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Smart Sensing, Communication, and Control in Perishable

Food Supply Chain

AMITANGSHU PAL and KRISHNA KANT, Temple University

Transportation and distribution (T&D) of fresh food products is a substantial and increasing part of the

economic activities throughout the world. Unfortunately, fresh food T&D not only suffers from significant

spoilage and waste, but also from dismal efficiency due to tight transit timing constraints between the avail-

ability of harvested food until its delivery to the retailer. Fresh food is also easily contaminated, and together

with deteriorated fresh food is responsible for much of food-borne illnesses.

The logistics operations are undergoing rapid transformation on multiple fronts, including infusion of

information technology in the logistics operations, automation in the physical product handling, standard-

ization of labeling, addressing and packaging, and shared logistics operations under 3rd party logistics (3PL)

and related models. In this article, we discuss how these developments can be exploited to turn fresh food

logistics into an intelligent cyberphysical system driven by online monitoring and associated operational con-

trol to enhance food freshness and safety, reduce food waste, and increase T&D efficiency. Some of the issues

discussed in this context are fresh food quality deterioration processes, food quality/contamination sensing

technologies, communication technologies for transmitting sensed data through the challenging fresh food

media, intelligent management of the T&D pipeline, and various other operational issues. The purpose of

this article is to stimulate further research in this important emerging area that lies at the intersection of

computing and logistics.
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1 INTRODUCTION

Transportation and distribution (T&D) of fresh food is a huge and growing enterprise due to world-
wide sourcing of products and increasing recognition of it benefits. Yet, fresh food transportation
and distribution (T&D) is very inefficient in terms of substantial spoilage and wastage, dismal
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Fig. 1. Food losses categorized by the types and stages of the food pipeline. The four columns (of a commod-
ity type) denote the estimated waste percentages in Europe, North America, Asia, and sub-Saharan Africa,
respectively. Notice that the bars show the food losses in percentage of what enters at each step. The data
for generating this figure are obtained from Reference [77].

utilization of T&D capacity, and large energy and carbon footprint for fuel and cooling. The ineffi-
ciency results primarily from the need to have the transportation capability (e.g., empty containers,
trucks, drivers, loaders) ready when the fresh food becomes available (e.g., harvested) and there
are contracts to be fulfilled. This often results in proactive movement/positioning of empty assets
often known in the industry as “shipping air” and can substantially reduce the usage of available
transport capacity and thus lead to poor efficiencies. The increasing customer expectations of food
in prime condition and without any treatment exacerbates the problem. Current T&D efficiency
estimates are in 10%–20% range, and food spoilage/waste estimates in ∼ 12% range, although the
total food wastage including at the source and by consumers exceeds 40%, or $165B per year in
the US alone. Figure 1 shows the percentage of food loss at different stages (production, post-
harvesting, processing, distribution, and consumption) of the food pipeline, at different regions. A
significant portion of the fresh food losses occur from the post-harvesting to consumption stage
due to poor and uninformed handling/sorting during transportation and storage, lack of adequate
ambient control, and so on (as summarized in Figure 2), which can be largely avoided [16, 22]. The
actual estimates of food losses in the supply chain vary quite a bit. In Reference [129], the losses
in the US supply chain are listed as 2%–30%, but closer to 15%. In Figure 2, the items in black boxes
can also be considered as related to sensing/communications infrastructure in that such an infras-
tructure can detect the problem early and potentially avoid waste by altering delivery schedule or
destination. For example, in India a large amount of food waste happens immediately after harvest
due to the lack of proper storage facilities. In Reference [137], the authors have described the use
of zero-energy cool chambers, which significantly increases the shelf life of the stored fruits and
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Fig. 2. Key causes of food losses and waste (adapted with permission from Reference [22]).

Fig. 3. Storage of (a) fruits and (b) vegetables in cool chamber [137].

vegetables as depicted in Figure 3. Figure 4 shows the effect of ambient control on the chemical
changes of tomatoes and cabbages in three retail outlets after one week of storage, which also
shows a significant amount of quality gain due to ambient control.

In addition, fresh food is almost entirely responsible for large annual incidence of food-borne
illnesses in the US and elsewhere. The CDC maintains extensive data on this subject [48], stating
that “each year roughly 1 in 6 Americans (or 48 million people) get sick, 128,000 are hospitalized,
and 3,000 die of foodborne disease.” Of these, about 46% of cases are due to produce, 20% dairy/eggs,
and the rest to meat/fish. Such food poisoning or contamination happens in different stages of
the food production chain—from farms to the cutting boards in the kitchen. Tracing back the
origin of such food-borne disease is quite challenging due to lack of comprehensive recording of
the handling of the food in the entire supply chain [128]. Some of the worst food-borne illness
outbreaks inthe USA are reported in Reference [24], which shows that such contamination can
happen in any stage of the food pipeline. Although the outbreaks contribute to less than 5% of
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Fig. 4. Percentage change of Ascorbic acid in tomatoes and cabbages from three outlets at ambient and
optimum conditions after seven days [115]. In case of tomatoes, the ambient and optimum conditions are 22–
25°C, 52%–57% relative humidity and 10–12°C; 92%–95% relative humidity, respectively. In case of cabbages,
these numbers are 22–25°C, 52%–55% relative humidity and 0°C, 91%–97% relative humidity, respectively.

the lab-confirmed foodborne illnesses [48], this would amount to 2.4M people (on 48M base) that
could potentially be prevented from getting sick in the USA with better contamination detection.

Fortunately, there are many technologies coming together to enable substantial automation in
operations, real-time quality/contamination monitoring, and agile logistics to adapt operations to
reduce inefficiences and food waste. Thus, the fresh food T&D can be considered as an emerging
cyber-physical-human system with substantial advances and emerging challenges in all three com-
ponents (cyber, physical, and human). The purpose of this article is to discuss these technologies,
particularly relative to the cyber aspect. This includes food quality sensing, robust low-power com-
munications to report sensed data in a very challenging environment, real-time monitoring and
data collection, and online analytics to drive agile logistics operations. In particular, we envision
an entire system for online monitoring of quality/contamination at all stages of distribution, com-
munication of this data to a (logically) central location for analytics that would enable proactive
mechanisms that enhance food freshness and safety, reduce food waste, increase T&D utilization
and energy efficiency, while taking care to manage the sensing infrastructure to maximally reuse
the sensors, extend their battery lifetime, eliminate malfunctioning sensors, and so on.

The article will comprehensively discuss mechanisms for monitoring perishability/contami-
nation in the fresh food T&D pipeline. Efficient sensing and communications are central to this
vision and pose several challenges because of the need for near-field communications in an
extremely challenging environment of tissue/saline media. We advocate different communication
techniques that appear to be particularly suited for this environment and discuss their pros and
cons. We propose to collect network-wide data and exploit it to help reduce perishable food waste
as well as proactively identify contamination origin in case of a food-borne illness to ensure quick
response. Intelligent data analytics can also be used for better cooling management as well as
building smarter distribution to reduce waste.

The outline of the article is as follows: Section 2 discusses the overall context of the research
and its larger vision. Section 3 describes several factors that influence the food quality during
different stages of food transportation. Section 4 describes different perishability metrices and
shelf life modeling–related researches for fresh food. Different food sensing technologies available
in the market are discussed in Section 5. Section 6 describes several communication challenges
that arise while building a multi-hop sensor network in food (aqueous or tissue) medium. Sec-
tion 7 describes the overall sensing and communication infrastructure of our proposed framework.
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Fig. 5. Sensing and communication architecture.

Section 8 describes the different data analytics and control that can potentially revolutionize the
food logistics efficiency. Section 9 describes how the proposed infrastructure can assist the sup-
ply chain in reducing food waste or quickly locating the origin of contamination. The article is
concluded in Section 10.

2 MOTIVATION AND BACKGROUND

The overall architecture of a fresh food T&D pipeline is shown in Figure 5. Foods from farmlands
are taken to the packing centers where they are sorted, packed, and palletized for delivery to a
nearby distribution center. The pallets may pass through multiple distribution centers on their
way to the last-mile distribution center where the pallet may be unbundled for delivery to the
retailers. We assume that some sensing and communication modules are placed in some of the
boxes/pallets that are in transit or stored in some warehouse/distribution/retailing centers. These
modules sense the quality/contamination parameters and deposit them in a local hub by forming a
local communication network. These local hubs send this information to an Analytics & Operations
Center (AOC) via long-range cellular communication. The important aspects of a smart T&D sup-
ply chain are: (a) to devise mechanisms for online sensing/communication of the food packages
throughout the supply chain, (b) centralized collection of perishability and contamination data in
the AOC, and (c) analysis of this data to enable intelligent and proactive distribution that enhances
food freshness and safety, reduces food waste, and increases T&D utilization and efficiency.

2.1 Why Is Fresh Food Logistics Hard?

The transportation and distribution (T&D) supply chain requires an intricate interplay of many
processes to efficiently carry goods from the producers (e.g., factories and farmers) to the supply
chain customers such as retailers. The supply chain invariably includes a hierarchy of distribution
centers to enable not only the store-and-forward transit but also bundling/unbundling of pack-
ages, quality monitoring, inventory control, and other functions. The coordination of storage with
the incoming and outgoing transit is a crucial function both for space and quality management.
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Another crucial aspect is the proactive positioning of resources such as empty containers, empty
trucks, available drivers, and so on, at or near the sources of the goods so they can be available when
needed. Often the deliveries are governed by contracts that have financial implications if violated.
The problem becomes even more complex with fresh food both because of the perishability-related
timing constraints and uncertainties in the harvesting/availability of the food for transport. With
increasing variety of fresh food, it also becomes difficult to fill a truck with one product type.
Sharing a truck among different products, each with its own perishability characteristics, coupled
with multiple pick-up and drop-off points make the problem extremely complex. Note that carry-
ing multiple product types may require different types of containers, each designed with certain
cooling, ventilation, humidity, and vibration characteristics. These issues are often handled by
overprovisioning of resources and avoiding product mixing or multipoint pick-up or drop-off. The
result is a sweet spot that has both low efficiency (often less than 15%) and still a significant loss
of quality, including outright spoilage.

Yet another factor in the low efficiency (and therefore high cost) of T&D supply chain is the
prevalence of private logistics. Large, integrated companies such as Walmart, Target, and so on,
tend to create their own private logistics network in the hopes of better control over operations,
better privacy, and other perceived advantages. However, private logistics means poorer utilization
of resources such as warehouse/truck space, more difficult reverse logistics (i.e., positioning of
trucks and containers), and so on. The concept of 3rd party logistics (3PL) and its derivatives
have tried to ameliorate this situation by outsourcing logistics to a third party that works with
multiple clients and provides them with the desired cost vs. service quality tradeoffs. 3PL has grown
consistently and now accounts for more than 54% of the transportation [99]. Also, its variants (e.g.,
US Postal Service and UPS sharing delivery runs) also continue to materialize. While 3PL can, in
theory, achieve higher efficiencies and lower costs by virtue of sharing of resources and volume
advantages, implementing a large variety of service levels for different clients with different types
of products and needs becomes even more challenging. It is also worth noting that the traditional
practice of inflexible long-term contracts that the client typically likes to have only makes things
more difficult in a 3PL environment with multiple parties involved.

2.2 Recent Technological Developments

It should be no surprise that logistics operations have become increasingly automated. Since deal-
ing with small retail-size boxes is difficult and unnecessary in the T&D pipeline, such boxes are
invariably palletized in a rectangular space—usually a few meters across in length, width, and
height. The palletization/depalletization is relatively easy to automate and is already widely prac-
ticed, as shown in Figure 6. Other common automation tasks include loading/unloading of pallets
into carriers (trucks, railcars, etc.), sorting or rearrangement of items, driverless transport in local
areas, and so on. These capabilities that apply to a large variety of industries are often referred to
as the “Industry 4.0” initiative [78], and the automation will continue to increase at a rapid pace.
The automation is a crucial piece in the intelligent management of the T&D pipeline; for example,
with automated palletization, we can assume that the boxes in the pallet are always arranged in
a consistent pattern and the palletizer can record the relative order of the boxes. This, in turn,
simplifies identification and handling of boxes within a pallet.

The automation crucially depends on the electronic tagging/identification of the items that it
handles. In the logistics space, this means we need electronic tags at all levels, including individual
retail boxes, pallets of boxes, containers, forklifts, sorters, carriers (trucks, railcars, etc.), warehouse
rooms/sections, and so on. For example, if the palletizer can read the tags of all the boxes that go
into a pallet and keeps track of the order in which the boxes go into the pallet, we have com-
plete information about which box is where in a pallet. At a minimum, the tag should provide a
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Fig. 6. Automated palletizer.

unique address to identify each item, whose other attributes could then be looked up in appropri-
ate databases. Self tracking of items requires dynamic labelling; for example, as the pallet moves
to the next node (a warehouse or distribution center), the tag reading that is done on arrival could
also update a part of the tag so the pallet always carries its own location. The updated part could
be a small sequence number or the label of the node itself. It is also possible to simply append the
sequence number of the next node and thereby retain the entire history of the pallet movement.
(One could also append the label of the next node directly; however, this may require too many
bits in the tag.)

The most common electronic tagging is done using RFID (radio frequency identification) [46,
152]. RFID tags are small transponders that are characterized by unique IDs that are exchanged
while wirelessly responding to queries to the RFID readers. RFID tags are of three types: passive,
semi-passive, and active. The passive tags consist of a micro-chip and an antenna. These tags do
not have an internal power source or battery. The reader generates an electro-magnetic field that
induces current into the tag’s antenna and powers up the chip. Once activated, the tags respond
to the readers by using backscattering to modulate the field sent by the reader [84]. These tags are
small and cheap; however, they restrict the reading range in between 2 mm to a few meters [84].
The semi-passive tags have an internal power source just to keep the chip powered up, but not
for signal generation. Since it has internal power supply, the antenna is further optimized for
backscattering to improve the reading range of the passive tags. Active tags are equipped with
power supply that can energize the micro-chip and at the same time can generate signal to respond
to the readers. Active tags’ reading range can be tens of meters.

In terms of their operating frequencies, RFID tags are categorized into three categories: low-
frequency (LF), high-frequency (HF), and ultra high-frequency (UHF) tags. LF tags operate on
125–134.2 kHz and 140–148.5 kHz. They are cheaper than the higher frequency tags, but have
the limitations of short reading range. HF tags operate at 13.56 MHz. They have higher reading
ranges than the LF tags, but are costlier. LF and HF tags are license-exempt. UHF tags work on
868 MHz (Europe), 915 MHz (USA), 950 MHz (Japan), and 2.45 GHz. UHF operating frequencies
vary from country to country and require a permit. The reading range of UHF tags varies from
3–6 meters for passive tags to 30 meters for active tags. These tags are costly and are used mostly
for automated toll collection. RFID tags are used for a vast number of applications, ranging from
inventory control [25, 26], animal tagging [64, 130], toll collection [76, 92], gasoline cards [18],
money cards [15], and so on.
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As amply proven by the Internet, standardization is essential for interconnection and interop-
erability of heterogeneous systems. The same holds for logistics, particularly in the context of
shared 3PL where the provider must deal with a wide range of products, clients, requirements,
and regulations. The recognition of success of the Internet has led to the paradigm called “Phys-
ical Internet” (PI), which is attempting to bring higher efficiencies to logistics by using the ideas
of sharing, standardization, and automation [113, 122]. The PI initiative has an active consortium
(see www.physicalinternetinitiative.org) and is being further propelled by advances in IoT tech-
nologies for rich, real-time sensing and consequent decision making and actuation. A key concept
in physical internet is PI (or π ) containers are defined to recursively compose to create bigger and
bigger containers, and thereby lead to efficient recursive packing/unpacking. The GS1 set of Inter-
national standards (see www.gs1.org) provide comprehensive RFID-based tagging and addressing
of all important T&D entities including products, packages (including pallets), carriers (e.g., trucks,
railcars, ships), warehouses, end-points, etc. Driven by the benefits in cost reduction and traceabil-
ity, these standards are being rapidly adopted by the industry, and some retail chains like Whole
Foods already mandate them.

The PI initiative considers logistics in the overall context of increasing efficiencies and reducing
cost. In References [90, 119, 123, 126], we have considered PI from the perspective of distribut-
ing fresh foods where the quality deterioration and cost of spoiled product must be considered
centrally, which is defined as Fresh Food Physical Internet (FFPI or F 2π ). We will further exploit
these ideas in this article and put forward the vision of innovative sensing, communications, and
analytics infrastructure to substantially improve the T&D fresh food supply chain.

3 FOOD QUALITY AND ENVIRONMENTAL FACTORS

Food products often deteriorate in quality or in value/usefulness as a function of flow time through
the logistics system. The deterioration as a function of time t can be described by a non-decreasing
function that we henceforth denote as ζ (t ). In general, ζ (t ) is linear for fruits or vegetables and
exponential for fish/meat. The decay itself is a complex phenomenon and could refer to many
aspects, including those that can be directly detected by the customers (e.g., color, texture, firm-
ness, taste) and those that are latent but perhaps even more important, such as degradation of
vitamin content or growth of bacteria. Furthermore, the decay rate is strongly influenced by the
environmental parameters such as temperature, humidity, vibration, and so on.

Temperature: Temperature management is the most important and simplest way for delaying the
quality deterioration of fresh foods, starting from production to distribution. In case of fresh fruits
and vegetables, optimum quality is ensured only when they are promptly cooled to their optimum
temperature after harvest and subsequently maintained under optimum temperature conditions.
Several studies have shown that promptly pre-cooling berry fruits and subsequently maintaining
optimum temperature significantly reduces loss of quality during storage and extends shelf life.
Recent data show that if strawberries are not pre-cooled adequately after harvest, the waste at
the retail level can be as high as 50% [59]. Also, fluctuating temperature during the distribution
process often results in loss of shelf life.

Humidity: Humidity of the surrounding environment is also an important factor in food lo-
gistics, and should be maintained at a level that minimizes the water vapor pressure deficit be-
tween the product and the environment. When the relative humidity is too low, transpiration is
enhanced, which results in loss of moisture. For example, strawberries stored at 10◦C and 95% rel-
ative humidity experience ∼7% more quality loss after four days than when stored at 75% relative
humidity [147]. The use of protective packaging maintains a higher level of humidity and thus
helps reduce loss of moisture.
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Fig. 7. (a) Temperature distribution inside a pallet. The container temperature increases from top left to
bottom right (reprinted with permission from Reference [59]); (b) shelf-life distribution of the boxes under
after a 24 hour summer temperature profile (values are approximated from Reference [59]).

Vibration: In-transit vibration results in quality degradation of the food products at the con-
sumer end and results in reduced profit for the produce industry. Especially fruits like berries and
grapes are highly susceptible to in-transit vibration, which causes skin abrasion, bruising, discol-
oration, and thus reduced shelf life. Authors in Reference [62] have studied that there is a range of
frequencies that causes maximum damage to perishable products, which are found to be between
7.5 and 10 Hertz for these two commodities.

Controlled Atmosphere: Besides temperature and humidity, controlled atmosphere storage is also
beneficial in reducing quality decay. For example, studies show that strawberry shelf life is in-
creased by ∼4–8 days when they are stored at 5◦C in high O2 concentrations compared with stor-
age in air [37]. Similarly, blackberries stored at 2◦C in 10% O2 and 15% CO2 exhibits less decay
compared to storage in air [164]. Such controlled storage not only results in less quality loss, but
also gives more attractive appearance, texture, aroma, and nutritive value [33].

Several papers are devoted towards ambient sensing of food packages during transportation and
storage. Authors in Reference [97] have proposed a vision of the “Intelligent Container,” which
keeps track of the temperature history of the container carrying perishable products, and use this
to estimate the quality they have at the present time. It also estimates how long the food quality
will be all right and when the foods have to be disposed of, since their quality has fallen below a
given threshold. In Reference [19] the authors have proposed a real-time perishable food supply
chain monitoring system based on the ZigBee-standard wireless sensor network to sense different
kinds of environment parameters related to food safety and quality, such as temperature, humidity,
carbon dioxide, ethylene, vibration, and so on. Similar ambient sensing works are reported in
References [38, 56, 101].

However, just ambient sensing of a few certain points in a container leads to wrong shelf-life
prediction of the food packages. This is because the temperature of small packages inside a pallet
vary depending on their positions inside the pallet. This is shown in Figure 7, where the tem-
perature variation of 45 packages inside a pallet was recorded over a period of 24 hours [59]. As
expected, the rate of temperature increase at the core of the pallet is lower than that of the outside.
Thus, this results in a significant variation between the estimated remaining shelf lives of prod-
ucts. Figure 7(b) shows the distribution of estimated remaining shelf life of the 45 packages after
24 hours of storage. The minimum and maximum estimated shelf life are 410 and 470 days, while
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Fig. 8. Impact of temperature on the appearance of “Killarney” red raspberries during a storage period of
seven days (reprinted with permission from Reference [59]).

60% of the packages have a shelf life of less than 450 days. There is a wide variation of ∼60 days
between the packages that are stored within the same pallet for 24 hours. This leads to the need
of accurate quality sensing in every package level rather than sensing the temperature, humidity,
and so on, within few specific points inside a container.

4 MODELING THE PERISHABILITY METRIC

Fresh food packages deteriorate in quality over time according to complex biochemical processes
that depend on the food type, initial quality, temperature, humidity, vibrations, bacterial level, and
bruises during storage/transportation. For example, Figure 8 shows the impact of storage tem-
perature on the appearance of raspberries during a storage period of seven days. At any certain
environmental conditions (temperature, humidity, etc.) the food quality deterioration as a function
of time t can be described by a non-decreasing function that is henceforth denoted as ζ (t ). The
deterioration of food products are nothing but biochemical reactions, thus ζ (t ) can be modeled as
a function of some measurable parameters related to the reaction that determines the quality loss.

4.1 Time-temperature Indicator and Arrhenious Equation

We describe a metric for estimating the degradation of a measurable parameter of a food product
using its time-temperature indicator. Like any other biochemical reactions, in food products as
well, certain parameter A is converted to another, say B, over time. As the reaction proceeds, the
concentration of A decreases, whereas that of B increases. The concentration loss (of A) or gain
(of B) of a particular ingredient at any instance can be described by the following equation:

dC

dt
= k .Cn , (1)

whereC is the concentration of the ingredient, k is the rate of degradation that depends on temper-
ature and other factors, and n is the order of reaction that is either 0 (zero order) or 1 (first order)
for most food products. Food products such as fruits or vegetables generally follow zero-order
degradation or linear decay, whereas products such as meat or fish follow first-order degrada-
tion of exponential decay. Thus, the quality can be measured by checking the concentration of
certain ingredients in food products. For example, concentration of vitamin C or sulfur can be
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quality indicators for different fruits or vegetables, whereas the concentration of bacterias such
as Mesophiles, Psychrotrophs, Lactobacilli, Enterococci, Coliforms, and so on, can be the quality
indicators for meat products.

The rate of concentration loss or gain k at different temperatures can be modeled using the
Arrhenious equation as follows:

k = k0.e
− Ea

RΓ , (2)

where k0 is a constant, Ea is the activation energy, R and Γ are gas constant and absolute temper-
ature, respectively. Thus, if a food product goes through multiple phases i = 1, 2, . . . ,m with time
ti at ith stage and rate ki (based on temperature Γi ), then the end concentration of an ingredient

C = C0 ±
m∑

i=1

kiti = C0 ±
m∑

i=1

k0.ti .e
− Ea

RΓ for zero-order,

C = C0.e
±∑

m

i=1 k0 .ti .e
− Ea

RΓ
for first-order, (3)

where C0 is the initial concentration of the ingredient. Notice that in Equation (3), ti is calculated
relative to the initial time t0. The parameter k can also be obtained from experimental results
at different temperatures. In Equation (3) the ± sign represents the loss or gain of concentration
depending on the type of the measurable parameter. For example, the vitamin concentrations of
fruits or vegetables decay over time, whereas the bacterial growth on meat products adds up with
time. Figure 9(a) shows the vitamin C degradation of different vegetables over time at 20◦C, which
shows linear decay, thus k’s are the slopes of the graphs. Figure 9(b) also shows similar character-
istics of vitamin C decay over storage time for pineapples, capsicums, and green and red peppers.
Also the exponential growth of certain bacterias on meat substances such as lamb meat and pork
sausage are shown in Figures 9(c)–(d), where ln(k )’s are the slopes.

With these, we can scale a perishability function of a food product ζ (t ) from the level of concen-
tration of some measurable parameters. It suffices to assume that ζ belongs to the real range [0, 1]
where 1 means that the product so far has not suffered any quality loss and 0 means that product
has no value. Thus, if we know the storage time and temperature of the chain in different stages,
we can estimate the delivery quality of a product using the above approach. In reality, because of
different disturbances in the food chain (vibrations, change in temperature or humidity, etc.) the
quality deteriorates faster or slower than the theoretical expected rate.

4.2 Shelf-life Computation

The kinetic modeling is also useful for measuring the shelf life tSL of a product, which is the time
taken by a product to reach the lowest acceptable quality (or concentration) C1 given the initial
concentration of C0. Thus, the shelf life of a product can be calculated as

∫ C1

C0

dC

Cn
=

∫ tS L

0

k .dt =⇒ tSL =

∫ C1

C0

dC
Cn

k
=

f (C0,C1)

k
, (4)

where
f (C0,C1 )

k
is the quality function composed of the initial concentration C0 and the concen-

tration for maintaining a lowest acceptable quality C1 of any ingredient in a food package. Thus,
the quality function depends on the reaction kinetics that are governing the rate of decrease (or
increase) of some chemical components or quality attributes.

Table 1 shows the reaction rate and the shelf life of different kinetic models. As mentioned in
Section 4.1, most of the vegetables show zero-order kinetics, whereas the bacterial growth on meat
substances follow first-order kinetics. In Reference [52], the authors have claimed that the oxida-
tion of extractable color pigments in chili pepper follows second-order kinetics. Other than the
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Fig. 9. (a) Vitamin C degradation in different vegetables at 20◦C (data obtained from Reference [108]).
(b) Changes in vitamin C content of green peppers, pineapples, capsicums, and red peppers during their
storage at 1◦C, 22◦C, 5◦C, and 28◦C, respectively (data obtained from References [104, 133, 134, 160]). (c)
Bacterial content in raw lamb meat kept for 0, 7, 14, and 21 days under retail conditions (data obtained
from Reference [118]). (d) Observed bacteria growth on industrial pork sausage samples of two different
trademarks at 4◦C (data obtained from Reference [58]).

Table 1. Different Types of Kinetics Models

Reaction type Reaction rate Shelf life

Zero-order −dC
dt
= k tSL =

C0−C1

k

First-order −dC
dt
= kC tSL =

ln
C0
C1

k

Second-order −dC
dt
= kC2 tSL =

1
C1
− 1

C0

k

Logistic −dC
dt
= kC

(
C0

Cinf
− 1

)
tSL =

ln
C1−Cinf
C1Cba

k

zero-, first-, and second-order reactions, another type of reaction that is studied in the literature
is logistic model [103]. In logistic model, the rate of deterioration of a chemical content’s concen-

tration is represented as −dC
dt
= kC

(
C0

Cinf
− 1

)
, where Cinf corresponds to the concentration at the

lowest quality. Cba is the constant representing the biological age of the product [157, 158].

ACM Transactions on Sensor Networks, Vol. 16, No. 1, Article 12. Publication date: January 2020.



Smart Sensing, Communication, and Control in Perishable Food Supply Chain 12:13

Biochemical reactions are important to understand food quality monitoring, as many foods
contain biological materials like enzymes. Sometimes these enzymes are desired (for instance, in
cheese ripening) but mostly enzymes need to be deactivated to avoid deterioration of food qual-
ity; for example, enzymes like polyphenoloxidase lead to the browning of apples, potatoes, and
cauliflower, and the formation of lipases gives raw milk a rancid taste, and so on. For model-
ing these biochemical enzymatic reactions, the Michaelis-Menten kinetics equation [158] is used,
which is written as

−dC
dt
=

VmaxC

C + KM
, (5)

whereVmax is the maximum rate of reaction, andKM is the Michaelis constant representing the en-
zyme concentration when the reaction rate reaches the half of the maximum rate [100]. Michaelis
kinetics is used to study the relationship between the concentration ofO2 and the respiration rate
of stored apples in Reference [67].

Physical processes such as creaming or sedimentation, fracture phenomena, viscosity changes,
gelation of biopolymers, crystallization, and moisture migration also lead to food quality change.
These phenomena are complex to model. An empirical relation of predicting the viscosity of dis-
persions can be derived from the Eilers equations as follows:

η

ηs
=

⎡⎢⎢⎢⎢⎢⎣1 +
���

1.25ϕ

1 − ϕ

ϕmax

�	

⎤⎥⎥⎥⎥⎥⎦

2

, (6)

where η represents the viscosity of the dispersion, ηs the viscosity of the solvent, and ϕ is the vol-
ume fraction of the dispersed particles. This model is applied to model the skimmed milk samples
with varying volume fraction of casein micelles in Reference [34]. In Reference [105], the authors
have used this model to describe the influence of dispersed particles on deformation properties
of concentrated caseinate composites. Different types of physical models can be found in Refer-
ences [162, 165].

Microbiological changes in fresh food happen due to the growth of different microorganisms.
Sometimes these growths are desirable (such as in fermentation), but mostly microbial growth is
undesirable, as it leads to spoilage and thus illness in the human body. Thus, predicting microbial
growth like bacteria in foods is of utmost importance for predicting shelf life. Microbial growth
can be modeled by using the Gompertz model, which can be described as follows:

ln
N

N0
= As exp

[
−exp

(
μmaxe

As
(λ − t ) + 1

)]
, (7)

where N is the number of microorganisms, N0 is the number of microorganisms at time zero, As

is the asymptotic value of the maximum number of microorganisms, μmax the maximum growth
rate, and λ is the lag phase. The Gompertz model is applied to study the growth of Salmonellae in
Reference [162]. Some other microbial growth models in fresh food are reported in References [8,
109].

5 FOOD SENSING TECHNOLOGIES

Food sensors embedded in intelligent packaging provide the sellers as well as the buyers reliable
information on the food, how carefully it is handled during the transportation and storage, as well
as the packaging integrity. The simplest form of intelligent packaging is the use of smart labels
that display the shelf life of the food packages. For example, a time temperature indicator (TTI) is a
smart label that shows the accumulated time-temperature history of a product.

There are several TTI technologies available on the market. TTI can be placed as a sticker on
transport containers. If a food container is exposed to different recommended temperatures, then
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Fig. 10. Schematic of different time-temperature indicators: (a) MRE time-temperature indicator (adapted
with permission from Reference [2]); (b) Vitsab’s FreshTag TTI indicator (obtained with permission from
Reference [4]); (c) RipeSense indicator for monitoring the ripeness of a fruit (reprinted with permission from
Reference [3]).

an irreversible chemical change will be reflected on the indicators [94]. TTI is mainly useful to
check the quality of chilled or frozen food, where cold storage is a critical control point during the
transport and distribution to indicate probable food degradation.

Various chemical TTI systems have been developed in recent years, which are primarily
polymerization-based, photochromatic-based, and oxidation-based [166]. Fresh-Check® [17] and
Heatmarker® [23] are the examples of polymerization-based TTI. Fresh-Check is composed of two
concentric circles, as shown in Figure 10(a). A polymer is set in the inner ring, which gradually
changes color as the temperature and reaction time increases. By assessing the color of the in-
ner ring in contrast to the outer color, the quality of the product is analyzed. When the product
reaches the end of its shelf life, the inner color becomes darker than the outer one. Similar other
polymerization-based TTIs are reported in References [40, 131]. Photochromatic-based TTIs are
activated by certain wavelengths of light. One such chemical TTI is OnVuTM [13], which is ac-
tivated by UV light. OnVu consists of a temperature-sensitive intelligent ink at the “core” and a
reference color at the “shell,” designed in the shape of an apple. With the change in temperature,
the color of the photochromatic material at the core fades and become colorless. The oxidation-
based TTIs reacts with oxygen and shows color change to monitor the accumulation of time and
temperature [68, 166].
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Other types of TTIs are diffusion-based, enzymatic, or biological. Monitor MarkTM [7] and Tem-
pix [11] are examples of diffusion-based TTIs that are based on temperature-dependent diffusion
reactions of certain substances. FreshTag [4], developed by Vitsab, is an example of enzymatic
TTI, which is green when activated, then turns yellow, and finally red when it reaches its end-
point. FreshTag TTI is illustrated in Figure 10(b). In case of biological TTIs, yeasts, and bacterias
like lactic acid bacteria, Streptococcus are used to measure the change in pH that leads to color
change [12, 98, 163].

However, indicator sensors are used to analyze the quality of the food packages by monitor-
ing different organic compounds, ethanol, glucose, or gas molecules such as H2, CO2, H2S , NH3,
CH4, and so on [148]. Such indicators are useful to understand the toxic composition of the gases
produced from decomposing food inside a food container [107]. These changes are detected by
the indicators and transformed into a response, usually by showing a color change on the smart
labels. Methyl red is another example of an indicator sensor that works on the increase in pH,
due to volatile amines decomposition and is used for real-time monitoring of fresh chicken [96].
RipeSense is another first intelligent sensor label that changes color to indicate the ripeness of the
fruit [135], which works through the reaction of the aromas released by the fruit as it ripens. As
shown in Figure 10(c) RipeSense sensors are initially red, then gradually turn orange, and finally
yellow. A similar sticker that indicates whether a fruit or vegetable is ripe or not is RediRipe [9],
which detects ethylene gas, which is released by fruits/vegetables as they ripen. Using such sen-
sors, food suppliers can understand the ripeness of fruits stored in the warehouse and determine
the best time to deliver them to the supermarket. DSM NV has developed SensorQ to sense and re-
port the formation of biogenic amines in microbiological origin meat and fish [55]. Authors in Ref-
erence [114] have also developed a new colorimetric sensor for monitoring the deterioration of fish.

Other than food quality sensors, developing food contamination detection sensors is currently a
very active field as well, with sensors ranging from simple to highly sophisticated, with function-
alities including bacterial content, contamination, texture/color degradation, bruising, and so on.
Simple sensors are beginning to show up in packages sold to end customers, such as C2Sense [20],
FoodScan [146], Salmonella Sensing System [14], and so on. C2Sense sensors detect ethylene, bio-
genic amines, and other relevant gases at low ppm and sub-ppm concentrations. They can moni-
tor fruit ripeness and meat/fish/poultry freshness at all stages of the supply chain. FoodScan can
detect the presence or absence of bacteria and contaminants in food before anyone can see or
smell them. The Salmonella Sensing System invented by Auburn University uses a magnetoelas-
tic biosensor that is coated with a bacteria-specific recognition layer capable of detecting specific
types of pathogenic bacteria. Michigan State University [172] has invented a biosensor that can
detect Escherichia coli O157:H7 and Salmonella in meat products. A biosensor developed by the
Naval Research Laboratory [145] can detect Staphylococcal enterotoxin B and Botuminum toxin A
in tomatoes, sweet corn, beans, mushrooms, and tuna. Molecular Circuitry Inc. [5] has developed
a biosensor that can detect Escherichia coli 0157, Salmonella, Listeria, and Campylobacter. Many
such food sensors are summarized in Table 2.

Such tiny quality sensors can be embedded in food containers for use as electronic bar codes
to monitor food in all its phases from production to processing, distribution, and consumption.
However, such bar codes are investigated at only a few key points of the food chain. Thus, the
deterioration in quality cannot be generally identified until it becomes too late to take any proac-
tive actions for avoiding such quality loss. For such continuous monitoring purposes, such tiny
sensors should communicate with each other and dynamically self-organize necessarily to build
an online sensing infrastructure. Therefore, an important line of investigation is to consider future
scenarios where not just the sensor, but the entire sensor module (including the communication
module) is inexpensive enough to be embedded in each package within a box.
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Table 2. Different Sensor Types, Data Obtained from References [57, 66]

Types Trade Name/Biosensor Organization

TTI

Fresh-Check Temptime Corp.
Timestrip Timestrip Plc

OnVu
Ciba Speciality Chemical and
Freshpoint

MonitorMark 3MTM, Minnesota
Tempix TEMPIX
FreshTag Vitsab

Indicator Sensors
SensorQ DSM NV
RipeSense RipSenseTM

RediRipe University of Arizona

Contamination

Sensors

C2Sense C2Sense, Inc.
FoodScan MS Tech
Salmonella Sensing System Auburn University
Escherichia coli 0157:H7 in lettuce MIT
Escherichia coli O157:H7 and
Salmonella in meat

Michigan State University

Salmonella and Campylobacter in
pork industry

Georgia Research Tech
Institute

Staphylococcal enterotoxin B and
Botuminum toxin A in tomatoes,
sweet corn, beans, and mushrooms

Naval Research Laboratory

Escherichia coli 0157, Salmonella,
Listeria, and Campylobacter

Molecular Circuitry Inc.

6 COMMUNICATING SENSED DATA

An integral component of the sensor module designed for automated operation is a radio that
can receive configuration commands, send out sensed data, and forward received data to support
multihop communications. In the fresh food environment, communications should be possible
across radios in different boxes in a pallet; therefore, the range requirements are very short, but
the signals should be able to propagate well through aqueous tissue media. Unfortunately, the
normal RF communication (e.g., Bluetooth in the 2.4 GHz ISM band) does not work very well in
this environment due to high signal absorption and complex channel conditions [85]. Reducing
absorption by choosing lower frequencies (e.g., 802.11 ah) helps in attenuation, but would need
bigger antennas and cause severe interference in this very dense sensor environment. Authors
in Reference [60] show that in body-area-networks, especially in tissue medium, the path loss at
50 mm is 47–49 dB at 403.5 MHz. Other studies [51, 167] have also reported attenuation values
ranging from 20 dB at 100 MHz to 60 dB at 1 GHz for distances less than 10 cm. High RF transmis-
sion powers are certainly undesirable because of serious overheating and thus quality loss [144].

Another promising technology in food or tissue medium is acoustic or ultrasonic communica-
tion. Ultrasound transducers operate at frequencies above the human hearing range [140]. Ultra-
sonic waves are generated by piezoelectric materials that convert electrical energy to mechanical
energy and vice versa [30, 93, 149]. Ultrasonic waves are subject to lower absorption as compared to
RF waves in aqueous or tissue medium. Because of these characteristics, ultrasound waves are used
successfully for underwater communications [32, 110], wireless body area networks [70, 141, 143],
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Fig. 11. Communication through inductive coupling.

and ultrasonic imaging [136, 155]. In Reference [80], the authors studied ultrasonic communica-
tion between nanorobots across various distances. Authors in Reference [142] successfully built an
ultrasonic testbed based on USRP2/N210 software-defined radios interfaced with low-frequency
(LFRX and LFTX) daughterboards connected to ultrasonic transducers. They have used medical
training phantoms (human kidney) in between transmitters and receivers to emulate propagation
through tissues. The attenuation reported is 2 dB/cm at 5 MHz.

However, ultrasound (or acoustic) propagation in tissues is deeply affected by multipath fading
because of the inhomogeneity of the medium in terms of density, presence of very small organs
and particles, and so on, which leads to the variation in sound velocity. Due to the presence of
such reflectors and scatterers, numerous attenuated, distorted, and delayed versions of the same
transmitted signal reach the receiver, making detection and decoding a challenging operation.
Moreover, the low speed of sound in water or tissues leads to high propagation delay, which makes
the medium access schemes problematic in a highly dense environment. Also, a significant portion
of the energy is absorbed (although lower than RF) and converted into heat when ultrasounds
propagate. This could potentially lead to a temperature increase, which will affect the quality of
perishable food being transported.

Such challenges cannot be overcome until a major paradigm shift in communications through
food medium is made to address the limitations of current typical communication technologies.
Prior research indicates that the Magnetic Induction (MI)-based communication [74, 127] in the
HF band (3–30 MHz) is largely unaffected by the tissue medium [106]. MI communication is based
on the principle of resonant inductive coupling (RIC), which involves two matched coils, each
forming an LC circuit with the same resonance frequency, as shown in Figure 11. RIC has been used
successfully for extremely efficient power transfer over short distances and is used for contactless
mobile charging, car battery charging, and so on.

MI communication modulates the magnetic field and forms the basis of near field communica-
tions (NFC) between mobile devices. Compared to RF, MI suffers from smaller signal fluctuations
and multi-path effects. The ability to use small coils (2.5/5.0 cm in our experiments), short transmis-
sion range (e.g., 1.5 m) and a decent data rate (e.g., 596 Kb/s) are ideal for our application. Finally,
ultra-low-power MI solutions consume less power than RF and ultrasound over short distances. The
MI channels are also more determined, as the MI signals are not reflected or scattered by the sur-
rounding environments, and thus suffer from smaller signal fluctuations and multi-path effects.
Also, there is no known biological effect of MI in the food or tissue medium [127]. A comparison
between three modes of communication is depicted in Table 3.

We thus consider MI communication as the most viable communication framework in this con-
text [124, 125] and describe some preliminary analysis on the feasibility of such communication.
The magnetic coupling between two coils depends on their relative orientation, and the energy
transfer goes down as cosine of the relative angle between the coils. The magnetic field generated
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Table 3. Comparison between RF, Acoustic, and MI

Absorption Multipath Datarate Power Size Cost

RF High Moderate High High High High

Ultrasonic Low High Low High Low High

MI Low Low Low Low Low Low

Fig. 12. Path loss in case of (a) unidirectional coil transceivers and (b) tri-directional coil transceivers. R ‖ and
R⊥ denote the relative angle of the coils with respect to the same and orthogonal axis, respectively.

by a unidirectional coil can be characterized using Lenz’s law of electromagnetism [39]. Fig-
ure 12(a) shows the path-loss in between two such coils that are one meter apart. The parame-
ters R ‖ and R⊥ specify the rotation of receiver coil relative to the transmitter along the same and
orthogonal axes, respectively. For this plot, we assume 10 turns for each coil and an operating
frequency of 10 MHz. It is seen that the loss is minimal when the coils are aligned and maximum
when the coils are orthogonal.

Such variability in coupling would require the transmit and receive coils to be well aligned,
which may be difficult in practice. However, the issue can be resolved by using an antenna con-
sisting of three concentric coils, one in each plane (xy, yz, xz). Figure 12(b) shows the path-loss in
this case (all other parameters same as for Figure 12(a)). It is seen that the signal is almost isotropic
in this case, which means that an S&C module hosting such antennas can be packed into the boxes
in any orientation. Notice that in a tri-directional coil, the orthogonal coils on the same wireless
device do not interfere with each other, since the magnetic flux generated by one coil becomes
zero at the other two coils.

We next use two tri-directional coil transceivers and vary the distances in between them to
measure the transmission range of the magnetic communication. Figure 13 shows that the trans-
mission range is typically 2–3 meters (considering 70 dB of loss) when the coil radius (ρ) = 2.5 cm
and even higher with a larger coil. This is adequate for our application.

We have used 10 MHz frequency in the illustration based on its use in the previous research
literature [31, 106, 153]. At 10 MHz, the wavelength is 30 meters, which means an NFC range of
4.8 meters and is adequate for our applications. We have conducted an experimental evaluation of
an experimental MI radio from Freelinc [1] in different media and have achieved a transmission
range of 1.5–3 meters at 13.56 MHz [120]. However, the channel conditions at a wide range of
frequency levels (from hundreds of kilohertz to few tens of megahertz) must be evaluated through
a large variety of fresh food media, including fruits/vegetables with different water/mineral/salt
contents and meat with different tissue characteristics. Furthermore, while tiny coils (less than a
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Fig. 13. Path loss with distance (r ) for tri-directional coil transceivers.

Fig. 14. Sensor in a box.

centimeter in diameter) are desirable, they are likely to pose additional challenges because of coil
thickness being a significant percentage of coil diameter. In fact, how the coils should be wound
and how the coil pair should be tuned to provide most efficient magnetic coupling become very
challenging, particularly when tri-directional coils are considered. In addition to that, building
low-power MI communication protocols in a dense environment is quiet sparse, which needs more
research. In our recent work [120], we have explored some low-power MI communication proto-
cols through silence, along with the use of multiple MI channels to reduce the effects of network
overhearing.

7 SENSOR NETWORK FOR MONITORING FRESH FOOD

To do a comprehensive online monitoring of the fresh food quality, it is necessary to implement
a local sensing and communications infrastructure for a closely spaced set of pallets that may be
carried on a truck, railcar, boat compartment, and so on, or simply sit in a cold storage warehouse
room. Each pallet consists of some number (few 10’s to few 100’s) of retail boxes, which in turn
may either contain the fresh produce directly or the customer-level product packages (e.g., for
meat). Figure 14 shows a sensor attached to a chicken package in a box of such packages. We
assume that each retail box contains a small battery-operated sensing and communication (S&C)
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Fig. 15. Communication Infrastructure (a) inside a truck and (b) within a warehouse.

module consisting of some sensors and a radio. The sensors could be contact type (e.g., chemical)
or non-contact (e.g., gas sampling, imaging). We assume that all sensors are removed and returned
at the end-point (e.g., at a retailer) to the shipper/processing plant via the normal reverse logistics
that has to be in place to handle distribution of products returned/rejected by the destination. The
sensors could be checked and then reused. This reuse is essential at least for the foreseeable future
while the sensor cost remains significant. In the long run, it may be possible to simply embed the
sensors in the boxes, which may or may not be reused.

We assume that each box has GS1 compatible RFID tag (already in practice) that is tracked dur-
ing loading/unloading (manually or mechanically). We assume the box order and their RFID is
recorded during palletization so the relative box location vs. RFID map can be generated automat-
ically. A truck/warehouse may carry many such pallets, and we assume that pallet RFID and their
relative position in the truck/warehouse is also recorded (manually or mechanically).

The radio in the S&C module provides two functionalities: (i) depositing sensed data with a sink
or anchor node and (ii) localizing the containing box so it is possible to identify the box(es) having
quality issues. We assume that the sensor module is packed in a nearly identical spot within each
box so it is possible to localize a box (or rather the sensor radio of the box). The localization can
tell us which relative box in a pallet (or truck) has a product with quality/contamination issues.
Given the loading order vs. RFID map discussed above, we could thus correlate the position of this
box with the box and pallet RFIDs and thus enable RFID-based tracking.

It is important to note that the regularity assumptions made above are becoming increasingly
realistic due to the rapid automation of logistics, including those related to Industry 4.0 [78] and
Physical Internet initiatives. In other words, we expect the mechanisms discussed in this article to be
increasingly applicable and even essential as the full potential of Physical Internet and Industry 4.0 is
realized.

Figure 15(a) shows the overall architecture for the proposed system by considering deployment
within a carrier (a truck) carrying one or more pallets of boxes with one sensor per box. The sink
(or anchor) nodes are mounted on (or close to) the inner walls of the carrier. They can communicate
with sensor modules and among themselves via RF, acoustic, or through magnetic induction (MI).
We also integrate a Wi-Fi interface in some of the anchors for communications outside the span
of product boxes. The Wi-Fi-enabled anchors can connect to a Wi-Fi access point, which is shown
in the figure as the driver’s smartphone but could also be a more permanent and better secured
device installed in the carrier. Similar deployment happens in a cold-storage warehouse room as
well, which is shown in Figure 15(b).

The architecture is designed to relay all sensed data to the dual-interface anchors and then to
the local hub, which in turn sends all data to an Analytics & Operations Center (AOC) via a cellular
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link for comprehensive analytics and control. The AOC could be hosted in a cloud and could be
physically (but not logically) distributed, but that aspect is not important here. The AOC receives
data periodically from all active carriers and warehouses (including empty ones) operated by the
3PL operator in its entire network, so it has a global view of the operations and resources. The
centralized availability of sensed quality, contamination, and localization information at the AOC
from the entire T&D network has the potential to revolutionize logistics, particularly when coupled
with ongoing automation trends.

8 DATA ANALYTICS FOR PROACTIVE DECISION MAKING

As shown in Figure 15, each box will contain the S&C module, which not only results in a very
dense radio environment but also requires multi-hop communications to send the food quality
data from any arbitrary box to the local hub. Since our data collection frequency is very low (e.g.,
quality sensed and transmitted every 30 minutes), we can keep all S&C modules mostly in a deep
sleep mode. At the next data collection, they can wake up according to a fixed schedule, collect and
transmit its data (along with its relative location) to a neighbor and go back to sleep. By starting
with the innermost modules in the pallet and moving towards outer ones that are closer to the
anchor nodes, it is easy to devise a simple store and forward mechanism to push data from each
S&C module to an anchor via MI communications, and from there to the local hub over Wi-Fi. Our
simple calculations suggest that it is possible to run an S&C module for more than a year using
inexpensive button batteries.

Assuming a ubiquitous deployment of the infrastructure in Figure 15 in the T&D system, the
AOC can collect a fine-grain view of all of the T&D operations including the status, location,
and condition of every product in the T&D pipeline. This allows for online analytics of collected
data from individual carriers and warehouses, system-wide analysis and optimization across the
entire company, and derivation of insights and fine-tuning of the operations based on the offline
analysis of historical data. In the following, we discuss three significant applications enabled by
these capabilities that can substantially reduce cost and food wastage and increase efficiency. We
also discuss how the analytics capabilities can be exploited for accruing nearly all of the advantages
with only a sparse deployment.

8.1 Intelligent Distribution

Product quality and freshness are the key drivers of why buyers choose a brand or store [6]; thus,
maintaining the delivery freshness is of primary importance to the grocers. Because of this com-
petitive pressure for an attractive presentation, typically grocers incur a loss of 10% of what they
purchase [75], whereas rejected shipping due to quality loss typically incurs a loss of 5%–10% rev-
enue to the grower [132]. Total food losses in the USA are estimated at ∼33% of that of harvest [21].
A key strategy in reducing food waste and simultaneously serving the societal needs is to distribute
food proactively instead of rigidly transporting it from intended source to the destination. There
are two key challenges in a proactive distribution: (a) technological and (b) socioeconomic. The
technological challenge lies in online collection of product quality information and other processes
in place to redirect carriers to do proactive distribution while still satisfying all other objectives.
We believe that FFPI can go a long way in enabling this capability. The socioeconomic challenge
relates to the parties involved willing to and being comfortable with information sharing, flexible
contracts, and somewhat variable product quality.

Implementing such approaches can cut the losses in half for the growers and retailers [21].
Below, we describe some of the well-known distribution strategies along with their pros and cons.

First In First Out (FIFO): Typically the warehouses and distribution centers use a First In First
Out (FIFO) (Figure 16(a)) distribution policy to determine which pallets to ship next, which is based
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Fig. 16. (a) FIFO vs (b) FEFO vs (c) Intelligent distribution. The figure is adapted with permission from Chain-
Link Research (www.clresearch.com) [21].

on the false assumption that all pallets have been handled identically, and thus the oldest pallets
have the shortest shelf life and should be shipped first. Such distribution policy cannot expedite
the delivery, and consumption of products with shorter remaining shelf life thus results in more
loss.

First Expired First Out (FEFO): A smarter and more efficient approach is to enable a First
Expired First Out (FEFO) [79] (Figure 16(b)) approach by using the accurate shelf-life estimation
from the online sensing infrastructure. From this figure, we can observe that with FIFO strategy,
the first pallet is shipped first, because of the assumption that the pallet has arrived first and thus
has the least shelf life. However, with accurate shelf-life information, that pallet is shipped third in
case of FEFO, as two other pallets have lesser shelf life even if they have arrived later. This gives
pallets with lower shelf life the opportunity to be consumed sooner than the other ones, which
reduces the chance of wastage.

Intelligent distribution: Much better distribution strategy can be adopted by matching the
remaining shelf life of each package to the transit time and consumption rate of each destination,
as shown in Figure 16(c). In this strategy, pallets with low shelf life will be transported to the
closest destinations but have faster consumption rate. However, pallets with longer shelf life will
be transported to the destinations that are far apart and/or have lower consumption rate. Such
intelligent distribution can be modeled using the following optimization problem:

Maximize

n∑
i=1

m∑
j=1

U (Si −Tj −Cj )xi j

subject to

m∑
j=1

xi j = 1, ∀i,
(8)

where n and m are the number of pallets and destinations, respectively. xi j is a binary decision
variable that is 1 if the ith pallet is transported to the jth destination and zero otherwise. Si is the
shelf-life of the ith pallet, whereasCj is the consumption time of the jth destination based on their
local demands. Tj is the transit time to the jth destination. U (y) is the utility function that is 1
if y ≥ 0 and 0 otherwise. In the optimization problem (8), the objective is to maximize the overall
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utility, which is the number of pallets that have non-negative shelf life at the time of consumption.
The constraint states that all the pallets are transported to a destination.

A comparison of FEFO vs intelligent distribution is shown in Figures 16(b)–(c). In case of FEFO,
pallets 2 and 4 are sent to destination 1, as they have the minimum shelf life and destination 1
has ordered before destination 2. However, this strategy assumes that the order that is placed
earlier (destination 1 in this case) will be reached faster and the pallets will be consumed faster.
However, in reality, destination 1 may take more transit time and have slower consumption rate,
which may lead to quality loss and spoilage to pallets 2 and 4. For example, given the transit
time and consumption rate of Figure 16(c), pallets 2 and 4 will be expired before consumption at
destination 1. Using the objective function of Equation (8), the utility of FEFO distribution will
be 2 as only pallets 3 and 4 will be consumed at destination 2 before their expiration. By solving
the more informed intelligent distribution strategy using the optimization problem (8), we can
observe that to maximize the overall utility, pallets 2 and 4 should be sent to destination 2 for
faster consumption, whereas other pallets can be transported to destination 1, as they have higher
shelf life. The overall utility in this distribution strategy is 4, as all the pallets are consumed before
their expiration.

The global view provided by our architecture enables the operator to design suitable distribution
strategies; however, they are by no means routine. The problem is that there are several practi-
cal restrictions on the extent to which a scheduled delivery of product X in the amount N from
source S to destination D can be altered. These include several coupled factors: (a) willingness
of the end-points to absorb excess or altered product as a function of price and storage capacity,
(b) impact of type (i.e., perishability characteristics), quantity, and condition of products involved,
and (c) understanding to what extent a change in schedule is possible and its consequences. How-
ever, the trucks may also need to change their delivery plans for unexpected congestion, road
blocks, or because of the unexpected quality deterioration of the carrying packages. This needs
tight interaction in between the shipping trucks along with the 3PL controller to ensure fresh and
fuel-efficient delivery.

The related issues are of lateral distribution, e.g., local balancing of inventory across regional
distribution centers or even retail stores, and distribution of food that is in danger of being
spoiled soon to food kitchens or cooperatives at a very low cost. It is likely that a better designed
and operated food network will address even more of the waste via quick local distribution
of imperfect items and by delivering fresher and more palatable food to customers. Thus, in a
flexible food network model, the operators can distribute the food products from the excess points
to the shortage points within a neighborhood area. The shortage points may be the retailers that
have sudden demands, or can be the food banks where they are consumed by people at a lesser
cost. The excess/shortage points update their corresponding supplies/demands to their local 3PL
operators, which take and inform the distribution decisions for the retailers.

The lateral transfer is also connected to the continuous sensing capability of the container sen-
sors. For example, if a long-distance truck on its way finds some food packages deteriorating un-
expectedly, then they can be distributed to nearby stores or food banks rather than carryied all the
way to their destined location and by that time are spoiled. Such lateral transfers can also happen
from retailers to nearby retailers with a sudden shortage of supply or to nearby food banks. This
lateral transfer is also connected with product substitution. Retailers order fresh vegetables and
packets of specific types, brands, colors, or sizes based on their demand but in case of a supply
shortage or unexpected quality deterioration, some products can be substituted with similar types
and/or of different brands. As an example, an order of romaine blend with carrots from a manu-
facturer can be substituted by red leaf lettuce from a manufacturer [61]. However, there is an extra
cost associated with the transportation in this lateral transfer process. For example, distributing
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Table 4. Food-borne Illness Outbreaks in Recent US History [24]

Outbreak Types Details Casualties Year

Salmonella

outbreaks

Peanut Corporation of America
(PCA) peanut butter

714 sickened, 9 died, 3,600 products
recalled, PCA is now bankrupt.

2009

Cargill ground turkey 136 illnesses across 34 states, 1 died,
36M pounds of ground turkey
recalled.

2011

Foster Farms chicken 634 illnesses across 29 states,
voluntary recall on all Foster Farms
brand chicken products.

2013

Mexican cucumbers 907 illnesses across 40 states,
6 deaths, Andrew & Williamson
Fresh Produce issued 2 separate
recalls.

2015

Escherichia coli

outbreaks

Dole baby spinach 31 suffered kidney failure, 205
reported cases of diarrhea and
dehydration, 3 died, Dole recalled
all its bagged spinach across the
country.

2006

Taco Bell fast food Eight people developed kidney
failure, 53 were hospitalized.

2006

Chipotle Mexican Grill fast food 55 people in 11 states became ill. 2015

Botulism
outbreaks

Trini & Carmen’s hot sauce 58 people became ill, restaurant
closed.

1977

Home-canned potatoes 29 people became ill, 1 death. 2015

Listeria

infections

Hot dogs Affected at least 100 people across
24 states, 14 adult deaths, and four
miscarriages.

1998-
1999

Pilgrim’s Pride turkey meat 7 adult deaths and 3 stillbirths,
27.4 million pounds of poultry
products recalled.

2002

Cantaloupes 147 illnesses, 33 deaths. 2011

Hepatitis A
infections

Frozen strawberries affected 153 people. 1997

Chi-Chi’s salsa and chili con
queso

155 illnesses, 3 deaths. 2003

Tropical Smoothie Cafe drinks 143 illnesses, 56 hospitalized. 2016

some deteriorating packages to local food banks at cheap prices may be beneficial rather than
sending them to a faraway retailer from a business point of view. Trading off these competing
design objectives is thus one of the challenges of this integrated infrastructure.

Notice that the success of intelligent and informed distribution depends on to what extent the
shelf life of the individual packages can be estimated from the available sensing values. As there
are multiple and dynamic sensing parameters and quality attributes associated with the food pack-
ages, shelf-life prediction with a good level of accuracy is a non-trivial problem. Various machine
learning models (such as neural networks, fuzzy logic, evolutionary algorithms, genetic program-
ming, etc.) can be applied for predicting the shelf life of products in this scenario. Such models
have been applied for prediction of the shelf life of meat packages [35], processed cheese [73], and
fruits and vegetables such as pomegranates [139], cabbages [171], sweet cherries [154], and so on.
Reviews of different machine learning models in food sciences can be found in References [72, 83].
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Fig. 17. Investigation of E. coli O157:H7 Outbreak for Dole Prepackaged Spinach [10].

8.2 Proactive Contamination Detection

The publicly accessible extensive CDC database [47] shows only a modest decrease in FBI out-
breaks and no decrease in hospitalization/deaths during 1998–2015 in spite of the 2008 food safety
act [161]. Table 4 shows different types of food-borne illness and the amount of casualties caused
by the outbreaks in the USA. This can be attributed to increasing consumption of fresh/untreated
foods and a fragmented and largely manual food safety regime [91]. As a concrete example, the
2006 E. coli outbreak for Dole prepackaged spinach started in early July and after an intensive
investigation, the farm of origin was confirmed only on October 5, 2006 [10]. Figure 17 shows the
progress of the investigation and the number of cases reported during the investigation period,
which shows the necessity of quicker/automated contamination detection.

Undoubtedly, the problem of automated tracing of source of contamination/FBI is extremely
complex; however, we believe that our architecture in Figure 15 coupled with ongoing GS1 stan-
dard implementation and logistics automation can provide two key benefits: (a) proactive moni-
toring of contamination and associated removal of contaminated food from the supply chain and
(b) ability to narrow down the potential sources of reported FBI/contamination. A difficult part of
(b) is the ability to track purchase/consumption of product by individuals, since our end-points are
retailers and other businesses. However, during the course of investigation, the FBI reports can be
linked to the contaminated product RFIDs in other ways.

For traceback, the AOC can build a Bayesian inference–based graph, where the nodes represent
all uniquely addressable entities and arcs represent the associations, i.e., a package (with certain
RFID) carried via specific carriers, passing through specific warehouses and processing plants,
sourced from a specific farm, and so on. Given such a graph and contamination reports, the trace-
back is conceptually straightforward but practically difficult for the following reasons:

(1) Building the entire graph explicitly and keeping it up to date is impractical in a large
system, particularly to tackle relatively infrequent events of systematic contamination.

(2) Not all relationships are known with certainty; for example, two different products pro-
cessed in the same plant may or may not be handled by the same machines or people.
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Fig. 18. Quality loss control in fresh food logistics (adapted from Reference [100]).

(3) Given that sophisticated sensors are used sparingly for cost reasons, we do not necessarily
know about the contamination status of every box.

(4) The observed contamination incidents may be a result of multiple unrelated but concur-
rent root causes.

One potential approach is to take a “bird’s eye view,” or coarse resolution, to estimate the possi-
ble origin points based on the sensory outcomes, and then search at progressively finer resolutions
as necessary (if further information is available). To tackle the first problem, a compressed repre-
sentation of keeping track of each and every packet’s provenance information is needed. Such
compressed representations for keeping provenance information has been studied extensively in
the context of web graph compression [50, 169, 170]. For tackling the other points (2–4), a macro-
scopic approach can be adopted, where the likelihood that the contamination origin lies within a
certain region is first identified. For example, in case of the bacterial outbreak of 2006, few farms
from Monterey County, CA, were identified as the contamination origin, whereas the outbreak
affected over 200 people from 26 states. Thus, the first job is to identify the region of origin of such
outbreaks from the inference model. This inference model next has to be further refined as more
and more information or surveys are available within the entities of the pipeline.

8.3 Ambient Control

Refrigeration of fresh food to maintain quality and safety is very energy- and carbon-footprint
intensive, particularly when used on moving carriers where it is dependent on gasoline/diesel. We
believe that an intelligent management of climate control (temperature, humidity, airflow, etc.) can
reduce this footprint substantially, particularly when coupled with modular cooling technologies
for partially full carriers. Figure 18 illustrates the relationship between external factors, their im-
pact on intrinsic properties of the foods, and the resulting impact on food quality. The problem
of applying optimal cooling is extremely complex, because of complex dependence on numerous
factors such as product type/condition, ambient conditions, cooling system characteristics and
losses, total transit time, and so on. It becomes even more complex when a carrier carries multi-
ple product types with different degradation processes, loading/unloading points, and freshness
requirements. The T&D must also satisfy governmental (e.g., USDA) regulations [161] and cope
with uncertainties in transit/loading/unloading delays, weather, starting condition, and so on.

In a typical food chain, environmental monitoring is done at few key points. Thus, the environ-
mental variations in each pallet level is not captured. However, there are significant temperature
variations at each pallet in a lot, which results in shelf-life variations between the pallets. Thus, the
pallet-level monitoring of the integrated infrastructure enables a better opportunity for ambient
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management. The freshness quality of the boxes also varies because of their handling behavior.
For example, it takes roughly 15 minutes [21] to pick and build a pallet of lettuce in a farmland.
Thus, it takes several hours to pack a truck full of lettuce pallets, which may result in shelf-life
variations of around three days [138] between the first and last pallets. In fact, harvested crops
sometimes remain in the field even longer, which leads to a larger variation in shelf life. In the
transit stage, non-uniform ambient temperature in the trailers can lead to roughly 12◦C of tem-
perature variation.

Due to these reasons, the ambiance needs to be fine-controlled to cope with food deteriora-
tion, especially for the packets that have worst shelf life. However, given this complexity, a direct
mathematical formulation of optimization problem is impractical, and instead a data driven ap-
proach that exploits the central availability of data from throughout the network at the AOC can
be adopted. In particular, given the time-series of the data collected from a given carrier (plus data
from others carrying same/similar products), one can build models to estimate if the cooling needs
to be adjusted to both maintain the quality and satisfy any mandatory constraints.

8.4 Gradual and Sparse Infrastructure Deployment

In the above, we implicitly assumed that every warehouse and carrier in the logistics system op-
erated by a 3PL operator carries our monitoring infrastructure and every box in every pallet has
the S&C module. This is unrealistic in practice and does not take advantage of substantial dupli-
cation/redundancy in the system. In this section, we discuss how a sparser infrastructure could do
an acceptable job. A sparse deployment that considers trade-off between accuracy and cost is also
useful for gradual deployment, which is essential in reality.

With sparse deployment, we have certain products that enjoy fine-grain monitoring and data
collection by the AOC, while other products are either not monitored at all or monitored in a
more traditional way, such as quality assessment and recording of environmental factors (e.g.,
temperature) only at the source and destination and possibly at distribution centers. Generally,
these would be done at a coarse-grain level, such as quality of a small sample of the product and
temperature at the pallet level rather than at individual box level. Sparse deployment could also
take the form of S&C modules with varying capabilities, e.g., those with simple vs. complex or one
vs. multiple sensors and with different communications technologies/ranges.

Given such a heterogeneous environment, a key question is as follows: Given two “similar”
items x and y each with some measurements of environmental conditions measured at a sequence
of strictly increasing pair of observation time instants (txi , tyi ), i = 1, ..,k for some k , how similar
are they in terms of quality at an arbitrary pair of time instants (tx , ty )? Note that (tx , ty ) could be
located in the past or the future relative to the observation points. Clearly, if this problem can be
solved, we transfer the quality knowledge from the fully monitored item (sayx ) to the unmonitored
or partially monitored product (say y) at any point in time from y’s journey from the source to the
destination.

We assume that the truck/warehouse level monitoring infrastructure (e.g., anchor nodes and
local communication hub that connects to the AOC) are provided by the 3PL operator, whereas the
inclusion of S&C modules in the boxes is clearly the responsibility of the 3PL clients. In addition,
the pallets or containers themselves are expected to have attached environmental sensors (e.g.,
temperature, humidity, vibration), which are best provided/managed by the 3PL operator. These
could well be the same S&C modules that go in the boxes, except that they have environmental,
rather than food sensors.

In such an environment, trucks/warehouse rooms with monitoring infrastructure may be offered
by the 3PL operator as a premium service to its clients for an extra charge. Furthermore, clients
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who do not subscribe to this service may be given an intermediate level service at less cost that
exploits the similarity-based analytics mentioned above. The accuracy of such analytics depends
on many factors, including the measurement of the environmental factors at the pallet/container
level, availability of adequate fine-grain data for the same or very similar product, and the of quality
check at source, destination, and perhaps at the distribution center(s). Thus, the challenge is to
devise flexible analytics that can work with the data that are available regarding the unmonitored
product. In the worst case, we only know the following: (a) product type and some indication of
condition when harvested, (b) duration and nominal environmental conditions prior to shipment,
and (c) expected transit time and nominal environmental conditions for the service that is used for
the shipment.

In addressing the similarity problem, the key question is the sensitivity of quality degradation
as a function of various parameters that affect quality. As discussed in Section 3, the primary
factors are the initial conditions, decay factor (reaction rate), temperature, and time. Unfortunately,
none of these are precisely known, and there may be fluctuations in temperature from box-to-
box even in a well-controlled environment. Thus, instead of using a direct Arrhenious equation-
based estimation, it may be preferable to do a purely data-driven analytics. For each shipment
that uses the fine-grain monitoring, the AOC will accumulate time-series data of quality and other
information such as temperature, humidity, vibrations, and so on, although the latter may not
be on a per-box basis. We can do regression analysis of this time-series data to determine time-
based deterioration [43, 44], and other types of analytics such as clustering or principal component
analysis (PCA) [89, 151] to determine which factors are most important for each product type
and under what conditions. This can then be used to determine sensitives, and in turn used to
estimate quality deterioration of unmonitored shipments based on their similarity to the monitored
shipments.

Although one would ideally use the same or very similar product type for this analysis, in some
cases there may not be enough data for the product type of interest. In that case, it is possible
to ignore the product type and focus on all products that have similar degradation characteris-
tics. This is a more challenging problem and may require choosing products with varying levels
of degradation similarity, depending on the sample size requirements. We have developed some
similarity search techniques that would be useful in this context [36]. In this work, we assume
products with many attributes (e.g., shape, size, weight) and a large list of products where we need
to find all products that are similar to a given product on an arbitrary set of attributes and an
arbitrary threshold for similarity. Assuming some mechanism to convert each attribute value to a
number such that differences in values accurately reflect difference in similarity, the threshold can
be defined as an acceptable percentage. These mechanisms along with the notion of “dominating
attributes” can be used directly to determine which products to consider for the analytics when
there is insufficient data for the precise product of interest.

8.5 Role of Proxy and Indirect Sensing

A true sensing of quality or contamination of fresh foods requires sophisticated chemical or bio-
logical sensors used in specific ways depending on the product and how they decompose or react
to contamination. However, for the most part, this is unnecessary, and instead most techniques
depend on proxy sensing [121], i.e., sensing of some parameters (e.g., temperature, color, texture)
that have only an indirect relationship to the quality or safety. For example, a color change can be
triggered by the degradation of chlorophyll [87] or the change of carotene [157] or other factors.
The sensing of color can be done using cameras and computer vision technology. The technology
is used for green and brown detection for the classification of bananas [111] and tomato ripen-
ing [102]. As discussed earlier in Section 5, temperature is easy to measure and has long been used
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Fig. 19. A conceptual overview of proxy sensing.

as a proxy sensor for quality. However, the temperature within a pallet can vary a lot, as discussed
in Section 3, and thus fine-grain deployment is necessary even for temperature sensing.

The change of temperature and concentration of CO2, O2, and ethylene are indicators as well
as triggers of quality change. The respiration process makes fresh fruit and vegetables consume
oxygen and generate carbon-dioxide, heat, and in some cases, ethylene, which in turn can affect the
rate of the reactions. Such correlations can be exploited in choosing which sensors to deploy both
from the perspective of quality of sensing and other important aspects such as cost and power
consumption. For example, chemical sensors consume much less power compared to the image
sensors, and thus the former should provide data more frequently. One can formulate suitable
optimization models that include correlations, power consumption, and the sensor cost to derive
suitable deployment and sampling mechanisms.

Figure 19 shows a conceptual block diagram of proxy sensing, where the vertices P1, P2, P3

denote the spoilage properties (such as color, smell, gas), and S1, S2, S3, S4 denote different sensors
(such as image, gas sensors) that sense the spoilage properties. The edges in between them are
the weights that reflect how accurately a sensor senses a spoilage property. For example, an image
sensor (or camera) can sense the color change readily but be unable to detect any chemical changes
or gas emission. Yet, since the two are related, the color change can be approximately converted to
chemical change, thereby resulting in proxy sensing of the chemical changes. Similar arguments
hold for contamination sensing. Sensors can be deployed intelligently to cover the desired sensing
needs (direct or proxy) with an adequate level of accuracy.

Another form of proxy sensing relates to the similarities between products. Different varieties
of the same product or even closely related products (e.g., strawberries and raspberries) will be
expected to degrade similarly. Thus, it may be possible to deduce quality of, say, product Y from
product X . The idea is to do finer grain or fuller monitoring of X than Y without losing much
accuracy. For example, if we understand the original quality of Y and pallet-level temperature
sensing during its distribution, the finer-grain data about X may be enough to predict quality
issues with Y . Such a mechanism will not work for contamination, but it may still be possible to
use fewer sensors or less frequent sampling of Y as compared to X .

We assume that every sensing device has a basic low-power quality sensor, plus other more
sophisticated sensors that are deployed sparsely, as described in Section 8.4. The point of sparse
deployment is to achieve a balance between cost and accuracy of the quality degradation detection.
The key to minimizing the sensors is the ability of the AOC to collect data across the entire logistics
network and do correlation and analytics on it. Thus, for example, if we know how a given product
deteriorates based on the past data and have some basic sensing (e.g., time/temperature), it may be
possible to predict the quality without actual sensors. In particular, we may deploy certain sensors
in every nth pallet only (for some n) and then schedule loading of differently sensored pallets in
the trucks intelligently based on the sensors deployed on pallets of same or similar product that
are in flight. This can be particularly powerful for proactively controlling contamination and FBI
potential at a low cost.
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8.6 Security and Privacy Issues

The proposed shared logistics with online sensing, communications, and control turns the T&D
supply chain into a de facto cyberphysical system, which brings in a number of security and pri-
vacy issues that must be addressed to make the infrastructure acceptable.

8.6.1 Security Issues. Because of the distributed nature of the logistics network and rather slow
data rates, the security issues are relatively easy to handle.

Let us start with the local communications between boxes and across anchor nodes and boxes.
It is reasonable to assume that the S&C modules are largely trouble-free and uncompromised, as
they are managed and deployed by the client in its facility. Also, the compromise of a few S&C
modules is not a significant security risk and can be ignored. However, the carriers (e.g., trucks or
railcars) are more vulnerable to sabotage, particularly when in unsecured areas. In particular, the
anchor nodes can either be replaced or maliciously reconfigured to provide faulty data to AOC.
The AOC receives a data stream from each carrier/warehouse, henceforth called an agent, and
must run sanity checks and anomaly detection on each stream. The anomaly detection could be
based on at least two types of comparisons: (a) comparison of stream characteristics (e.g., statistical
properties) of the data stream from the same agent in the past and (b) comparison against streams
from other agents that deal with the same or similar products. In either case, it is important to
note that it is unlikely that all or most of the anchors will be compromised, which means that the
detection mechanism must consider the tradeoff between false positive rate and ability to catch real
perturbations. The adversary could take advantage of this and adulterate the data only sparsely.
However, because of the difficulty of manually altering the anchors in more than a few agents, the
impact on the logistics system is unlikely to be significant.

It is also possible for the adversary to simply disrupt the communications by installing tiny
devices in the carrier that emit interfering signals (in case of RF and ultrasound devices) or a
strong magnetic field (in case of magnetic communications). However, these are easy to detect at
the AOC and unlikely to be significantly disruptive.

The anchor to local hub communications can be easily protected by using low-overhead in-
tegrity mechanisms such as the ones we have developed for smart-grid protection applica-
tions [88]. The nonlocal communications from agents to the AOC can be easily encrypted, and
the AOC can ask for authentication of the agents occasionally to avoid man-in-the-middle at-
tacks [112, 117]. Because of the rather low communication frequency (e.g., once every 15 or
30 minutes), the security overhead is expected to be negligible. Similarly, the communications
in the other direction can be secured, and the AOC can be authenticated as well by the agents. A
bigger issue is the AOC data breach, which is more of a privacy issue, as discussed next.

It is important to note here that the individual S&C modules and the anchors are likely to de-
velop faults or become inoperational because of the rough environment they operate in. Often it
is not possible to distinguish between faulty and compromised modules, and they must be treated
identically. In particular, even in the absence of any security threats, it is essential that the AOC
does sanity check and anomaly detection [41, 49] on the data received from each agent. The sim-
pler checks may be done in-line, while others are done in the background, perhaps on a periodic
basis. Dealing with faulty/damaged S&C modules or anchors also complicates analytics, since the
missing/faulty data segments in the stream must be ignored and the corresponding computations
done using substitute data from other “similar” streams. Some techniques for sparse data handling
become directly relevant in this context.

8.6.2 Privacy Issues. One motivation for why the large retail players have traditionally opted
for their own private logistics is that no sensitive information about the logistics operations is
known to other parties. Such information could include (a) patronage—from which suppliers the
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client gets a given product, and its volume/quality, (b) delivery discrimination—which retailer gets
how much at a given quality level, and (c) supply issues when they arise, such as late deliveries,
delivery of poor quality or contaminated goods, loss of product, and so on. With the shared lo-
gistics, however, it is difficult to keep much of this information from the 3PL operator. In fact, the
3PL operator has the ability to do comparative analytics on the logistics information of its clients
and exploit it both for tweaking the services it provides (both in a positive and negative way). Fur-
thermore, it may be possible for individual clients to obtain information about other clients even
without any collusion with the 3PL operator.

The situation is quite similar to the cloud computing scenario [69], where the cloud operator can
positively or negatively exploit the usage information of various clients, and the clients may be able
to derive some information about the workload that other clients run. In a cloud environment, the
only way to avoid revealing data to the cloud operator is to encrypt it using client provided keys.
With traditional encryption, the cloud is unable to do any operations on the data, and thus can
only provide data storage. However, there has been significant ongoing work on “homomorphic
encryption” that allows operations on encrypted data [29, 65]. The so-called “fully homomorphic
encryption” (FHE) [71] can allow arbitrary operations, but can be 6–7 orders of magnitude slower
than operations in the clear. The “somewhat homomorphic encryption” (SWHE) [42] that allows
only certain operations can be done faster but is of limited value in general. As for the metadata,
some of it is required by the cloud operator (e.g., size, resource, and latency requirements), some of
it would be nice to have for better provisioning/scheduling (e.g., data access characteristics, traffic
burstiness), and some of it need not be known to the cloud operator (e.g., the application type or
the provenance of the code/data).

In the logistics space, we can think of the quality or environmental monitoring data flowing to
the AOC during transit as “data” and the rest as “metadata.” The metadata include basic shipment
information (e.g., what product is picked up or dropped off, where, when, how much), product
quality/condition on pick-up or delivery, mode of shipment, transit time constraints, environmen-
tal requirements (e.g., temperature, humidity), and any other aspects of the service provided by
the 3PL operator to the client. One can see in this list all three types of information: required (e.g.,
product volume, pick-up point), nice to have (e.g., product quality at source and product category),
and not strictly needed (e.g., precise product, delivered quality). Note that the information regard-
ing the distribution centers that the product passes through and how long it spends there is for
the 3PL operator to decide and may or may not be available to the client.

Given this analogy, if the client does not trust the 3PL operator, the (monitoring) data must be
encrypted by the S&C module itself using a client-supplied key (that would not be known to the
3PL operator). Note that, according to our assumption, the anchor nodes and local hub are owned
by the 3PL operator and cannot be trusted with client-supplied keys. Because of the battery and
computational limitations of S&C modules, the encryption must be very lightweight. This entirely
rules out homomorphic encryption, but the traditionally encrypted data at the AOC will be useless,
since no analytics is possible on it. An alternative is that the 3PL only provides the anchor and local
hub hardware, and the customer leasing the carrier/warehouse room is the one that takes control
and configures these devices. In this case, it is possible to do homomorphic encryption at the local
hub and correspondingly limited analytics at the AOC. The situation is no different than the cloud
doing limited processing in the presence of homomorphic encryption.

Metadata privacy is more easily enforced. In particular, the AOC can carry out much of the
analytics without knowing the precise product that is contained in boxes that make up the pal-
lets. Recall that the client provides the pallets to the 3PL operator, and it does not need to reveal
the details of the product. The precise sources and destinations can also be masked rather easily,
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since the pick-up from individual sources and distribution to final destinations are likely handled
by the local logistics that may be outside the purview of the 3PL operator. However, there is a
tradeoff—as more information is masked, we need deeper analytics to estimate the quality param-
eters, and there may still be issues arising from lumping together products with different chemi-
cal/biological processes of deterioration. In fact, if the analytics can reliably uncover the masked
information (e.g., the precise product and where/when it is procured), this would be considered
very undesirable from the client’s perspective.

9 HOW WILL THE PROPOSED ARCHITECTURE BENEFIT THE SUPPLY CHAIN?

The proposed architecture will provide an online infrastructure for monitoring perishability and
contamination in the fresh food T&D pipeline, particularly during transport of food on carriers
(e.g., trucks) or in warehouses. This involves both the localization of the boxes containing sensor
modules that detect quality/contamination issues and its communication to a local hub node. The
societal impacts of this research are expected to be substantial: It would help reduce perishable
food waste and its carbon footprint while improving efficiencies of distribution and providing
food to the needy within the region.

9.1 Efficiency Improvement

The quantitative evaluation of the efficiency improvement of this proposed sensing and communi-
cation infrastructure is non-trivial, as it involves deploying the S&C modules, gathering the data,
and analyzing them in detail, which is lacking in the current supply chain. However, we sum-
marize some of the literature that has done some preliminary studies and comparisons between
the informed and intelligent distribution (which can only be made possible with the proposed in-
frastructure) as opposed to traditional FIFO-based distribution. The authors in Reference [95] have
done a Monte Carlo simulation–based study on cooked ham and have shown that using intelligent
distribution policy reduces the amount of loss from 16% to 8% as compared to FIFO-based deliv-
ery. Authors in Reference [155] have done a similar study on gilthead sea bream and have shown
that the corresponding loss can be reduced from 15% to 5%. A study conducted by University of
Florida and Ingersoll Rand [21, 86] found that using quality information-based intelligent distri-
bution reduces strawberry losses from 37% to 23%. Another study from Wageningen University,
Netherlands, found that replacing fixed expiration date with a dynamic one reduces the losses of
fresh pork from 17% to 4%. These studies are summarized in Figure 20. Also, shipping the pack-
ages with uniform shelf life results in easier inventory management and thus lower quality loss
and waste.

9.2 Quality Improvement

However, locating food-borne illness is challenging in today’s supply chain mainly due to the
following reasons [81]:

(1) In the current supply chain, the observations of food contamination occurs when a number
of people in a region report illness. Thus, the data regarding individual food items are not
available, thus the symptoms of the illness are then linked to individual food items during
investigation.

(2) The observations available for an investigation are very sparse. Even if contamination
travels through multiple nodes in a supply network, it is only observed when some illness
is reported in connection to where the contaminated food was purchased (i.e., at the con-
sumption points). The contamination status at the production plant, processing, storage
remains hidden in the early stage of investigation.
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Fig. 20. Comparison of product losses of cooked ham, strawberries, gilthead sea bream, and fresh pork
without any quality information based delivery and shelf-life–based intelligent distribution [86].

(3) As the illness is only observed at the consumption points, there is a large distance between
the source of the contamination and the observation points. Also, in the current supply
chain, the path taken by the products from the origin to consumption points are not always
available, which increases the number of all possible candidate paths and makes tracking
operations harder.

The most recent case of contamination just happened as of this writing: 32 people from 11 states
were sickened due to romaine lettuce being contaminated with E. coli bacteria [27]. The authorities
are unable to pinpoint the origin or cause and therefore all romaine lettuce produced anywhere in
the country continues to be discarded for almost a week. The latest determination is that it likely
originated in California, which would hopefully result in some narrowing of what is discarded.

It is clear that the lack of traceability is very expensive and wasteful. The proposed online sens-
ing and communication infrastructure will greatly assist this process by adopting better tractability
as the products move through the supply chain. If the contaminated products are traced even be-
fore the consumption points in the food chain, then it will greatly reduce the distance between
the source and the detection points and will largely ease locating the contamination origin. The
detection process will also be faster because of the abundance of available contamination data and
the movement of the packages within the supply chain.

9.3 Deployment Cost Issues

Deploying a comprehensive infrastructure, as proposed here, is a huge undertaking and can only
happen organically. There is already a keen realization among all big players in the food indus-
try that technological solutions that go past the current practices can substantially decrease food
waste. Current practices essentially monitor and record temperature at the pallet level but gener-
ally do not have any communications capabilities. In some cases, the temperatures may be mea-
sured at multiple points in the pallet. The quality is usually monitored visually or using cameras
only at distribution centers, pick-up points, and end-points when such quality monitoring is possi-
ble. Simply recording temperature-quality data for each product type over a long period and doing
deep analytics on it can provide important insights into the quality deterioration as a function of
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temperature, initial quality, and other factors such as time of day and weather at the time of har-
vesting, elapsed time between product pick-up and cooling, and so on. This insight can be used for
better product management, including early distribution based on future quality prediction due to
temperature variations so far. Walmart has recently started such an effort called Eden [28], which
is expected to save them $2B over the next 5 years. Verigo’s Pod quality system [28] is similar but
also provides “smart” pallets that not only record but also analyze and then communicate remain-
ing product life to any phone or tablet within ~15 meters. The quality and history of the products
is also sent to the Verigo Cloud platform and is visible for further analysis.

The proposed infrastructure also eventually connects to the cloud, and the infrastructure be-
yond the local sensing and communications is being deployed already. Although the cost of this
infrastructure is substantial, it is only a one-time cost and is easily dwarfed by the savings it pro-
vides (e.g., Walmart’s $2B/year savings). Even for smaller players, the deployment costs using the
commercially available cloud services will be quite modest.

Thus, we believe that the remaining challenges both from technology and cost perspectives
are largely in building truly inexpensive sensors and radios that can be embedded in each end
consumer-level packages and discarded ultimately by the consumer. This is currently difficult to
do, particularly for radios that can reach beyond very short distances. Most of the current sensors
are based on MEMS technology, and as discussed in a recent article [63], it is difficult to make
devices out of silicon and yet achieve costs of around one cent. The same article then argues that
the emerging paper/plastic -based sensors can achieve low costs and at the same time can be much
more environmentally friendly. There is a tremendous amount of ongoing research on paper-based
sensors [150] and various forms of food quality sensing mechanisms [116]. Technologies such
as inkjet-printed on-chip sensors and antennas on flexible substrates, multi-walled carbon nano-
tube-based solutions are expected to realize thus miniaturization and low-cost solutions. One such
example is the C2Sense gas sensor, which costs roughly around 25 cents [159]. Such miniaturized,
printed circuit–based solutions are currently being researched heavily [53, 54, 82, 168] and will be
expected to help in miniaturization, power consumption, and cost.

While this research finds its way into truly inexpensive implementations, even higher cost sen-
sors can be useful by integrating only one out of n packages (n > 10). Recall that the proposed
mechanism only calls for one sensing and communication module per box and reusability of the
sensors. For this type of usage, a cost of less than $1 per sensor and communications module
should be acceptable, which we believe is already possible. Even these costs will naturally come
down substantially in the next several years, thereby removing cost as an inhibitor.

10 CONCLUSIONS AND FUTURE CHALLENGES

In this article, we discussed how the ongoing rapid transformation in the logistics space can be ex-
ploited to provide an intelligent distribution mechanism for fresh food to significantly reduce food
waste, enhance freshness, proactively detect food contamination, and improve the efficiency of lo-
gistics operations. We provided a comprehensive survey of key issues in this endeavor, including
the fresh food deterioration process and its sending, communications technologies for local com-
munications of the sensed data, the use of collected data in improving logistics operations. We
also discussed the important issues of gradual and sparse deployment of such a system, and the
privacy and security issues brought about by the infusion of information technology into fresh
food logistics. We hope that this article will spur new, deeper research into many of the issues
articulated in this article.

The success of this architecture largely depends on the rise of low-cost futuristic packaging
technologies, along with the development of printed in-packaging sensors and radios to commu-
nicate food safety information directly to a centralized repository. Besides developing the sensing
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technology, the false positive reactions need to be minimized to avoid unnecessary confusion.
However, as the sensing surface needs to be in contact with the food contents, care should be
taken to avoid inducing changes to the food from the S&C modules. This can be ensured by us-
ing organic bio-compatible materials for the sensors [45]. These technologies along with the rise
of tightly coupled industrial Internet of things will make possible the networking, storage, and
processing of real-time sensor data across the food supply chain. We believe that with significant
ongoing advances in the physical Internet area, automation, sensing, and communications, these
approaches are ripe for adoption in the real world.
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