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Abstract—Situational awareness tries to grasp the important events and circumstances in the physical world through sensing,

communication, and reasoning. Tracking the evolution of changing situations is an essential part of this awareness and is crucial for

providing appropriate resources and help during disasters. Social media, particularly Twitter, is playing an increasing role in this process in

recent years. However, extracting intelligence from the available data involves several challenges, including (a) filtering out large amounts of

irrelevant data, (b) fusion of heterogeneous data generated by the social media and other sources, and (c) workingwith partially geo-tagged

socialmedia data in order to deduce the needs of the affected people. Spatio-temporal analysis of the data plays a key role in understanding

the situation, but is available only sparsely because only a small fraction of people post relevant text and of those very few enable location

tracking. In this paper, we provide a comprehensive survey on data analytics to assess situational awareness from social media big data.

Index Terms—Spatial big data analytics, crowd big data, disaster management, situation awareness
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1 INTRODUCTION

SITUATIONAL awareness is crucial in a disaster scenario and is
often difficult to come by due to the challenges in obtaining

the necessary information in a coherent manner and organiz-
ing it. Part of the difficulty arises due to patchy availability and
overloading of the communications networks; however, it is
often unclear what information is most relevant and how it
should be gathered. Since disasters can continue to evolve over
many days, tracking situational awareness becomes even
more challenging. Lately, social media has emerged as a pri-
mary means for informing the ground realities and expressing
the needs by people caught in the disasters. However, only a
small fraction of people may post about their needs and of

those only a tiny fraction usually enables location tracking due
to privacy concerns.

Twitter has established itself as the disaster communi-
cation vehicle of choice due to its modest networking
requirements, ease of use, and brevity. For example, after
the 2011 Japanese earthquake there were more than 5,500
tweets per second after the disaster. Twitter has been used
for a wide variety of disaster scenarios, including the three
major Hurricanes in 2017, namely Harvey, Maria and Irma
that affected Caribbean and US East coast [1], 2019 Pan-
European Floods [2], and 2019 US midwestern floods [3],
and COVID19 [4] [5].

Fig. 1a shows the distribution of earthquake related tweets
(with keywords ‘earthquake’, and ‘jishin’ whichmeans disaster
in Japanese) in theKumamoto Earthquake that struck at Kuma-

moto City of Kumamoto Prefecture in Kyushu Region, Japan in

2016. The density of these keywords shows close correlation

with the official shake map of the region. On the other hand,

Fig. 1b shows the power outage related geo-tagged tweets from

New York city during Hurricane Sandy in 2012. The regions of

Lower Manhattan fromMadison Square to the tip of the island

was hit the hardest. The distribution of the such disaster related

tweets was well correlated with the actual areas of damage,

which shows the usefulness of the tweet analysis.
In addition to social media posts,many other types of data is

often also available and can be exploited to gain further insights
into both the impacts of the disaster on the physical infrastruc-
ture (e.g., damaged transportation routes and assets, damage to
power lines/substations, damage to wired/wireless network
assets, etc.) and the needs of people affected by it. The sources
of such data include various utility companies and service pro-
viders. Extracting intelligence from such heterogeneous data
involves a lot of challenges including (a) filtering out irrelevant
data, (b) fusion of heterogeneous data, (c) dealingwith partially
geo-tagged social media data, (d) lightweight data analysis
mechanisms for near real-time response, and (e) working with
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evolving situations. In this paper, we provide a comprehensive
survey of these and related issues.

While these challenges apply in general to the processing
of multimodal data, there are many aspects that are unique to
the disaster applications. First, it is important to quickly and
continuously process the enormous amount of data being
generated during disasters, so that the help can be dispatched
expeditiously. A related issue is the continuous evolution of
the disaster, which must be reflected in the analysis. Second,
we can expect that the relevant and useful posts are likely to
form a very tiny fraction of all the posts, and even fewer will
have location information. However, we expect a temporal
and spatial “stickiness” to the application specific posts, par-
ticularly those concerning human condition. For example, if a
person reports need for food, water, medical care, etc., it is
almost certain that (a) the need will persist for some time
(even if there is no further post about it), and (b) people in the
same or nearby areas have the same need. A suitable model-
ing of this stickiness can enable reliable conclusions in spite of
the sparseness of the data. Finally, there are numerous disaster
scenarios, each with unique situation awareness needs, how-
ever, these can be divided into a small number of categories.
One goal of this paper is to provide such a categorization of
the disaster applications and review relevant literature on sit-
uation awareness for each.

The paper is organized as follows. Section 2 discusses
using social media for emergency situational awareness. Sec-
tion 3 describes the spatial big data analysis. Section 4 summa-
rizes the applications in disaster scenarios. Due to the unique
features of disaster scenarios, data mining methods may fail
and need to be complemented in several cases, and thus Sec-
tion 5 discusses challenges and possible solutions. For exam-
ple, the information decay based spatial clustering (ref. to
Section V-D) enlarges the size of data samples allocating the
point data intomultiple rather than single temporal partitions
chronologically. We have demonstrated an application of big
data analysis in section 6 through a case study. We introduce
evolving clustering to deal with streaming data for detection
of evolution of disaster. Some future directions are summa-
rized in section 7. The paper is concluded in section 8.

2 USING SOCIAL MEDIA FOR DISASTER

SITUATIONAL AWARENESS

Recent years have seen an increased interest by the research
community in using twitter data for situational awareness in

the emergency and disaster contexts. Event detection is argu-
ably the most active subtopic, where the objective is to detect
new events from a real-time twitter stream.A typical approach
for event detection is to define one or a few keywords (e.g.,
earthquake) of interest and to track if there are temporal bursts
of the keywords’ used in the tweets [6]. Extensions of this
approach include general-purpose detection systems that track
a large number of keywords [7], phrases [8] or detect emer-
gence of clusters of similar tweets [9].

Once an event is detected, another commonly addressed
research challenge is using twitter data to gain situational
awareness. Considering the state of the art in natural lan-
guage processing and data analytics, it is still not possible to
build a fully automated system that could provide actionable
knowledge to the responders. Instead, the emphasis has been
on summarizing and visualizing disaster-related tweets to
help human responders to quickly grasp the vast amounts of
generated information. Representative examples are Sense-
place2 [10], a visual analytics system that allows an operator
to enter a query (in a form of a term or a hashtag), look at the
map to observewhere is the keyword common, click on a spe-
cific location, and view individual ranked tweets from the
selected location, and Twitinfo [11], a tool that allows an oper-
ator to browse a large collection of tweets using a timeline-
based display, drill down to sub-events, and explore via geo-
location, sentiment, and popularURLs.More advancedvisual
analytics systems also include capability to cluster disaster-
related tweets [12]. There are also summarization systems
that have capability to classify tweets into some of the prede-
fined categories [13]. As a representative system of this type,
in [14] the authors categorize disaster-related tweets into one
of a few predefined categories (e.g., personal, informative,
other) and subtypes (e.g., caution, casualties) using a classifier
which uses text features such as unigrams or bigrams and
which is trained on a manually labeled data set of historical
tweets. In addition to these there are systems that integrate
data from multiple sources, such as Ushahidi (www. usha-
hidi.com) [15], a platform that leveragesWeb 2.0 technologies
to integrate data from phones, Web applications, email, and
social media sites to provide publicly available crisismaps.

Other social media platforms such as Facebook, Wikipe-
dia, Flickr etc. are also used in different disaster scenarios.
After the Sichuan earthquake in 2008, the use of Tianya (a
popular online forum in China) is studied as a forum for
online discussions on earthquake-related topics [16]. Refer-
ence [17] have studied the peer-to-peer communication

Fig. 1. Kumamoto Earthquake Tweets (red: relevant, green: others). (b) Power outage tweets in Hurricane Sandy (dark blue: relevant, light blue:
others)
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from a variety of other platforms especially Facebook after
the Virginia Shooting in 2007, and southern California wild-
fires in 2007 [18]. During the 2013 Colorado Floods, different
flood-related communications in Facebook and Twitter are
examined in [19], [20].

More recently, researchers started payingmore attention to
the spatial aspect of events [21]. For example, [22] considers
burstiness of term “earthquake” in both time and space to
detect spatial clusters of tweets that are candidates for an
earthquake event. The unsupervised approach for event
detection can be further enhanced by adding a classifier that is
trained on previous events to recognize which clusters are
events and which are not [23]. Big data analysis from the tem-
poral-spatial point of view can assist governments or rescue
teams grasp the distribution of the situation in the disaster
area, predict the evolution of situations in temporal-spatial
space, and find the correlated features behind the data.

When processing and analyzing such social media data
for event detection and situational awareness, one should
be aware of a multitude of challenges. One issue lies in
varying credibility, reliability, and quality of twitter data.
For example, geotagging of tweets is nontrivial because of
the uncertainties in their location and timing [24]. Only a
small fraction of tweets typically have an accurate GPS-
quality location and there could be a significant and
unknown lag between an event occurrence and its mention.
Another challenge is that there are significant differences in
the dynamics, spatio-temporal extent, and impact of differ-
ent disasters, coupled with the ever changing use of social
networks such as twitter. As such, one should be cognizant
of these issues when performing titter data analysis and
transferring knowledge from previous disasters.

3 SPATIAL BIG DATA ANALYTICS FOR

SITUATIONAL AWARENESS

Spatial analytics studies the relationships between the data
and the location where the data is generated or is intended
for. Extracting interesting and useful patterns from the spatial
information of data is important and yet difficult due to the
complexity of spatial data types, spatial relations, and spatial
auto-correlations [25]. In this section we discuss four major
aspects in spatial analytics [26], namely spatial prediction,
spatial clustering, spatial outlier detection, and spatial co-
location pattern discovery. The taxonomy and structure of
this section is briefly shown in Fig. 2; in the following we dis-
cuss each category in details.

3.1 Spatial Prediction

Spatial prediction models can be used to support crime
analysis, network planning, and services after natural disas-
ters such as fires, floods, droughts, plant diseases, and
earthquakes. Consider, for example, n points with locations
denoted as s1; s2; . . . ; sn, and a set of explanatory features
X ¼ ½xðs1Þ; xðs2Þ; . . . ; xðsiÞ; . . . ; xðsnÞ�T at these locations. Let
Y ¼ ½yðs1Þ; yðs2Þ; . . . ; yðsiÞ; . . . ; yðsnÞ�T denote the “situation”
at these points, which refers to the learned function Y ¼
fðXÞ representing a quantity of interest. The function fðXÞ
is usually known only in certain locations, and we are inter-
ested in predicting it for others. This is illustrated in Fig. 3.
Here, we want to predict the situation at the location of the
red question mark based on the surrounding situations and
the spatial correlation among the data.

Spatial prediction models can be sub-divided into two
categories, i.e., spatial auto-correlation (dependency) and
spatial heterogeneity (non-dependency) models.

3.1.1 Spatial Auto-Correlation

Spatial auto-correlation follows the first law of geography,
i.e., “everything is related to everything else, but near things
are more related than distant things”. For example, closer
locations are likely to have similar situations both in terms
of the needs of the people and conditions (e.g., wireless sig-
nal strength). Spatial auto-correlation can be further divided
into two kinds of approaches, i.e., based on spatial contex-
tual information and based on prediction models [27].

The first approach is through augmentation of the train-
ing data with additional spatial contextual information that
refers to spatial relationships such as neighborhood of the
input data. The relationships can be learned based on tradi-
tional machine learning models, e.g., SVM or decision tree.
The spatial contextual information can be grasped directly
from location information [28], such as distance or direction,
or can be collected from multi-source data [29] [30]. The big-

Fig. 2. Characterization of big data analysis for situation awareness.

Fig. 3. Four major types of spatial analytics.
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gest benefit of this approach is that many traditional non-
spatial prediction/learning models can be used, which is
much more convenient for researchers. However, the gener-
ation of proper spatial contextual features and the integra-
tion of spatial and non-spatial features into machine
learning models can be nontrivial. Instead of generating
spatial contextual information, some approaches directly
integrate the spatial relationships in the prediction model;
two such approaches are Markov random field based mod-
els [31] and Gaussian process based models [32].

Markov random field (MRF) represents as an undirected
graph model of random variables, which have a Markov
property. The formal definition is given as follows. Given
an undirected graph G ¼ ðV;EÞ and a random variable Xu

associated with node u 2 V , the random variables form a
MRF with respect to graph G, if Xu is conditionally inde-
pendent of all other non-neighbouring variables. Generally,
Markov random field can be factorized as the cliques of the
graph, and the joint probability can be described as follows:

P ðX ¼ xÞ ¼
Y

c2clðGÞ
fðcÞ (1)

Then by optimizing the maximal likelihood with col-
lected data, a learning algorithm can find a best model to fit
the data, and finally output conditional probability for spa-
tial prediction of a new data.

Kriging (Gaussian process regression) [32] is another typi-
cal method for spatial prediction, which utilizes an observed
spatial relation to do spatial prediction for unknown areas.
In the Kriging method, it is assumed that each point i in a
space is associated with a value zi. Let u denotes a point
whose value, i.e., zu is unknown. Then let V ðuÞ ¼ f1; . . .; Nng
be a set of u0 neighboring points, and zi represents the known
value in prior for each point i 2 V ðuÞ. In ordinary Kriging,
the unknown value ẑu at point u is estimated as a weighted
linear combination of the known values in V ðnÞ as shown in
equation(2). To minimize the estimation error Kriging calcu-
lates a set of optimal weights. There are several types of Krig-
ing with different assumptions. The ordinary Kriging
method assumes that the mean is a constant for a neighbor-
hood point, which can be represented as the estimation error
at an unknown point u is zero, i.e.,Eðẑu � zuÞ ¼ 0, where

ẑu ¼
X

i2V ðuÞ
wizi, and

X

i2V ðuÞ
wi ¼ 1 (2)

Effectively, MRF works more like a supervised learning
model, which learns model parameters (i.e., transition prob-
ability of one state to another) from the original data, and
outputs one or zero to fit the unknown area. In contrast,
Kriging works similar to a regression model; it learns a set
of optimal weights and generates some values (between 0
and 1) to fit the unknown area.

3.1.2 Spatial Heterogeneity

Spatial heterogeneity is another challenging issue in spatial
prediction. It refers to the variation in the sample distribu-
tion across the study area [33]. It assumes that spatial data
samples often do not follow an identical distribution in the

entire big area, thus the learning model from the entire area
may indicate poor predictions for some specific areas. To
solve the above problem, the researchers investigate several
kinds of solutions, including integrating spatial coordinate
features into data mining, geographically weighted models,
and multi-task learning.

An example of integrating spatial information into data
mining is geographically weighted models (GWR) [34].
Here the integration of spatial information into linear
regression model transforms the equation y ¼ wTxþB into
y ¼ wTxbþB, where b represents the vector of location
information of the sample data. The advantage of GWR is
that the location independent value x can be integrated as a
location dependent value y smoothly and clearly. However,
b is a matrix needed to be estimated for each point of inter-
est, and the computation cost becomes high for such kind of
estimation.

Another approach is based on multi-task learning. It is a
common machine learning solution for heterogeneous data,
and can group learning samples into several different learn-
ing tasks. To solve the spatial heterogeneity problem, it is
possible to decompose the entire approach into several sub-
tasks to learn different models for different regions/loca-
tions. Then the learnt sub-models are aggregated together,
similar to the ensemble learning. As compared to GWR, the
advantage of multi-task learning is its flexibility of different
shapes of sub-regions, however determining sub-regions
can be non-trivial [27]. Meanwhile, how to select base
machine learning models is another question for it.

3.2 Spatial Clustering

Spatial clustering groups similar objects based on various
measures such as distance, connectivity, or their relative
density in space. As a part of unsupervised learning in
machine learning and concept hierarchies, the cluster analy-
sis in statistics aims to find interesting structures or clusters
from data based on natural notions of similarities without
using much background knowledge. Spatial clustering can
be further categorized into partitional clustering, hierarchi-
cal clustering, density-based clustering, and grid-based
clustering.

3.2.1 Partition-Based Clustering

Partition-based clustering such as k-means [36] method sep-
arates n objects into k clusters to optimize a given criterion
(such as the squared error function). The partitioning
around medoid (PAM) algorithm [37] effectively finds the
most centrally located objects as representatives of each
cluster in an iterative way. To improve the efficiency, the
sampling-based clustering large applications (CLARA)
algorithm [37] was proposed to accelerate PAM on larger
datasets. An enhanced version, named CLARA based on
randomized search (CLARANS) [38] algorithm outperforms
CLARA and PAM both in efficiency and effectiveness by
using a randomized search [63] constrained by the maxi-
mum number of neighbors. However, the outputs of parti-
tional clustering algorithms are mostly hyper-ellipsoidal
and of similar sizes. Therefore, it is not easy for these algo-
rithms to find clusters with different sizes or shapes [64]. In
a disaster scenario, these methods are good for clustering
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data and finding the center of each cluster, which can be
used for the application such as finding an optimal route to
deliver supplies, but not suitable to reflect an arbitrary
shape of clusters.

In the most recent research works [39], [40], partitional
clustering is further enhanced in several ways. In [39],
KMDD (clustering by combiningK-means with density and
distance-based method) was proposed to first cluster data
with ball-shape based on K-means, and then in the second
stage subclusters are further processed based on DBSCAN to
gain an arbitrary shape of clusters. The integration can
achieve a fast clustering and allows arbitrary shapes. Refer-
ence [40] proposes a parallel adaptive partitioning algorithm
(ParADP) for spatial join operation which can achieve a
more balanced partition during spatial join operation.

3.2.2 Hierarchical Clustering

The agglomerative hierarchical clustering is a “bottom up”
approach by constructing a tree of clusters. The tree will
dynamically grow when a new data point comes. Typical
algorithms include BIRCH[41], CURE [42] and ROCK[43].
BIRCH measures closeness similarity by using centroid- or
medoid, and it outperforms the CLARANS algorithm for
large datasets. The single-link hierarchical methods such as
CURE [42] find clusters of arbitrary shapes and different
sizes by measuring the similarity of the closest pair of data
points belonging to different clusters. But hierarchical meth-
ods are susceptible to noise, outliers, and artifacts. The
aggregate similarity based methods such as ROCK [43] con-
sider new measures, e.g., inter-connectivity, and Chameleon
[64] further overcomes its limitation by measuring both
inter-connectivity and closeness for identifying the most simi-
lar pair of clusters. In a disaster scenario, the advantage can
be arbitrary shapes of clusters, however the disadvantage is
much more clear, including computation complexity by
gradually adding each point to the cluster, and noise data
can affect the clustering results a lot in the early stage.

3.2.3 Density-Based Clustering

Themost popular density-based clusteringmethod isDBSCAN
[48] which finds groups of points that satisfy the following con-
dition: given a radiusEps, a cluster at least contains aminimum
number of objects MinPts, and all the points satisfy density-
reachable conditions. Several studies have been proceeded to
improve DBSCAN, from parameter setting [65], efficiency opti-
mization [66], and parallelization [57], [59], [60]. In [49], an
adaptive DBSCAN was proposed to deal with the data points
between two clusters. The research in [50] considered non-uni-
form distribution of density parameters during clustering, pro-
posed algorithm DENSS to identify the clusters of different
densities, shapes and sizes.However, its computation complex-
ity is high because it processes each data point individually.
Grid based clustering differs from the above two in that it
assigns a value in each cell of the grid covering several data
points. Thus Grid-based clustering is generally quite efficient in
big data processing as long as the grid cell is not too small. In
[51], grid based algorithm is integrated with DBSCAN, which
can promote a faster clustering while keeping arbitrary shapes
of clustering.

3.2.4 Evolving Clustering Techniques

With the development of big data applications, clustering
technologies also evolve in order to deal with some emerging
challenges, such as handling streaming big data [52], [53],
[54], [55]. Evolving cluster was originally proposed in [67],
which separates clustering procedure into online and offline
stages. During online stage, micro clusters are generated tem-
porally when the streaming data arrives, and once an aggre-
gation command arrives, micro clusters aggregate together to
produce a global cluster. This can be done in an offline stage.
In [53], ant colony stream clustering (ACSC) algorithm was
proposed, inwhich a tumblingwindowmodel is used to read
a stream and micro clusters are incrementally formed during
a single pass of a window. Micro clusters are then refined by
using an ant-inspired method, which emulates an ant’s pick-
up and drop actions. But how to select representative points
in micro clusters and how to handle the rapidly evolving pat-
terns still are critical problems, which have been tackled in
[54][55]. Theywere proceeded by extending theAffinity Prop-
agation (AP) algorithm and an online version STRAP [56]. AP
is a message passing-based clustering method proposed in
[68], which does not need to decide the number of clusters in
advance and the original points can be set as cluster centers
directly. STRAP [56] is an enhanced version of AP to process
data clustering by incrementally updating the currentmodel.

3.3 Spatial Outlier Detection

Spatial outlier detection [92] discovers the data which are
spatially distinct from their surrounding neighbors, such as
the red cross mark in Fig. 3. In many real applications using
geographic information, such as transportation, public,
safety, and location based services [93][94], spatial objects
cannot be simply abstracted as isolated points, because dif-
ferent properties, such as boundary, size, volume, and loca-
tions among the spatial objects, lead to neighborhood
effects. For example, the size and type of business deter-
mines the amount of road traffic that this business will
create.

Outlier detection is a typical approach in machine learn-
ing and data mining field and can be implemented based on
clustering, classification, or regression techniques in
machine learning. Spatial outlier detection is similar but
more concentrated on discovering some unexpected, inter-
esting, and useful spatial outlier pattern for further analysis.
Here spatial objects can be seen as spatial points with attri-
bute values (non-spatial value such as temperature).

There are various statistical tools or methods available for
spatial outlier detection. The spatial statistics literature [70]
provides two kinds of bi-partite multi-dimensional tests,
namely, graphical tests and quantitative tests. One is graphic-
based approach, such as variogram clouds in [69][70] and
pocket plots in [69] [95]. These visualize the data first and then
find the corresponding spatial outliers. However, graphical
tests need a precise criteria to distinguish the spatial outliers.
The other is a quantitative test including Scatterplots [96][97]
that show attribute values on theX-axis and the average of the
attribute values in the neighborhood on the Y -axis. A regres-
sion line is drawn to identify spatial outliers. Moran scatter-
plots [74], [76] is another type of quantitative test method,
which shows the spatial association or non-association of
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spatially close objects. Although quantitative tests share com-
mon technologies with the graphical tests, they outperform
graphical tests by providing amore precise result.

As an example, bipartite tests are typical multi-dimen-
sional spatial outlier detection methods, which use the spa-
tial attributes to characterize location, neighborhood, and
distance. Then they further find a spatially referenced object
in the neighborhood based on non-spatial attributes such as
temperature. A Variogram Cloud can be used for spatial
outlier detection [98]. In a variogram, the x-axis represents
the non-spatial features and y-axis represents the spatial
distance of pairs of points. As an illustration, Fig. 4 shows
two pairs above the main group of pairs; these are possibly
related to spatial outliers. The two pairs marked as spatial
outliers have short pairwise distance in y axis, but big differ-
ence in x axis. Several other methods used for spatial outlier
detection[99] include kNN, and also different statistic meas-
ures are used for representing spatial distance, e.g., z-value.
The z-value is used to detect spatial outliers for an attribute
value, e.g., fðxÞ, which follows a specific distribution, by
calculating standard deviation of the value in the location x.
For the spatial data at location x, the outlier is detected if its
z-value is larger than a predefined threshold.

3.4 Spatial Co-Location

Spatial co-location discovery [100] finds the subsets of fea-
tures that are frequently located together in the same geo-
graphic area as shown in Fig. 3 (white and yellow circles).
Spatial co-location mining problem can be formalized as fol-
lows [81]: Given a set F of K types of spatial features F ¼
ff1; f2; . . . ; fKg, and their instances I ¼ fi1; i2; . . . ; iDg, where
D represent the amount of data. Each instance of data ii is
represented by a vector < id; ik; loci > , including its id, a
type of spatial feature ik and its location. Spatial co-location
mining refers to efficiently finding the colocated spatial fea-
tures in the form of features or rules.

Co-location pattern discovery can be mainly classified
into two categories: spatial statistics based and data mining
based. The spatial statistics based approaches use various
measures to characterize the relation between different types
of spatial events (or features), whereas data mining methods
find frequent and meaningful relations, positive associa-
tions, and stochastic plus asymmetric patterns among sets of
items in a large transaction database and a spatial database.
Measures of spatial correlation[81] include cross-K function
[77] with Monte Carlo simulation and mean nearest-neigh-
bor distance [78]. The cross-K function for binary spatial fea-
tures is defined as ��1

j E[number of type j instance within
distance h of a randomly chosen type i instance] [77], which

can be estimated by Monte Carlo simulation. It can be used
to represent co-location pattern of two features i and j. Mean
nearest-neighbor distance calculates average feature dis-
tancewith other data.

Data mining approaches can be further divided into the
clustering-based map approach and association rule-based
approaches, or their integration [101]. Association rulemining
(ARM) was first introduced in [102] as an efficient approach
for finding frequent and meaningful relations among several
sets of items in large spatial databases [103]. It outputs partici-
pation ratio (between 0 and 1) to represent the co-location rela-
tionship of two features: 1 represents almost all the points
from two features are co-located, and 0 shows the opposite
case.

As inspired by [81], Fig. 5a shows a toy example to com-
pute the participation ratio. There are some points in the
figure with two types of features A and B. ARM works by
first generating an instance table for each type of feature,
i.e., t1 for feature A and t2 for feature B as shown in Fig. 5b.
And then it generates co-location relation table t3 in Fig. 5c,
in which each pair of instances are located as a neighbor-
hood, e.g., A.1 and B.1. The participation index is further
calculated as shown in Fig. 5d.

The output from cross-K function is quite clear based on its
definition. However, computing cross-K function for all pos-
sible points can be computationally expensive given a large
collection of spatial features [81]. Even the procedure is differ-
ent, ARM output a similar value, i.e., participation index, to
represent co-location pattern of two types of data. Also high
computation time is required for spatial join operations in
[81], however it has been enhanced by a joinless approach in
[83], by using an instance-lookup scheme instead of an expen-
sive spatial join operation. The experiment results show that
joinless approach can reduce almost half of execution time
when the neighbor distance is setting around 200m in a real
data-set. For only clique and star co-location patterns, authors
in [84] introduced amore efficient co-locationminingmethod,
by defining constraint neighbor for clique or star co-location
pattern respectively. For example, to detect a star co-location
pattern, a point lk must be the neighbor of the center point in
another star type data.

In recent years, spatial co-location mining has been fur-
ther developed to deal with big data issues, mainly by

Fig. 4. Spatial outlier detection based on a variogram cloud.

Fig. 5. An example of association rule mining (ARM).
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exploiting the parallelism [87], [89], [104]. In [104], parallel
co-location mining algorithm is proposed for working with
GPU-based platforms based on iCPI tree. iCPI tree is short
for (improved Candidate Pattern Instance tree), which is an
index to represent the neighborhood relation of instances
for different features. Assume there are several instances of
feature A, B, and C, denoted as Ai, Bi and Ci. iCPI tree can
easily tell us what are the neighbors of a given instance Ai

having feature C. A GPU-based version of iCPI tree is pro-
posed in [104], and further enhanced using a grid-based
approach [87] to reduce the computation complexity of spa-
tial co-location mining procedure. In [89], spatial co-location
mining is redesigned using the MapReduce framework
where several reducers accomplish different stages of spa-
tial data processing, including searching neighboring pairs,
counting neighboring objects, and finding co-located events.

Another interesting approach is to deal with dynamic
relationships among spatial features, e.g., the decrease of
“algae” and the increase of “water hyacinth” belongs to spa-
tial co-location patterns. To detect such a dynamic pattern,
reference [90] gives various definitions to quantify a
dynamic spatial co-location pattern including dynamic fea-
ture, dynamic distance threshold, dynamic spatial neigh-
borhood relationships. It then proposes a data mining
algorithm to reflect the dynamic relationships among the
spatial features. Comparison of different spatial data min-
ing algorithms are summarized in Tables 1 and 2.

3.5 Deep Learning-Based Approach

In recent years, deep learning technologies have been gradually
adopted into spatial data analysis. Different from traditional
ways, they learn spatial-temporal patterns directly from the
data, instead of the predefined rules beforehand. Most popular
techniques are CNN to detect spatial patterns, and RNN (e.g.,
LSTM) to find temporal patterns, or the integration of both. A
spatial-temporal event prediction framework was proposed in
[105] based on Deep Neural Networks. It consists of 3D convo-
lution networks, where one dimension encodes the temporal
information, second dimension represents the spatial informa-
tion, and the thirddimension encodes both. In [106], the authors
proposed a deep spatio-temporal residual network (ST-ResNet)
to predict inflow and outflow of crowds in each region. ST-
ResNet adopts convolution-based residual network to model
spatial dependency between any two regions, and then uses
the same residual networks in different timeline to detect tem-
poral dependency. Three types of temporal dependency are
considered, including distant, near, and recent, to represent
three kinds of temporal closeness. Finally the above three resid-
ual networks are integrated together to output the final predic-
tion. Authors in [107] have enhanced the research with 3D
convolutions for traffic prediction, considering temporal and
spatial information. They have similar network architecture
with [106], while local temporal patterns and long-term tempo-
ral patterns are further adopted in the learning architecture.

LSTM-based traffic flow prediction method has been
developed in [108]. They first developed an Attentive Traffic
Flow Machine (ATFM), which consists of two Convolu-
tional Long Short-Term Memory (ConvLSTM [109]) units to
learn spatial and temporal patterns. It has two LSTM units
and connected in a sequential way through a convolution

layer in the middle, where the first LSTM unit takes normal
traffic features as input and then outputs to the connected
convolution layer for spatial feature detection. The second
LSTM unit learns more effective spatial and temporal pat-
terns after the convolution layer. The whole learning archi-
tecture consists of a sequential representation learning
module and a period representation learning module, both
of which are constructed based on ATFM. The purpose is to
learn different kinds of temporal patterns based on different
types of learning architecture.

4 SITUATION AWARENESS IN DIFFERENT DISASTER

APPLICATIONS

According to World Health Organization, “a disaster is an
occurrence disrupting the normal conditions of existence
and causing a level of suffering that exceeds the capacity of
adjustment of the affected community”. Disasters can evolve
over very long periods of time; however, the focus of this
paper is on events that cover large geographic areas and
evolve rather rapidly such that the dissemination of relevant
information becomes challenging. There are numerous types
of events even under this restricted definition with varying
impacts and mitigation challenges; however, they all cru-
cially depend on rapid and accurate situational awareness.

4.1 Practical Disaster Scenarios and Social Media

There are numerous types of disasters, each requiring spe-
cialized big data and deep learning techniques depending
on the nature of available data. For example, wild-fires typi-
cally occur away from populated areas and even monitoring
them is a big challenge. Here we only speak of some disas-
ters where social media based analysis plays a significant
role.

Earthquake/Landside. Social media big data provides a
chance to understand situations after an earthquake such as
sentiment/attitude for the government actions, require-
ments from people and so on. It is quite a typical application
for situational awareness based on social media big data.

COVID-19. Big Data/Deep Learning Technologies have
been used for COVID-19 to perform semantic situation under-
standing through content analysis of Twitter posts[4][5]. In
[4], the authors have collected a large-scale twitter dataset for
COVID19 sentiment analysis, and through the analysis based
on various machine learning and deep learning methods,
they found in some periods people were losing trust in the
government to control the situation, and then the behaviors
changed to fear, disgust and sadness later. In [5], authors
have researched on the sentiment behaviors of lockdown in
India during COVID19. They collected 12741 tweets which
includes the keyword “Indialockdown” from April 5 to April
17, 2020, and implemented several supervisedmachine learn-
ing methods to recognize the attitude of tweets. During the
analysis, they found that around 49% are positive, 21% are
negative and around 30% are neutral.

From the situational awareness perspectives, the existing
literature can be categorized as follows: (1) Assessment of
communications network outages and mitigation mecha-
nisms, (2) Assessment of power outages that may interfere
with communications, (3) Prediction of situational evolu-
tion, and (4) Assessment of individual needs (e.g., need for
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food, water, medical help, etc.). The key works in these
areas are summarized in Table 3, which are also elaborated
in the following subsections.

4.2 Situational Awareness of Network Connectivity

We define network disturbance as any situation that nega-
tively impacts ability of nodes to send and receive data. This

TABLE 1
Comparisons of Spatial Data Mining Algorithms: Part 1

Types Categories Basic Description Models and
Algorithms

Details Usecases in Disaster

Spatial
Prediction

Spatial
Autocorrelation

Contextual
Information

Extract spatial
relationships from
contextual
information

Reference [28] Extract spatial relationships
directly from location
information

Predict situations in
an unknown area by
prediction models.
Spatial information
can be extracted
from multiple data
sources.

Reference [27] Extract spatial relationships
from raster data

Reference [29][30] Extract spatial contextual
information from multiple data
sources

Model-based Build a unified
model for
spatial and
non-spatial
information

Reference [31] Build a Markov Random Field
based prediction model

Reference [32] Build a Gaussian Process
(Kriging) based prediction
model

Spatial
Heterogeneity

Assume spatial data
do not follow an
identical distribution

Reference [34] Integrate spatial information
into learning model for
a location-dependent learning

Wireless signal
prediction for
disaster resilient
base station.Reference [35] Decompose the model into some

sub-models based on multi-task
learning

Spatial
Clustering

Partition-based
Approaches

Separates the whole
target into several
clusters

Reference [36] k-means method Clustering people
who need a specific
supply, and design a
delivery route by
visiting cluster
centers.

Reference[37] PAM which effectively
finds the most centrally objects
as representatives of cluster

Reference [37] [38] A sampling-based clustering
large applications (CLARA)
algorithm for large datasets

Reference [39] Partition-Density joint
clustering

Reference [40] Adaptive partition for spatial
analysis

Hierarchical-based
Approaches

A “bottom up”
approach by
constructing a
tree of clusters

Reference [41] BIRCH: measure similarity
based on centroid or medoid

Similar to the
partition-based
approaches, but
need to pay attention
to noise data.

Reference [42] CURE: single-link hierarchical
methods

Reference [43] ROCK: Consider new measures,
e.g., inter-connectivity

Reference [44] Hierarchical clustering based on
topology learning to reduce
computation complexity

Reference [45] Time-hierarchical clustering
Reference [46] Hierarchical aggregation for

distributed clustering
Reference [47] Parallel hierarchical clustering

Density-based
Approaches

Take density as
critical for
clustering

Reference [48] DBSCAN Draw an arbitrary
shape of area with
dense people who
need something.

Reference [49] Adaptive DBSCAN for massive
data

Reference [50] For different densities, shapes
and sizes

Reference [51] Grid-based DBSCAN
Clustering for big
data stream

Evolving
of Cluster

Reference [52] Evolving cluster based on
dynamic generating micro
clusters

For real-time data
stream, and the
situation evolves
accordingly.Reference [53] Ant colony stream clustering

(ACSC) algorithm to
incrementally update micro
clusters

Reference [54][55][56] To select representative points
and handle a better evolving
pattern

Reference [56] Evolving clustering based on
Affinity Propagation (AP)
algorithm

Parallel Clustering Spatial clustering in a
parallel way

Reference [57][58] DBSCAN with MapReduce Need to speedup the
clustering
procedure.

Reference [59] A parallel-processing model on
a multi-core CPU

Reference [60] Distributed spatial clustering by
merging local clusters together

Reference [61][62] Parallel clustering in GPU
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might include situations when the network demand exceeds
capacity due to bursts of activity and inadequate bandwidth,
or when portions of the network are down or disconnected.
Network performance related data can be useful in detecting
the disturbances, understanding their severity and causes,
and taking adaptive actions to recover from them. Given the
high degree of robustness and redundancy of the public com-
munications networks, large scale network failures are very
rare, as evidenced by the network damage during the Kuma-
moto earthquake and hurricane Sandy. Also, if a large net-
work outage does occur, it would decimate the social media
traffic in the affected area; therefore, we do not focus on large
scale network outages.

4.2.1 Detection of Network Disturbances

Detection of network disturbance can be performed by ana-
lyzing the spatial scan statistics [110] and its many extensions
[111], [112], [113] to detect spatial, temporal, or spatial-tempo-
ral areas where the user’s activity is different from the norm.
Network abnormality or anomalies in a cellular network can
be identified by examining the call records of the users in a
region, their locations, mobility patterns etc. Similar anoma-
lies can also be identified from the user’s tweets that originate
from the region of interest and their spatio-temporal behav-
iors. Spatial outlier based scanning can be applied in this con-
text for spatio-temporal anomaly detection. Of course, the
accessibility to the required data often is a constraint.

Spatial scan based algorithms have traditionally been used
for disease mapping where the objective is to find regions

containing significantly increased incidence of disease symp-
toms, but many other applications also exist. The spatial scan
algorithms scan the spatial-temporal region of interest to find
the most significant subregion and report its statistical signifi-
cance. A notable application of scan statistics in the domain of
social networks is analysis of spatial distribution of 803 flickr
tags in the Bay Area [114] in order to distinguish between place
and event related tags. The key challenge for analyzing such
scan statistics is computation because there is potentially a
huge number of terms that could be tracked,whichmay require
distributedprocessing acrossmultiple clusters. For socialmedia
generated data, another challenge is to account for geolocation
and temporal uncertainty in such data, and at the same time
account for the expectedmobility of themobile users.

4.2.2 Congestion and Traffic Control

Big data analytics can be beneficial for traffic monitoring in
both wireless and wired networks. Such analytics can be
used to identify congestion in the communications infra-
structure immediately before, during and after the disaster.
Often the communications network experiences congestion
when the event is imminent and during the event period.
The reason for congestion could include both damage to
and high demand for computing and communications. It is
important to understand and manage such congestion while
also backing up the state of potentially affected computing
infrastructures to remote locations. Congestion remains cru-
cial after the onset of the event related disruption. Social
media data such as user tweets can also address the issue of

TABLE 2
Comparisons of Spatial Data Mining Algorithms: Part 2

Types Categories Basic Description Models and
Algorithms

Details Usecases in Disaster

Spatial Outlier
Detection

Graphic-based
Approaches

Visualize data in a
graph and find spatial
outliers

Reference [69][70] Variogram clouds: the points
with near location but large
variance on attribute value
indicate spatial outliers.

Abnormal location of
people’s sentiment: Easy to
see in a graph

Statistics-based
Approaches

Detect spatial outliers
based various statistics
information

Reference [71] Z-value: compute
standardized difference for
each point

Spatial outliers from
statistics point of view, such
as hotspots where need more
supplies consider all
requirements in the whole
area

Reference [72][73] kNN-based solution
Reference [74] [75] Scatterplots: a regression line

is drawn to identify spatial
outliers

Reference [76] Moran scatterplot: outliers
are the points surrounded by
unusual value of neighbors.

Spatial Co-location
Pattern Discovery

Statistics-based
Approaches

Based on staticstics
information

Reference [77] Cross-K function Co-location pattern such as
earthquake magnitude and
people’s sentiment

Reference [78] Cross nearest distance
Reference [79] Q-test

Data Mining based
Approaches

Association rule based
Approaches

Reference [80] Visualization and data mining Quick co-location pattern
discovery while the
computation complexity can
be reduced by specific data
mining methods

Reference [81][82] Spatial join based approach
Reference [83] Joint-less approach
Reference [84] Constraint neighbourhood

based approach
Clustering based
Approaches

Reference [85] Layer-based approach by
finding overlapped areas

Reference [86] Mixed clustering
Other Approaches Parallel based

Approaches
Reference [87] Parallel solution on GPU For specific requirements,

such as understanding
evolving situation or
needing quick response

Reference [88] [89] Parallel based on Map-
Reduce framework for big
data

Dynamic Approaches Reference [90] [91] To solve dynamic changing
problem of co-location
patterns
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characterizing failures in the network [115] – i.e., user com-
plaints about the network functionality or slowness. Exam-
ples of such tweets are as follows [116]: “I cannot get through
to Miyagi. I am worried.”, or ”I am in Shibuya now. I cannot get
through.” etc. Spatial clustering based schemes can be used
to identify those regions where such complaints are signifi-
cantly higher than in other regions.

Reference [117] uses the data plane programmability of the
Openflow switches to provide a more flexible control of wired
networks. For example, in Fig. 6 the costs of the routes are

increased based on the tweets complaining about the network
issues. The Openflow controller can switch the routes when-
ever it sniffs a link congestion. In Fig. 6 the route-1 in between
Tokyo and Sapporo is switched to route-2 after the controller
sniffs a potential congestion on route-1. TheOpenflowswitches
can also be reprogrammed for content based bandwidth con-
trol. For example, in case of potential network congestion,
packets related to SMS, email or voice communication can be
given higher priority than the video based communications.

4.2.3 Finding Network Isolation and Resource

Allocation

Another application of situational awareness is to identify iso-
lated regions that are functional but disjoint from the remain-
ing network. In a cellular network, tracking the call records
and the usage densities are good indicators of finding the net-
work availability. Spatial outlier detection based techniques
are very useful in such contexts, where the objective is to find
the regions where the usage is significantly lower as com-
pared to the surrounding regions. However, this is a very
challenging problem because of the need to analyze the avail-
able data over a large region encompassing the isolated area.
Notice that such isolation can also happen due to other rea-
sons, such as drainage of the smartphone batteries due to lack

TABLE 3
Situational Awareness in Disaster Situations

Types Key points Representative Works Details

Situational awareness in comm.
networks

Spatial scan related analysis
for finding the network
disturbances, congestion and
network isolation

Reference [115], [116] Characterizing network failures from user complaints about
network functionality or slowness

Reference [117] Used data plane programmability of the Openflow switches to
adopt flexible network control

Reference [118] Studied the optimal delay in a fog/edge-computing platform
constructed by vehicle-based movable & deployable ICT resource
units

Power outage detection Situational awareness for
detecting power outages from
social media data using
keyword searching

Reference [119] Developed a modified approach of Kleinberg’s burst detection
algorithm to promptly detect the power outages from the tweets

Reference [120] Developed a supervised Latent Dirichlet Allocation to detect power
outages

Reference [121] Proposed a k-means clustering scheme for the efficient allocation of
power resources based on the available tweets

Reference [122] Shown that Twitter data fused with satellite imagery can identify
power outage information at a street-level resolution

Reference [123] Developed a predictive model for identifying Tweets referring to
real power outages

Reference [124] Separated the tweets into power outage, communication outage and
both power-communication outage related events

Disaster Evolution Analysis of Covid related
tweets regarding public
awareness,sentiment analysis,
and classification of
informative tweets from others

Reference [125] Identified Covid related hashtags, along with the linguistic analysis
of the tweets in different hashtag groups

Reference [126] Characterized public awareness regarding Covid by analyzing
tweets in the affected countries

Reference [127] Implemented a neural network for sentiment analysis using
multilingual sentence embeddings

Reference [128] Discussed the diffusion of Covid related information with a
massive data analysis on Twitter

Reference [129] Proposed a multi-view clustering for analyzing tweets using
clustering hashtags

Resource Need Evolution Analysis of tweets regarding
resource needs, availability;
filtering, summarization and
classification of informative
tweets from others

Reference [130] Analyzed tweets regarding resource needs and resource availability
Reference [131] Developed a DNN to identify and classify informative tweets into

topical classes
Reference [132] Compared matching-based and learning-based approaches for

effectively identifying relevant messages from matching keywords
and hashtags in social media data

Reference [133] Proposed an ILP to generate summaries of twitter messages
Reference [134] Enhanced real-time situational awareness through filtering and

summarization of social media data
Reference [135] Developed a probabilistic spatio-temporal model to find the center

of the target event

Fig. 6. Adaptation of the routes after sniffing potential congestion
between Tokyo and Sapporo. (a) Route-1 is the direct route from Tokyo–
Sapporo, whereas (b) Route-2 goes through Kyoto.
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of power and mobility or evacuation of the users from a cer-
tain area. Careful analysis of the call density along with other
useful information frommultiple sources (such as evacuation
notice) can be utilized for finding such network isolation.

Upon finding the isolated, disconnected regions, a variety
of emergency equipment such as WiFi access points, satellite
gateways, replacement cellular base stations, etc. mounted in
fixed places or on Emergency Communication Vehicles
(ECVs) can be deployed to bring the connection back.Movable
base-stations or access points mounted on drones and bal-
loons can also be deployed for meeting the communication
gaps [118]. As the resource requirements in a disaster scenario
change over time, spatial prediction of the user density and
usage patterns are needed before such deployment operations
to avoid further disruption and performance fluctuations.

4.3 Situational Awareness of Power Outages

Real time situational awareness for detecting power outages
fromsocialmedia data has received interest in recent years. Ref-
erence [119] have used keyword searching to collect power out-
age-related tweets. They have developed a modified approach
of Kleinberg’s burst detection algorithm to promptly detect the
power outages from the tweets. In [120] the authors have pro-
posed a supervised Latent Dirichlet Allocation (sLDA) to detect
power outages. To overcome the limitations of 140 character
limit of the tweets, the authors have used a supervised topic
modelingwith text-rich heterogeneous information network. In
[121] the authors have studied the reported cases of power out-
age related tweets duringHurricane Sandy. Theyhave alsopro-
posed a k-means clustering scheme for the efficient allocation of
power resources based on the available tweets. In [122] the
authors have analyzed the brightness change in the satellite
data along with the density of power outage for identifying the
severely impacted areas.

The studies show that Twitter data fused with satellite
imagery can identify power outage information at a street-
level resolution. In [123] the authors have used the key textual
descriptions of power outages to filter the relevant Tweets,
and built a predictivemodel that identifies those Tweets refer-
ring to real power outages. The procedure has been field
tested on the users in real industrial settings; the results show
that more than 93% of all the power outages detected by the
scheme referred to the real outages. In [124] the authors have
separated the tweets into power outage, communication out-
age, and both power-communication outage related events
by analyzing popular words, length of words, hashtags and
sentiments that are associated with these tweets. The study
has claimed that using simple classifiers like boosting and
support vector machine can successfully classify the outage
related tweets from unrelated ones with close to 100% accu-
racy. The study has also claimed that by employing transfer
learning models such as Bidirectional Encoder Representa-
tions from Transformers (BERT), different categories of out-
age-related tweets can be classified with an accuracy close to
90% in less than 90 seconds of training and testing time.

4.4 Situational Awareness concerning Disaster
Evolution

In recent years, researchers have started using social media
data for deriving evolving disaster events. In fact, it has been

studied that the digital footprint of a disaster is typically pro-
portional to its impact in the ground level. For example, the
researchers in [136] have studied that the number of photo-
graphs uploaded in Flickr during Hurricane Sandy strongly
correlates with the atmospheric pressure in New Jersey. In
[137] the authors have studied the Twitter activities of 50met-
ropolitan areas in the United States during hurricane Sandy
and have shown strong correlation between the hurricane’s
path and the hurricane related tweets. The authors have also
demonstrated that the per-capita Twitter activity strongly cor-
relates with the per-capita economic damage inflicted by the
hurricane. Similar studies are also reported in [138] that
shows a close relationship between damages caused by Sandy
and Twitter activities. Another similar study has also been
reported in [139], where the authors have studied that the
disaster related tweets and the distribution of damage, physi-
cal extents of floods during the River Elbe Flood in Germany
in 2013 follow similar spatio-temporal distribution.

More recently, researchers have begun using social media
platforms to derive insights regarding the continued evolu-
tion of Covid-19 pandemic over 2020-21, that has placed sub-
stantial stress on medical personnel and supplies including
hospital-beds, doctors, nurses, paramedics, personal protec-
tion equipment (PPE), ventilators, ambulances, police, test
kits, testing supplies, common medications currently being
prescribed, etc. In [125] the authors have identified Covid-19
related hashtags, and have grouped them into six categories
(namely general Covid, quarantine, panic buying, school clo-
sures, lockdowns, and frustration & hope). They have also
presented a linguistic analysis of the tweets in different hash-
tag groups and have observed that words such as family, life,
health and death are common across hashtag groups.

In [126] the authors have characterized public awareness
regarding Covid by analyzing tweets in the most affected
countries. Specifically, the authors have examined the (a)
temporal evolution of Covid related trends, (b) the volume
of tweets and recurring trends in these tweets, and (c) the
user sentiments towards preventive measures. In [127] the
authors have implemented a neural network for sentiment
analysis using multilingual sentence embeddings; they
have observed that in almost all countries the lock-down
announcements correlate with a deterioration of mood,
which recovers within a short time span. The authors in
[128] have addressed the diffusion of Covid related infor-
mation with a massive data analysis on Twitter, Instagram,
YouTube, Reddit and Gab. They have also fit information
spreading with epidemic models characterizing the basic
reproduction numbers for each platform. The authors in
[129] have analyzed Covid related tweets using clustering
hashtags, and have proposed a multi-view clustering tech-
nique which incorporates multiple different data types that
can be used to describe how users interact with hashtags. A
review of available methodologies for developing data-
driven strategies to combat the Covid pandemic is dis-
cussed in [140], along with their difficulties and challenges.

4.5 Situational Awareness of Human Needs in
Disaster

Social media data for situational awareness in crisis scenario
are discussed in [141], [142], [143]. In [130] the authors have
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analyzed tweets regarding resource needs and availability
(e.g., transport, food, water, health-care, etc.) for efficient
management of post-disaster operations using supervised
classification and unsupervised pattern matching and infor-
mation retrieval approaches. The authors have conducted
experimental study on tweets posted during the Nepal
earthquake in April 2015 and the Italy earthquake in August
2016. The study shows that classification approaches per-
form better if good quality training data are available from
prior events, whereas in the absence of such training data,
unsupervised retrieval methods outperform supervised
classification approaches.

In [131] the authors have proposed aDeepNeural Network
(DNN) to identify informative tweets and classify them into
topical classes. They have also proposed an online stochastic
gradient descent based algorithm to train the DNNs in an
online fashion during disaster situations. Reference [132] has
provided a comparison between matching-based [144], [145]
and learning-based [131], [146] approaches for effectively
identifying relevant messages from matching keywords and
hashtags in social media data. Learning-based approaches
typically build a model from a set of labeled tweets, whereas
matching-based approaches search the tweets having relevant
keywords and hashtags. In [133] the authors have proposed
an Integer Linear Programming (ILP) technique that summa-
ries a big volume of twitter messages around some identified
sub-events, that helps crisis responders to quickly understand
the situation. Reference [147] has generated verified summaries
from the information posted on Twitter during disasters.
Enhancing real-time situational awareness through filtering
and summarization of social media data is reported in [134].
The authors have reported the study of twitter data during the
2012 Sandy Hurricane from New York, Philadelphia, Boston,
andWashington DC. In [135] the authors have devised a clas-
sification of tweets based on some keywords, their numbers,
contexts etc., and developed a probabilistic spatio-temporal
model that can find the center of the target event location.
They have implemented this approach as an earthquake
reporting system in Japan; the study has shown that it can
promptly detect 93% of earthquakes of Japan Meteorological
Agency (JMA) seismic intensity scale of 3 ormore.

4.6 Open Social Media Datasets for Real Disasters

We now discuss some of the open datasets from some social
media during real disasters, as summarized in Table 4.
COVID-19-TweetIDs [148] is performing an ongoing collec-
tion of tweets IDs associated with the COVID-19, which
started from January 28, 2020. It gathers historical Tweets
from the preceding 7 days, and the coverage is worldwide.
COVID19_twitter [149] is updated every 2 days since
March 2020, and for each day it collects around 4 millions
tweets. The dataset is suitable for NLP study, since it also pro-
vides top frequent term for each day. The COVID19 datasets
for Chinese users can be found in [150]. CrisisNLP provides a
dataset [151] including various types of disasters, such as
Earthquake, Typhoon, Floods, Landslide and so on. But the
time period is only from 2014 to 2015. GlobalFloodMoni-
tor [153] collected 88million tweets, with 10,000 flood events
across 176 countries in 11 languages. Among these datasets,
Bdr-tweet [152] provides geotagged tweets for 15 disasters,

so that researchers can also see the spatio-temporal spread
and patterns of the data. For example in Fig. 7 we show the
data of the Napa earthquake; we also perform two types of
spatial clustering algorithms, i.e., DBSCAN and k-means on
it. The differences between DBSCAN and k-means are quite
obvious. DBSCAN finds a cluster based on dense reachable
points, and thus it is better at finding a big area in which all of

TABLE 4
Summary of Some Open Disaster Related Social Media

Datasets

Dataset Types Data Size Time
Range

Coverage Resource

COVID-19-
TweetIDs [148]

COVID-19 6.9 GB Since
Jan. 21,
2020

World 1.98 billion
tweets

COVID-19
Twitter[149]

COVID-19 About
12GB

Since
Mar. 11,
2020

World 1 billion
tweets

Weibo-COV
V2[150]

COVID-19 From
Dec. 1
2019 to
Dec 30
2020

China 65.2 million
tweets

Disaster-related
Tweet[151]

Typhoon,
landslide,
Ebola virus,
etc.

About
3GB

From
2014 to
2015

World 52.8 million
tweets

Bdr-tweet[152] Fire, storm,
earthquake,
mudslide,etc.

Less
than 5GB

From
2014 to
2015

USA Geotagged
tweets for 15
disasters

Global-Flood-
Monitor[153]

Flood From
Jul. 2014
to Nov.
2018

176
count-ries

88 million
tweets

Fig. 7. Illustration of DBSCAN and k-means clustering methods on data-
set from [152].
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the people have the same requirements after a disaster. For
example, the areas with higher density of people who need
water can be gradually connected. As shown in the left part of
Fig. 7b, the red tweets which mentioned earthquake can be
clustered as a big area. On the other hand k-means is better at
locating the center of cluster, whichmay be important for dis-
patching supplies.

5 CHALLENGES IN INTEGRATING BIG DATA WITH

EMERGENCY SCENARIOS

Even if several applications have been studied on situa-
tional awareness in disaster scenarios, there are still chal-
lenging issues when integrating big data with emergency
network. Acknowledging that twitter has established itself
as the premier human communication mechanism during
disasters and the wealth of publicly accessible disaster-
related twitter data, we consider integration of the twitter-
based information for the purposes of situational aware-
ness. Below we list some of the key challenges regarding
deriving situational awareness from disaster related data
analysis.

5.1 Spatio-Temporal Uncertainty in Available Data

One specific challenge in using the user data is their origina-
tion. Some mobile users may disable their location in their
devices, or the location information from the base-stations
may not be precise enough due to localization inaccuracies.
Data originated from different locations during a disaster
may have varying data quality, precision, and accuracy. For
example, the location of the tweets is important as the
tweets originating around the disaster area are more impor-
tant and contain first-hand information. However, the users
may not wish to share their location. The timing is impor-
tant since we wish to consider it in dynamic network recon-
figuration decisions. Unfortunately, tweets may refer to
past events without precise time information. Thus, the
challenges are both in terms of estimating location and time
as accurately as possible, and using the available informa-
tion suitably.

5.2 Data Ambiguity and In-Homogeneity

The data generated by various sources is often non-homo-
geneous in nature, incomplete, or ambiguous. Data
obtained from various social media is also prone to inaccu-
racies and inconsistencies. For example, the first hand
twitter reports originating from the affected area are likely
to be most useful in situation awareness and hence net-
work configuration; however, because of potential dam-
ages to the Internet infrastructure in the affected area,
such first hand tweets may be quite sparse. On the other
hand, due to the popularity of twitter during disasters,
much of the information generated by human-to-human
communication media (e.g., word or mouth, landline
phone, broadcast media such as radio or TV, etc.) increas-
ingly ends up on twitter from non-disaster areas. In gen-
eral, the origin of these tweets can be from anywhere;
however, the regions around the disaster area are likely to
be the most relevant. This brings in issues of bigdata since
one must sort through a huge number of tweets in order to
find the relevant ones. In fact, even in the general disaster

area, most tweets may not be relevant for disaster response
or network evolution and must be filtered out in real-time.

5.3 Multimodal Data Fusion

Generally, information about the same situation can be col-
lected from different types of resources, e.g., texts and images
in Twitter and Instagram. For each kind of detector, it is repre-
sented as a modality, and it is rare that a modality can cover
the complete information of the situation. Multimodal data
fusion is required to integrate the information into a compre-
hensive view. Generally, there are two approaches for multi-
modal data fusion: feature-level fusion and decision-level
fusion, also known as early fusion and late fusion. Feature-
level fusion merges features from different types of data
resources together before classification. For example, in [154]
a Topic Graph is proposed to integrate features from different
modalities together, which is constructed by nodes (i.e., fea-
tures or words) and edges among the nodes (i.e., correlation
of features). For decision-level fusion, generally a classifica-
tion score is given to each modality and the maximal one is
treated as the final classification result. In [155], both of these
methods were evaluated with text, video and audio contents,
and the results from the both approaches increase around
10% precision as compared to the result with the single data
resource. Most recently, deep learning is adopted to achieve
model-based fusion for multi-modal data fusion. For exam-
ple, strongmodalities can be automatically selected to achieve
high accuracy of situation detection in [156].

5.4 Spatial Analytics During Evolving Disasters

Even though spatial analytics have been studied for a long
time, there are still new challenges when considering social
big data generated in disaster scenarios. This is because in an
evolving disaster scenario, the usage pattern and user’s
behavior changes over time, sometimes rather rapidly. Also,
the incoming user data from the crowd is highly dynamic and
the observed situation is intermittent, which becomes an
obstacle when trying to achieve reliable data analysis to sup-
port decision-making after a disaster occurs.

To address the evolving spatial analytics, the authors in
[157] have introduced an information decay based spatial
clustering. The intuition behind this information decay fac-
tor is that in a disaster scenario the disruptions over a region
cannot be satisfied immediately, and thus the importance of
such information does not disappear instantly, instead
decays gradually over time. Decay model has been investi-
gated in the spatial clustering for streaming data, i.e., evolv-
ing clustering. As the data comes in a streaming way, small
clusters are first temporarily created to organize the
received data in the clustering process. However, the exist-
ing work only applies the decay model to the clusters, but
not for each point data, which will affect the accuracy of sit-
uation representation.

5.5 Utilizing Non Geo-Tagged Tweets

Another key challenge of using Twitter data is the scarcity of
the number of geo-located tweets, which typically varies
between 0.42% to 3.17% [158]. Utilizing the non geo-tagged
tweets can also provide useful information if they can be
related approximately to their origin. Someworks [158], [159]
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have proposed to determine “local” words by exploiting the
geographical distribution of thewords in tweets over a region.
Formally speaking, local words are the ones with high local
focus and fast dispersion, i.e., they are frequently used at
some central points and drop off in use rapidly as we move
away from the central points [159]. For example tube is more
frequently used in London than other places. By exploiting
such distribution around 50%–87% of the tweets can be
locatedwithin few tens of kilometers [158].

Geoparsing is another well-known technique for extract-
ing the locations (also known as toponyms) inside a text,
which can be exploited for deriving locations from non geo-
tagged tweets. Using natural language processing techni-
ques, locations in the level of streets or buildings can be
derived, that can help identifying the origin of a particular
situation. For example, a new tweet like “Having a moder-
ate earthquake 5.8 mag here in Raoul Island, New Zealand”
– provides sufficient location information to locate the ori-
gin of the incident. Related literature on geoparsing can be
broadly divided into two categories [160], namely toponym
recognition and toponym resolution. Toponym recognition
techniques [161] extract single or consecutive words from
texts and match them to a comprehensive set of pre-existing
set of toponyms. The key limitation of these techniques is
the ambiguity of the toponyms, as many location names
have multiple occurrences worldwide. To overcome this
limitation, toponym resolution based approaches [162] use
different spatial indicators such as time zones, use location
field, and other textual clues for ensuring more reliable loca-
tion estimates.

Even in cases where the geo-locations are not found, the
contents of the tweets can also provide important informa-
tion regarding the situation. Different natural language
processing techniques for keyword analysis to determine
relevance, specificity (or fuzziness), and importance of the
content can be explored to determine the usefulness of such
tweets, whereas the irrelevant ones can be filtered out.
These substantially filtered, prioritized set of tweets can
then be provided to human experts involved in situation
monitoring, to determine how the infrastructure damage/
repairs, movement of people, and potential communica-
tions needs are changing, and consequently how the relief
assets (including those that support emergency communica-
tions network) should respond to them.

5.6 Big Data Analytics in a Fragile Communications
Network

After collecting the raw data from various sources, big data
platforms (such as Hadoop) need to sort through a huge
amount of data in order to extract the most relevant ones. In
fact, even in the general disaster area, most social media
data may not be relevant for disaster response or network
evolution and must be filtered out in real-time.

In the aftermath of a disaster, the communication systems
can be wiped out which makes distributed processing chal-
lenging. A fragile and disruptive emergency communication
network brings new challenges for spatial big data analytics
since big data is often analyzed in a cloud center to reduce
processing time, and the transmission delay from user’s devi-
ces to the cloud could become dominant. This requires

tradeoffs between local processing at the devices, intermedi-
ate processing at some edge computing nodes, and final proc-
essing in the cloud. However, distributing processing among
these heterogeneous levels with varying storage, processing,
and communications capabilities becomes quite challenging.

6 TEMPORAL EVOLUTION OF SPATIAL FEATURES:
A CASE STUDY

Much of the data is very hot when generated, and then its
popularity wanes over time. In some cases, the data may
become hot again but this is less likely as the data ages. This
trend is true for the social media data as well. In this con-
text, we define the “information energy” of a tweet as the
intensity of the tweet that has the highest power when a
tweet originates, and then gradually fades over time. Infor-
mation energy for a specific location can be accumulated
with other messages (or tweets) describing the same situa-
tion. Assume that the information energy for a point object
p in spatial big crowd data at time instance tc is denoted as
E�ðp; tcÞ. Also assume that the temporal decay of the informa-
tion energy (TDIE) for each spatial data follows an exponen-
tial decay. An exponential model is desirable since it
corresponds to a fixed additional decay for each additional
unit time elapsed. Thus,

E�ðp; tcÞ ¼ E�ðp; tpÞ � h���ðtc�tpÞ (3)

where tp denotes the time stamp when spatial data/object p
appears, h and � are the base and the exponent of the expo-
nential decay respectively.

To find the spatial hotspots during an evolving disaster, we
choose a density measure based on Kulldorff’s spatial scan sta-
tistic [164], which is commonly used in finding the significant
spatial clusters in case of emerging outbreaks. With this the
incremental spatial clustering in an evolving disaster (or out-
break) scenario has two main functions, the spatial data
aggregation (SDA) and spatial data clustering (SDC). The
SDA handles decay and reinforcement of the information
weight over regions. The SDC tracks the boundary andmove-
ment of the dense regions of the targeted evolving disasters.

We demonstrate temporal and spatial evolution of tweets
related to Covid-19 pandemic [165] as shown in Fig. 8 dur-
ing January-April 2020 timeline. From this figure we can
observe that the temporal density variation of the tweets
(geo-points) across different sub-continents roughly match
the evolution of Covid-19 over this time. For example, dur-
ing the February timeline, the spatial density of USA, East
Asia and European countries were more as compared to
Indian sub-continent, however, the cases in India started
growing in March-April period. The tweet densities in Aus-
tralian continent is quite sparse which also matches with
the small number of cases in those regions. A DBSCAN-
based spatial clusters indicates the regions being dense of
covid tweets.

We have also implemented an interpolationmechanism on
the sparse Covid data while applying the TDIE similar to
equation(3). The results are shown in Figs. 9a, 9b, 9c, and 9d,
where the green color denotes the Covid-19 related words,
whereas the red color denotes the data thatmentioned related
words about both Covid-19 and personal equipment. The
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results shows that the red and green points are verymuch cor-
related, and show an increasing trend in April-May period as
compared to February-march. To compare the results with
the ground report, we depict the number of cases, hospitaliza-
tion and deaths of three US states in Figs. 9e and 9f, from that
data obtained from the John Hopkins University’s repository
[163]. These results also show an increasing trend during
April-May timeline, which also validates the outcome of our
interpolation mechanism. From these figures we can observe
that the trend of Covid is roughly observed by correlating the
spatial and temporal distribution of Covid tweets with the
pandemic news reports.

However, as the number of geo-tagged, Covid related
tweets are extremely low, we did not find a large number of
papers studying their detailed spatio-temporal analysis.
Rather, we analyze the studies that have geospatial analysis
of Covid related data obtained from different sources. In
[166] the authors have collected the coronavirus pneumonia
data from different official websites during January 30, 2020
to February 18, 2020. In [167] the authors have collected epi-
demic data till January 30, 2020, and have recorded that con-
firmed and death cases in Hubei province accounted for
59.91% and 95.77% of the total cases in China respectively.
During that time the authors have recorded that the number
of cases in some cities was relatively low, although the risk
factors appeared to be increasing. In [168] the authors have
analyzed the temporal and spatial distribution of the pan-
demic; an important point that they have noticed is that a
large number of people entered into Wenzhou from Hubei
Province, which is the main reason for the outbreak in this
region. Authors in [169] have studied the spatio-temporal
propagation of the first Covid wave in China and compared
it to other global locations. They have also studied the spa-
tial propagation of the pandemic from Hubei to other prov-
inces in China in terms of distance, population size, human
mobility etc. In [170] the authors have studied the COVID-

19 and SARS outbreaks at the provincial levels in mainland
China and have concluded that they exhibit distinct spatio-
temporal clustering patterns; this may be due to different
social and demographic factors, containment strategies or
differences in transmission mechanisms. Similar spatio-tem-
poral variations and epidemiological maps of cases in other
countries like USA, Iran, Italy, Spain, India etc. are reported
in [138], [171], [172], [173], [174].

As mentioned earlier, the number of Covid related
tweets with geo-tags are extremely sparse (�0.036% as
observed from our experiments), so, we could not conduct
any spatial aggregation and clustering analysis on a daily or
weekly basis. We therefore simulate the incremental spatial
clustering using a synthetic database obtained from [175].
The database is composed of several datasets that model the
temporal evolution of the information contents in a two
dimensional space. The datasets were generated by Gauss-
ian distributions whose mean and/or variance changes
over time. We use the “3C2D2400Spiral” dataset, which
presents a helix-like movement of 3 clusters. These three
clusters could be considered as three groups of population
with dynamic ratios of the situation � over the time series.
We visually illustrate the effect of our incremental cluster-
ing on the helix movement dataset using Fig. 10 to illustrate
the position, movement, and coverage of the hot-spots
when h� ¼ 2. From this figure we can observe that the
movement of the hotspot is rather continuous, which is
because of the use of TDIE concept. This continuous move-
ment basically replicates the evolving nature of the disaster.

In the above we have demonstrated a preliminary study
of spatial clustering of the relevant data, which imitates
disaster related tweets. Through this small experiment, we
tried to demonstrate the nature of temporal stickiness of
such tweets;, i.e., if somebody from disaster location tweets
that he/she needs food, water, medical help, etc., chances
are that the same thing applies tomost others in that location.

Fig. 8. Spatial densities of Covid-19 related tweets for Feb to April, 2020. The spatial density here is measured by using the DBSCAN configured by
the following three settings: (1) The maximum distance between any two neighbouring points is set as 3, while the unit is the longitude and latitude
degree based on the Geographic Coordinate System, (2) the number of samples in a neighborhood for a point to be considered as a core point is set
as 10, (3) the nearest-neighbors algorithm is set as “kd_tree”. The density is represented by the spatial clusters, and each cluster contains a set of
DBSCAN-defined neighbouring points bounded by a convex-hull boundary.
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Fig. 9. The spatial-temporal interpolation is applied to the geo-tagged tweets (31,109 collected records), the green and red dots denote the tweets
mentioning covid-19 related words, and red dots also mention the emergent words related with personal protection equipment (PPE). The different
size of the dots represent the temporal interpolation based on the exponential decay, and the colored region represent the spatial interpolation based
on the Kernel density of the temporally decayed point data. The analysis shows a general decrease in the northwest, with the impacted areas moving
south an east towards southern California and Arizona. This trend is verified with the actual data from JHU [163] shown in panels (e), (f), (g), in which
the dots denote the number of new cases and death cases reported, and the lines are the scatter-plot smoothing based on the dots respectively.

Fig. 10. Position of hot-spot (h� ¼ 2) for helix-like movement dataset [157] (�[2019]IEEE).
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Also such needsmay continue to evolve over time and space,
and thereforemodeling such an evolution is crucial for situa-
tional awareness. In fact such stickiness phenomenon is quite
a general phenomenon, and so our analysis is quite generic
and is applicable to most disaster applications.

7 FUTURE RESEARCH DIRECTIONS

In this section we discuss some possible future directions
for social media driven big data analysis.

Choice of Appropriate Mining Algorithm. In this paper, we
have summarized the literature on four types of data min-
ing algorithms in section III. However, the success of these
methods depends on the volume and quality of data, and
how robust the learning model is. Also, supervised learning
approaches including deep learning, require large amounts
of labeled data, which is not easily available in disaster sce-
narios. Thus the following issues need to be considered
while selecting a learning algorithm in disaster scenarios:
(1) different disaster applications require different types of
data mining algorithms as summarized in Tables 1 and 2;
(2) the data mining algorithm needs to deal with the evolv-
ing situation, which has been studied in spatial clustering,
but still need further investigation for spatial prediction,
spatial outlier detection, and spatial co-location pattern
detection; and (3) the human needs expressed by the people
trapped by the disaster tend to be sticky, both spatially and
temporally, and thus quantifying the impact of this sticki-
ness is another challenging issue.

Edge Computing for Spatial Analytics. Social media-driven
big data analytics plays a key role in situational awareness;
therefore, a timely analysis is necessary for quick response.
Edge computing is an option to enable such analytics serv-
ices within the Radio Access Network and in close proxim-
ity of the affected people. This is particularly important
during disasters since the longer-distance communication
to reach the cloud may be difficult due to extreme network
congestion that is often experienced during disasters.

However, edge computing still has several challenges in
disaster scenarios. First, in a disaster scenario, communica-
tion and computational resources can be very limited.
Designing efficient edge computing requires joint allocation
of those resources between edge devices and servers by con-
sidering specific limitations in disaster scenarios. Second,
some applications in disaster scenarios need to execute
tasks of multiple priority levels, corresponding to different
emergency levels, different computation workloads and
computation results of distinct performances. For example
in object detection, considering more detection regions (i.e.,
region proposals) involves higher computational complex-
ity but can achieve higher detection accuracy. Therefore,
optimal allocation of resources in an edge computing sce-
narios, with different optimization variables and specific
objectives, while considering the requirements in disaster
scenarios (e.g., energy consumption, completion time, sys-
tem utility) requires significant future research.

Situation Awareness and Sentiment Analysis. Situational
awareness tries to collect the social media data to grasp the
important events and circumstances in the physical world
through sensing, communication, and reasoning. We have
discussed four types of spatial analysismethods in the paper.

However, they need support from content analysis such as
sentiment analysis, which grasps the feeling of people, e.g.,
fear after an earthquake or anxiety when there is not enough
daily supplies. Integration of spatial and sentiment analysis
is very important, but still has some crucial challenges. Some
sentiments are quite general and have a spatial dependency,
such as worrying about water shortage, whereas others may
be tied to very specific needs of the individuals and thus do
not have a spatial dependency such as shortage of a specific
medicine. Separating such generic requirements from the
individualistic ones (to enable its analysis) can be quite com-
plex and needs to be investigated further.

8 CONCLUSION

During disasters, the data relevant to situational assessment
is generated from many different sources including social
media used by the affected people (usually Twitter), direct
communications with others, possibly unaffected, users who
put the information on the social media, and observations by
the deployed monitoring infrastructure, etc. The data col-
lected from these sources contains a lot of irrelevant or
weakly relevant information, and it becomes necessary to
use big data techniques to extract intelligence from them.
Spatial information and context is crucial for this; therefore
the paper focuses on several such opportunities and chal-
lenges in extracting situational awareness from disaster
related social media data. We hope that this article will spur
further research into solutions tomany of these issues.
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