x-y coordinates for
“some” of these joints and can calculate the angles in between
them to detect the touches. For example, in Fig. 2(a), joints
6, 7, and 8 of the index finger are chosen and the angle
between 6-7 and 7-8 is calculated, whereas in Fig. 2(b), joints
0, 6 and 8 are chosen for angle calculation. Various such
choices of these joints are possible; however, based on our
thorough evaluations we found that the choices of Fig. 2(a)-
(c) demonstrate good performance; we denote these choices
as models 1-3 respectively.

Using the MediaPipe library, we determine the angles
between finger joints for all three models. Notice that we did
not use the z-axis coordinates for the angle calculation, as the
Mediapipe z-axis coordinates are inaccurate and unstable as
seen from Fig. 3. From this figure, we can observe that, even
if the hand position is not changing, the z-axis coordinates
are changing drastically. We therefore use the x-y coordinates
to find out the angle between different finger joints. For
angle calculation, we use the arctangent-based trigonometric
calculations with the x-y coordinates of 3 joint points [13].
Fig. 4(a)-(c) shows how the angle between the joints 8, 7,
and 5 of the index finger changes while typing ‘t’. This figure
clearly shows that our angle calculation-based touch detection
solution indeed provides a cheaper alternative to the depth
camera-based approaches [1].

Fig. 5 shows the angular variations of different fingers
while typing using model-2. Notice that the angles are almost
always close to 180 degrees when the user places their hands
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Fig. 5. Angular variation in between different finger joints in model-2.

flat above the keyboard. However, we observe that during
typing, these finger angles stray from 180 degrees, drop below
some threshold, and then return to 180 degrees after the touch.

Therefore, one simple technique for touch detection is
to record if the angle corresponding to any finger is going
beyond some threshold. However, this simple technique has
its own challenges, because this threshold will greatly depend
on (a) an individual’s hand sizes and typing patterns, (b)
the height between the camera and the surface where the
keyboard is projected etc. On the other hand, from Fig. 5 we
can observe that, with the same setting, the angular change
is different for different fingers. In fact, we also observe that
for the same finger, the angle values are different for different
keystrokes; therefore, setting a uniform threshold is challeng-
ing and perhaps inappropriate. To alleviate this problem, we
adopt the Dynamic Time Warping (DTW) technique [9] to
register the touch.

The DTW technique is used to compare how close two
temporal sequences are even if they are of different lengths or
have temporal abnormalities. This method is useful when tim-
ing irregularities or fluctuations render conventional measure-
ments like Euclidean distance or correlation inappropriate. We
choose DTW especially because of the fact that different users
type at different speeds; therefore, a time warping approach
is essential instead of directly matching the timing sequences.
For our experiments, we use the fast DTW approach [14], to
ensure real-time performance.

In our solution, we store some known touch patterns in a
dictionary for all the fingers. We then use DTW to compare
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these stored temporal sequences with the ones produced
by each finger at runtime, yielding a DTW score. Through
experiments, we determine a DTW threshold for each finger.
The two sequences are deemed to be similar if the resultant
score is below the threshold, and we record it as a touch.

D. The mapping of touch coordinates to buttons

After a touch is properly detected, the next challenge is to
map it to the proper coordinates and display the associated
letter on the screen. To implement this, we keep a record of
the last 30 touches (i.e. the x-y coordinates for all the finger
joints and the angles between them) at any iteration. When
a touch is detected for a finger, we extract the time instance
when the angle is minimum (as this instance marks the actual
touch), and record the x-y coordinates of that fingertip. Once
we know the coordinates of the contacted fingertip, we can
take the closest key as the key the user wants to type. The
solution can also be customized to add some special keys,
like the “backspace” feature as shown in Fig. 1(b)-(c).

E. Additional features

As opposed to ordinary keyboards, the VKM solution
can also provide an array of extended functionalities and
flexibility. For example, users can change the size of the
displayed keyboard by using zoom-in (+) and zoom-out (-
) buttons, as shown in Fig. 1(b)-(c). This provides some
flexibility to the users to switch between larger and smaller
keyboard sizes based on their individual needs. Additionally,
we develop a mouse system that uses the user’s wrist position
to track the cursor’s movement and uses the index and middle
fingers to implement the mouse clicks. Furthermore, our
system’s adaptability makes it possible for future additions to
support keyboards with different languages, forms, and design
requirements. A brief demonstration of our proposed solution
can be found in https://youtu.be/YPeB7Iuy-Cl.

III. EXPERIMENTAL EVALUATION

In this section, we provide an in-depth analysis of VKM
models shown in Fig. 2. We first conduct a thorough analysis
of the system with a single user before broadening our
studies to incorporate multiple users with differing hand sizes,
complexions, and typing rates. The goal is to make sure that
our solution is flexible and adaptable for a wide range of users.
To set the best DTW thresholds, we thoroughly experimented
with all the fingers and set the best threshold for each finger.

A. Evaluation of the accuracy of each keystroke

We first evaluate the accuracy of VKM for a single user,
who is asked to type all the letters on the keyboard multiple
times. The user is asked to type the keys at different typing
speeds; we record the corresponding hand movements and run
different models to compare their accuracies.

Fig. 6 shows the typing accuracy of these models at
different typing speeds. From Fig. 6 we can observe that the
accuracy of VKM remains above ~86% for all models up to
a typing speed of ~55 letters/minute, whereas for model-2
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Fig. 6. Accuracy of three models in VKM at different typing speeds.
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Fig. 7. The overall confusion matrix (Accuracy: ~0.99, Precision: ~0.99,

Recall: ~0.99, F1 Score: ~0.99).

the accuracy remains above ~90%. We can also observe that
the accuracy across all models decreases by ~5-6% as typing
speed increases from 12 letters/minute to 55 letters/minute.
Even if the faster typing results in more typos, we can observe
from our results that the accuracy drop is rather modest.
From Fig. 6, we can also observe that model-2 in general
performs slightly better than the other two. This performance
can be explained from Fig. 2; where we can observe that while
typing, the chosen joint points in model-2 (i.e. 0, 6 and 8)
demonstrate the maximum angular change as compared to the
other two models. Therefore, for all the remaining results, we
choose to use model-2 for the VKM performance evaluations.

B. Typing a sentence

We next test the accuracy of VKM from multiple users; we
involve 5 volunteers with diverse hand sizes and skin tones.
The volunteers are given instructions about the experiments
and how to use the VKM solution. They are then asked to
type the following sentence, consisting of 43 letters (including
spaces).

“The quick brown fox jumps over the lazy dog.”

We chose to use this pangram so that all the letters on the
keyboard are typed at least once, and the overall accuracy can
be measured. Users are instructed to retype their input if the
model fails to recognize their touch. Each user is allowed to
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Fig. 8. (a) The outcome of sentence typing. (b) Variation of accuracy corresponding with different typing speeds, while typing a paragraph.

complete his task at his own pace or typing speed. At the
end, we compute the total number of additional touches each
user is required to make. The accuracy is then determined
by contrasting the frequency of correct predictions with the
standard 43 touches.

For each user, we create a confusion matrix by comparing
the expected and actual letters given by the model. The overall
confusion matrix is shown in Fig. 7. From these figure we can
observe that the model performs remarkably well, reaching
an overall accuracy of 99.53%. Fig. 8(a) provides a snapshot
when one of the users complete typing the pangram.

C. Typing a paragraph

We next evaluate the performance of VKM with the same
volunteers but at different typing speeds. We ask them to type
a short paragraph; the purpose is to assess how well our model
is to perform real-world typing tasks. We chose the following
paragraph where each letter appears at least once.

“On a hot summer day, a hungry lazy lion roamed the
forest. He spotted a rabbit but let it go, thinking it would
not satisfy his hunger. He then joyfully chased a quick
deer but could not keep up. Exhausted and defeated, he
returned to find the rabbit, but it was gone. The lion
remained hungry and learned that greed is never good.”

Fig. 8(b) shows the accuracy for all the users. From this
figure, we can observe that the accuracy drops mildly (up to
~6%) with the increase in typing speed, however, remains
above ~90% with a typing speed of 55 letters/minute. The
performance of individual users also varies up to ~4%. The
overall accuracy of all the users remains above ~95%. These
results clearly demonstrate that our proposed VKM scheme
performs extremely well in identifying the keystrokes across
different users, at a moderate typing speed.

IV. CONCLUSIONS AND DISCUSSION

In this paper, we demonstrate VKM for designing a
projection-based virtual keyboard and mouse solution that
does away with the requirement for actual input devices.
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The system makes use of computer vision techniques and
has hardware needs of a projector and a web camera. The
system shows promising adaptability, typing speed (~55
letters/minute), and accuracy (more than 90%). The system
also enables portability, versatility, and cross-lingual typing
capabilities that greatly improve the user experience.

In future, we want to improve this solution by taking
into account various hand sizes and shapes, increasing typ-
ing speed, and incorporating enhanced gesture detection to
make the solution more interactive. In addition to that, the
current VKM solution does not include detecting multiple
simultaneous keystrokes (like Ctrl+Alt+Del or Ctrl+B). These
enhancements are part of our future works.
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