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Abstract—An emerging application of wireless sensing is lo-
cating and tracking humans in their living environments, a
primitive that can be leveraged in both daily life applications
and emergency situations. However, most proposed methods have
limited spatial resolution when multiple humans are in close
vicinity. The problem becomes exacerbated when there is no line-
of-sight path to the humans. In this paper, we consider multi-
person localization of humans in close vicinity of each other.
We propose the use of synthetic aperture radar that combines
both translation and rotation to increase effective aperture size,
leveraging small rhythmic changes in the radar range due
to human breathing. We experimentally evaluate the proposed
algorithm in both line-of-sight and through-wall cases with three
to five humans in the scene. Our experimental results show that:
(i) larger synthetic apertures due to radar translation improve
multi-person localization, e.g., by 1.42× when the aperture size
is increased by a factor of 2×, and (ii) rotation can largely
compensate for gains provided by translation, e.g., rotating the
radar over 360◦ without changing the aperture size results in
1.22× gains over no rotation. Overall, maximal gains of 2.19× are
achieved by rotating and translating over a 2× larger aperture.

Index Terms—Multi-Person Localization, Synthetic Aperture
Radar, UWB Radar, Translation and Rotation Radar.

I. INTRODUCTION

The increasing demand for precise, non-invasive localization
of human targets in through-the-wall (TTW) scenarios has
attracted considerable research interest over the past decade
[1]–[3]. Such TTW human localization has a wide range of
applications, such as smart homes, security systems, emer-
gency response, disaster management etc. Traditional local-
ization methods, such as cameras or wearable devices, often
suffer from privacy concerns, occlusions, and the need for
continuous human interaction or are infeasible in constrained
environments with low visibility, such as a disaster site. Hence,
WiFi-based or Ultra-wideband (UWB) radar-based solutions
are often considered for human vital sign detection.

Prior Literature: Given the near-ubiquity of WiFi infras-
tructure, WiFi-based solutions offer a cost-effective and readily
deployable option for several indoor sensing use cases [4]–[7].
However, most WiFi signals have low bandwidth compared
to UWB radar, resulting in reduced angular resolution for
distinguishing closely spaced targets in cluttered and congested
environments. UWB Radar signals, in contrast, can penetrate
obstacles, operate in low-visibility conditions, and have higher
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bandwidths, providing better resolution and making it more
suitable for detecting multiple individuals in closed spaces.

Several systems employ UWB radar for vital sign detection,
such as Multi-Breath [8], which employs image process-
ing techniques and tracks respiration in multiple individuals.
Similarly, algorithms like Harmonic Multiple Loop Detection
(HMLD) [9] improve heart and respiration rate estimation
through cyclic spectrum updates. Deep learning techniques,
such as ResNet [10] and MoVi-Fi [11] have been proposed
to improve accuracy in detecting vital signs even under sig-
nificant motion. Higher-order harmonics peak selection has
been proposed in [12] for heart rate and respiration rate.
However, most of these methods consider only line-of-sight
targets. For behind-the-wall person detection, variable mode
decomposition (VMD) has been used to extract breathing
signals from UWB radar captures in [13], [14]. The use of
UWB radar for simultaneously reconstructing obstacle layouts
and localizing human targets behind them has been considered
in [15], [16]. Authors in [17]–[24] have studied synthetic
aperture radar (SAR) for target detections in non-line-of-sight
environments. While promising, these techniques have been
proposed and evaluated for a limited number of human targets.
Thus multi-person localization using UWB radar remains a
topic of interest to be explored in detail.

Contributions: In this paper, we propose a novel approach
involving translation and rotation SAR to improve the de-
tection and localization of closely spaced human targets. By
placing the radar at multiple strategic positions and also
rotating it on its axis at each location, we create a multi-
view synthetic aperture that enhances target resolution. Our
proposed algorithm combines these radar captures from all
radar locations and orientations. We use peak detection and
grouping to create intensity maps of the scene that can be
filtered and analyzed to detect multiple human targets. We
experimentally evaluate the proposed heuristic with different
numbers of human targets in various line-of-sight (LoS) and
TTW settings. Through our experiments, we demonstrate that
2× larger synthetic apertures due to translation improve multi-
person localization error by 1.42×. Furthermore, we show
that rotation can be used to effectively compensate for any
lack of translation freedom, and best performance of 2.19× is
achieved by rotating and translating over 2× larger apertures.

One of our inspirations for exploring multi-person local-
ization is rescuing humans during emergencies from cluttered
environments. Radars could be mounted on the helmets ofIC

A
SS

P 
20

25
 - 

20
25

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 A

co
us

tic
s, 

Sp
ee

ch
 a

nd
 S

ig
na

l P
ro

ce
ss

in
g 

(I
C

A
SS

P)
 | 

97
9-

8-
35

03
-6

87
4-

1/
25

/$
31

.0
0 

©
20

25
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IC

A
SS

P4
96

60
.2

02
5.

10
88

89
67

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on October 15,2025 at 15:39:05 UTC from IEEE Xplore.  Restrictions apply. 



(a) (b) (c)

(d) (e) (f)

Fig. 1: (a) Illustration of our toy experimental setup, along with the (b) raw echo matrix Mp,s from one of the radar positions. After removing the echos
generated from the static surrounding, the (c) resultant matrix captures the effects of echos due to dynamic components. To find out the target range bins
of our interest, we compute (d) the standard deviation σp,s of the dynamic components in each bin. (e) Simple superimposition of σp,s from all the radar
positions do not clearly reveal the person’s locations, however, superposition of our proposed intensity maps Ip from each radar position gives (f) a clearer
picture of the person’s locations. In (e), (f), denotes the radar positions.

rescue workers, and as they walk (translation) and look around
(rotation), a larger effective aperture can be formed. Multiple
radar recordings from several positions and orientations could
be combined to not only expand the radar’s effective field of
view but also increase its spatial resolution [25]–[28].

II. PROBLEM FORMULATION

We consider a system configuration with the radar placed
at different positions p ∈ P and oriented at angles θs =
s∆θ, s ∈ {1, · · · , S = 360◦

∆θ } for rotation increment ∆θ◦.

The radar transmits Gaussian pulses s(tf ) = exp(
−t2f
2σ2 ) across

fast time tf and receives delayed attenuated copies of the
transmitted pulse due to objects in the environment. Multiple
copies of the Gaussian pulse are transmitted across a slow time
index ts. We assume K human targets in the radar’s field-of-
view, whose 2D locations are

{
xk(ts) = xk +∆k(ts)

}K

k=1
,

where ∆k(ts) indicates slight variation in the 2D locations
as a function of the slow time index ts due to breathing-
related chest movements. Then, the radar’s measurements after
matched filtering with the transmitted pulse can be written as:

rmf
p,s(tf ; ts)=

K∑
k=1

√
πσαk,se

−
(

tf−
2∥xk(ts)−p∥2

c
2σ

)2

+np,s, (1)

where αk,s denotes attenuation for the kth human when the
radar transmits towards direction θs, and np,s denotes noise
due to multipath and surrounding secondary static objects.

Collecting the radar measurements across Nr fast time
samples (or “range bins”) and Nf slow time samples, we

obtain a Nr ×Nf 2D radar echo matrix Mp,s. The goal is to
estimate the locations xk of the humans from matrix Mp,s.

III. PROPOSED ALGORITHM

The proposed algorithm consists of multiple stages – the
initial step involves basic preprocessing techniques such as
background subtraction to remove the echoes from the sur-
rounding static objects. Subsequently, the dynamic signal com-
ponents are extracted to detect motion, followed by combining
the observation from multiple radar positions to identify the
location of the individuals. The steps are summarized in the
MPL Algorithm, which are illustrated as follows.
Extracting the breathing signals: The first step is to extract
the breathing signals from Mp,s, which are often mixed with
clutter interference. This is because the transmitted signal from
a radar is reflected from the surrounding static environment,
and therefore extracting the reflections from the human’s body
remains quite challenging. Fig. 1(b) shows the reflected signal
from a typical UWB radar corresponding to a toy experimental
scenario of Fig.1(a), which shows the effect of multiple
reflected components. Therefore, we need to distinguish the
components that are coming from the human’s body from the
ones that are reflected back from the static surroundings. To re-
solve this, we implement a “background subtraction” solution
that extracts only the dynamic components, by subtracting the
mean amplitude of the signals at different distances. This is
expressed in equation (2), where 1

Nf

∑Nf

j=1 Mp,s(i, j) captures
the effects of the static surroundings, and M̃p,s(i, j) is the
resultant matrix after removing the echos due to neighboring
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Algorithm : Multi-Person Localization (MPL)
Input: Radar positions P , number of rotation steps S, number of range bins
Nr , number of slow-time frames Nf , Data matrix of size Nr × Nf for
each radar position and rotation Mp,s, window length for peak detection w,
minimum number of radar position subsets np, threshold for filtering intensity
maps τI , intensity sharpness criteria σI

Output: Set of estimated 2D locations of persons {x̂k}
1: Background subtraction:

M̃p,s(i, j) = Mp,s(i, j)−
1

Nf

Nf∑
j=1

Mp,s(i, j) (2)

2: Compute the standard deviation along the rows of M̃p,s:

σp,s(i) =

√√√√√ 1

Nf − 1

Nf∑
j=1

M̃2
p,s(i, j) (3)

3: Peak detection and grouping:

∀p, s : PeakSet(p, s) = {d|σp,s(d) ≥ σp,s(l)

l = d− w, . . . , d+ w} (4)

∀p ∈ P : Range(p) =

{ S⋃
s=1

PeakSet(p, s)

}
(5)

4: Form intensity map for given radar position p:

Ip(x) =
∑

r∈Range(p)

1√
2πσ2

I

exp

(
−

(∥x− p∥2 − r)2

2σ2
I

)
(6)

5: Combine intensity maps across different subsets of radar positions Cp =
{Pi|Pi ⊆ P, |Pi| ≥ np} and perform multi-person localization:

{x̂k} =

{
x|

∑
Pi∈Cp

∏
p∈Pi

Ip(x) ≥ τI

}
(7)

static objects. Fig. 1(c) shows the background subtracted
outcome of Fig. 1(b), which illustrates the presence of humans
at distances of ∼2-3 meters.
Finding the target range bins: The next step is to find out
the probable bins where humans can be present. To achieve
this, we compute the standard deviation σp,s of the dynamic
components in each bin via equation (3). Fig. 1(d) shows the
standard deviation of the received radar signals over time at
different distances from the radar positions. This figure shows
that the range bins having larger variations correspond to
the bins where humans are present. Also, high variability is
observed at several adjacent bins around the target distances
where the humans are present.
Location estimation: The variability in radar signals can
reveal the presence of people at different distances from the
radar. To estimate the location of the people, we try two
approaches. In the first approach, we superimpose the signal
variations σp,s from multiple radar positions with an intuition
that locations with larger signal variation imply the presence of
people. The outcome of this approach is illustrated in Fig. 1(e),
which shows some variations around 2-3 meters but cannot
clearly reveal the location of the persons.

To alleviate this, we employ a peak finding algorithm to
identify the distances that show higher signal variation from
Fig. 1(d) as expressed in (4)-(5). After this step, we get the

(a) (b)

Fig. 2: Experimental setups, (a) the participants sat in direct line-of-sight of
the radar, and (b) the participants and the radar were separated by a 25 cm
thick brick wall.

set of possible distances Range(p) where high variations are
observed. We next generate the intensity maps Ip around the
radar position p with all distances r ∈ Range(p), where the
intensity is highest at r, and decreases around that distance
following a Gaussian function with standard deviation σI , as
expressed in (6).

Finally, to accurately determine the person’s locations, we
take the product of the intensity maps from multiple radar
positions, which is expressed as

∏
p∈Pi

Ip(x) in (7). The
intersections of these maps suggests the potential locations of
individuals. In our implementation, with |P| radar positions,
we use various combinations of these positions (from

(|P|
np

)
to

(|P|
|P|

)
). Intensity maps from all these combinations are

superimposed to obtain a cumulative intensity map, with an
intuition that even if noise affects the data from certain radar
positions, it is unlikely to occur consistently across all the
positions. Finally, locations beyond the 99th percentile of the
intensity values are extracted from the intensity map to remove
the multipath effects, noise, or false peak identifications as
expressed in (7), where {x̂k} denotes the set of all possible
human locations, and τI denotes 99th percentile intensity.
Fig. 1(f) shows the output of this last step, showing estimated
human locations close to their ground-truth locations.

Notice that the parameter σI influences the localization
outcome and is chosen empirically in our study. A higher
value of σI broadens the intensity maps, leading to high miss
detections, whereas a lower value results in narrow intensity
maps and therefore increases false positive rates. For our
experiments in section IV, we set σI = 0.05.

IV. EXPERIMENTAL RESULTS

A. Implementation & Methodology

Implementation: We implement the MPL Algorithm using
XeThru X4M03 IR-UWB radars [29] from Novelda, which
have a single on-chip transmitter and receiver and operate in
the 6-8.5 GHz and 7.25-10.2 GHz frequency bands. The radar
has an operating range of 9.9 m and a 65◦ beamwidth in
azimuth and elevation. In our experiments, we configure the
radar to transmit at a center frequency of 7.29 GHz, with a
bandwidth of 1.5 GHz and a sampling rate of 23.328 GHz.
Data collection: We collect radar reflections from the environ-
ment across different 2D radar positions and orientations, with
the radar manually translated and rotated at 30◦ increments.
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Fig. 3: Distribution of localization errors with translation and rotation SAR.

Fig. 1(a) illustrates an example scenario with 3 radar positions
(spaced at 1 m increments) and 3 people in the environment.
Data collection per radar position and orientation takes 30 s.
Experiment configurations: We collect data in four key con-
figurations: (1) translation-only, with the radar moved across
three positions spaced at 2m and oriented towards 0◦, (2)
translation-only, with the radar moved across five positions
spaced at 4m and oriented towards 0◦, (3) translation +
rotation, with the radar moved across three positions spaced at
2m and rotated in [0◦, 359◦] in steps of 30◦, and (4) translation
+ rotation, with the radar moved across five positions spaced
at 4m and rotated in [0◦, 359◦] in steps of 30◦. In each
configuration, we conduct experiments in LOS and TTW
scenarios shown in Figs. 2(a)-(b). In total, we collect data
across 20 different settings.
Ground truth: We establish the ground truth 2D positions of
humans in the environment with respect to a global coordinate
system using a measuring tape.
Performance metric: We quantify the multi-person localiza-
tion performance of our algorithm using the Chamfer dis-
tance [30]–[34], defined as follows between two sets of 2D
locations A = {ai ∈ R2}ni=1 and B = {bj ∈ R2}mj=1:

dA,B=
1

2n

n∑
i=1

min
bj∈B

∥ai−bj∥2+
1

2m

m∑
j=1

min
ai∈A

∥ai−bj∥2. (8)

In our evaluation, A = {xk}Kk=1 and B = {x̂k} correspond
to the sets of ground-truth and estimated 2D locations of the
humans in the experimental setup. A lower Chamfer distance
indicates better multi-person localization performance, with a
Chamfer distance of zero indicating perfect localization.

B. Results

Fig. 3 shows the cumulative distribution function (CDF)
of the multi-person localization error of the MPL Algorithm,
quantified via (8), over all 20 settings in which data was
collected. We make two key observations from Fig. 3.
Observation 1: Larger synthetic apertures due to radar trans-
lation improve multi-person localization performance. Fig. 3
shows that 90th-percentile Chamfer distance improves by
1.42× when the radar is translated along a 4 m-long aperture
(5 radar positions) vs a 2 m-long aperture (3 radar positions).

(a) (b)

(c) (d)

Fig. 4: Snapshots of location estimation results at different experimental
instances, where the radar is translated along a 2m-long aperture (3 radar
positions), (a) without and (b) with rotation. Larger synthetic apertures with
4m-long aperture (5 radar positions) (c) without and (d) with rotation, show
improved localization performance. denotes the radar positions.

Observation 2: Rotation can compensate for gains provided
by radar translation. Fig. 3 also shows that a large fraction of
the gains achieved by translation along a 4 m-long aperture
can be obtained instead by radar rotation even with a 2 m-long
aperture. Specifically, the 90th-percentile Chamfer distance
improves by 1.22× when the radar is rotated in [0◦, 359◦]
with a 2 m-long aperture (3 radar positions) as compared to
no rotation, which is comparable to the 1.42× gain achieved
by radar translation along 4 m (5 radar positions). Moreover,
the best performance (2.19× gain) is achieved when the radar
is translated and rotated along a 4 m-long aperture (5 positions)
as compared to the radar translation along a 2 m-long aperture.

Figs. 4(a)-(d) show qualitative intensity plots correspond-
ing to the four experimental configurations considered, with
Fig. 4(a) corresponding to translation along a 2 m-long aper-
ture (3 positions). The reconstruction improves with similar
results when the radar is either: (i) rotated in [0◦, 359◦] without
changing the aperture size in Fig. 4(b), or (ii) translated along
a 4 m aperture (5 positions) in Fig. 4(c), thus verifying Ob-
servations 1 & 2. Finally, Fig. 4(d) shows the best qualitative
performance when the radar is translated and rotated along a
4 m aperture (5 radar positions).

V. CONCLUSION

This paper proposed leveraging radar translation and rota-
tion to improve multi-person localization with UWB radars.
We demonstrated proof-of-concept experimental results show-
ing gains in localizing three to five people in 20 different
line-of-sight and through-the-wall scenarios. Future work will
generalize our proposed methodology to real-world deploy-
ments, e.g., in practical emergency operations with arbitrary
radar trajectories and more cluttered environments.
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