
Pattern Mining Based Compression of IoT Data
Dusan Ramljak, Amitangshu Pal and Krishna Kant

Temple University, Philadelphia, PA 19122

ABSTRACT
The increasing proliferation of the Internet of Things (IoT) devices

and systems result in large amounts of highly heterogeneous data

to be collected. Although at least some of the collected sensor data

is often consumed by the real-time decision making and control of

the IoT system, that is not the only use of such data. Invariably, the

collected data is stored, perhaps in some filtered or downselected

fashion, so that it can be used for a variety of lower-frequency

operations. It is expected that in a smart city environment with

numerous IoT deployments, the volume of such data can become

enormous. Therefore, mechanisms for lossy data compression that

provide a trade-off between compression ratio and data usefulness

for offline statistical analysis becomes necessary. In this paper, we

discuss several simple pattern mining based compression strategies

for multi-attribute IoT data streams. For each method, we evaluate

the compressibility of the method vs. the level of similarity between

original and compressed time series in the context of the home

energy management system.

CCS CONCEPTS
•Computingmethodologies→Model development and anal-
ysis;

KEYWORDS
Data Provenance; Internet of Things; IoT; Compression; Time series

representation

ACM Reference Format:
Dusan Ramljak, Amitangshu Pal and Krishna Kant. 2018. Pattern Mining

Based Compression of IoT Data. In ICDCN ’18: 19th International Conference
on Distributed Computing and Networking, January 4–7, 2018, Varanasi, India.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3154273.3154294

1 INTRODUCTION
The vision of the Internet of Things is that individual objects of ev-

eryday life can be equipped with sensors which can track useful in-

formation about these objects, and allow for their intelligent collec-

tive control to enable rich services to the society at a low cost and en-

ergy footprint. The variety of such “smart” devices continues to ex-

pand, and includes wirelessly connected cameras, medical implants

This research was supported by NSF grant IIP-330295.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICDCN ’18, January 4–7, 2018, Varanasi, India
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-6372-3/18/01. . . $15.00

https://doi.org/10.1145/3154273.3154294

for healthcare, smart household appliances, personal/wearable de-

vices, autonomous cars, sophisticated safety-critical systems such

as nuclear plants, etc. [9, 13]. With smart city initiatives in full

swing across the world, it is expected that IoT devices will pervade

all major systems in a city. Gartner says that there were 6.4 billion

connected devices in 2016 [17], while the predicted increase is 30%

in 2017 that will result in 8.4 billion connected devices at the end

of this year.

The key to the power of the IoT paradigm is the ability to pro-

vide real-time operational data from many different distributed

sources to other machines, smart entities, and people for a variety

of services. One major challenge is that the underlying data from

different resources are extremely heterogeneous, can be very noisy,

and are usually very large scale and distributed. Furthermore, it is

hard for other entities to use the data effectively, without a clear

description of what is available for processing. In order to enable

effective use of this very heterogeneous and distributed data, prove-
nance information is required to describe the data in a sufficiently

intuitive way so that it becomes more easily usable. Provenance

is the metadata that describes the origin and history of data use,

derivation, and updates. Such information can be highly valuable

for assessing the relevance, granularity, quality, and trustworthi-

ness of the data or operations on it. Provenance as a subject has

gained high visibility, and a number of provenance-related aspects

have been explored, including capturing and managing provenance,

building efficient queries, provenance storage, and security [3, 15]

By using the provenance information we could substantially re-

duce the data analytics overhead and improve the resulting quality.

In the context of IoT systems, the provenance data can be thought of

as the time and location stamped history of all events including re-

porting of sensor data and all actuation events. Recently, there have

been attempts at developing an architectural model to overcome

the rising challenges resulting from implementation of Data Prove-

nance in the IoT [5] and addressing security and privacy issues of

Data Provenance in the IoT [2]. The data that includes both the

raw data and its provenance is of interest to us in this paper. There

might be additional provenance or other information regarding the

devices, actuators, and controllers themselves, but that is not of

direct interest here.

In addition to the real-time insights, it is desirable to glean lower

frequency or even historical insights from the underlying prove-

nance data. Take, for example, the data collected from various busses

in a power grid. At the extreme end of the time scale, the sensed

voltage, frequency or power factor can be used immediately for

initiating protection action if the values drift outside the acceptable

range. At the next slower time scale, the data from all busses must

be collected in a central place to enable state estimation and for

correction of power flows. However, the collected data does not

become useless at this point. The variation or drift in power flows

over hours, days, and even months is crucial both for operating the

power markets and for detecting degradation in the power network

https://doi.org/10.1145/3154273.3154294
https://doi.org/10.1145/3154273.3154294

ICDCN ’18, January 4–7, 2018, Varanasi, India Dusan Ramljak, Amitangshu Pal and Krishna Kant

such as spurious power flows due to growing tree branches around

power lines, the imperfect closing of aging relays, corona related

insulation damage or capacitor degradation, etc. Often the regu-

lations also require the data to be stored for a certain amount of

time as evidence of operational integrity, resolving disputes, fixing

blame, etc.

The rest of the paper is organized as follows. Section 2 elabo-

rates how and why provenance information can be used in IoT.

Section 3 introduces our proposed scheme to compactly represent

and compress the provenance information. Section 4 discusses our

experimental setup and results. Section 5 summarizes the paper

and discusses future work.

2 IOT DATA USE CASES
A direct storage of all raw data along with its provenance informa-

tion can easily fulfill all of the lower frequency and historical data

analysis needs; however, this is difficult, particularly in the IoT envi-

ronment because of limited storage, computing and communication

power of the individual devices, and the continuous operation of

a a large number of such devices. In this paper we are focused

on addressing representation and compression of the data along

with the provenance information. Looking at some prominent use

cases, the specific issues to consider are (a) What information do we

need to keep to handle the use case? (b) How do we represent this

information?, and (c) What are the potential ways of compressing

the information and the potential trade-off between accuracy and

compression? In IoT systems, data provenance and historical data

analysis can be useful for a variety of purposes as described below.

Conflict Investigation: When conflicts are observed in a com-

plex IoT systems such as a smart environment, the reasons for it

may not be immediately obvious. Various devices and subsystems

in an IoT system may interact both across the physical space (i.e.,
energy management systems on a building floor and even across

floors) and across functional domains in order to fulfill policy objec-

tives and avoid conflicts and anomalies. The devices/subsystems

in a shared space may conflict because they are being affected and

affect the same or interdependent set of parameters. As an example

of cross-subsystem interaction, the security subsystem on a floor

may turn on lights as a deterrence even when no one is present

(assuming that the latter violates the lighting policy). Similarly, if

the emergency subsystem detects smoke, the security subsystem

may be instructed to unlock all doors in the area even though this

goes against the normal policy. It is clear that a system level coordi-

nation and conflict resolution are essential for proper functioning of

the overall system. However, in a coordinated “system of systems”,

such malfunctioning or conflicts may arise, but the reason for them

needs proper investigation. The collected provenance data will be

extremely useful in this context to pinpoint exactly which events

lead to a malfunction.

Attack detection: In addition to the coordination and conflict

the resolution, large IoT systems must deal with a number of other

difficult issues. These include misconfiguration, malfunctioning,

and attacks. Manual handling of these issues in a large IoT system

is impractical, and it is important to devise automated (or largely

automated) mechanisms to collaboratively detect misconfigura-

tions/malfunctions, and reconfigure the system to minimize impact.

Most IoT environments are expected to evolve dynamically for at

least four reasons: (a) Changes/evolution in control/operational

policies, (b) Adaptations to malfunctions in devices/subsystems,

(c) Evolution of resource availability and demands (e.g., more en-

ergy demands as the company using the building grows), and (d)

Evolution in the devices themselves (e.g., new sensors/actuators

added, old ones retired). Therefore it is important to verify opera-

tion, detect malfunctions and attacks, and harden the system over

time.

If a subsystem/device (sensor, actuator, or controller) is compro-

mised by a hacker, we need to find out the tracks of the attacker

getting into the device/subsystem so that we can analyze it further

to determine security weaknesses of the system. In this case, the

most important thing to keep is an abnormal activity where the

definition of “abnormal” could be loose (i.e., almost everything) or

very specific (a specific type of accesses) and everything in between.

This tracking can be done with various degrees of sophistication,

and more sophisticated tracking can enable more advanced applica-

tions. In such situations, the collected provenance data are essential

to trace back the root of malfunctions or attack points.

Proof of correct functioning: Smart systems are cyber-physical-

human systems, i.e. an interaction between humans and machines,

and indirectly between humans. In such a system provenance infor-

mation is essential for attribution/liability, i.e. who did what and in

what order. For example, in case of a road accident, an autonomous

car owner claims that certain functionality didn’t work correctly

and it caused the unsafe situation or real problem (e.g., collision). In

such a scenario, the manufacturer needs a way to establish that car

did everything that it was designed to do. Malfunctioning detection

is related to proof of correct functioning and conflict investigation.

It may be triggered either by observed malfunction or passively

as an assurance activity. In the first case, one could potentially

enumerate classes of malfunctions and store provenance data for it;

the second one perhaps stores all potential anomalies and related

data.

3 BACKGROUND AND PROPOSED
METHODOLOGY

In an IoT environment, the typical scenario is that of multiple

sensors, each of which provides a “reading” at successive time

points, such that a continuous stream of data is being generated. The

sensors could be heterogeneous and measure a variety of quantities

such as temperature, light intensity, noise, etc. Thus, with n sensors,

each sample will be an n-element vector, but each sensor could

emit a value of different type (including integers, real numbers,

enumerated types, etc.). Figure 1 shows an office layout equipped

with multiple IoT-enabled sensors. Thus, our primary interest is in

compressing a stream of vectors of different attributes accumulated

from different such IoT devices.

We are looking into use cases when it is acceptable to scale

the received values such that the value of the i-th sensor can be

discretized into bi bins, for a suitable value of bi . We could then

represent the value by the bin index. This gives us a vector of inte-

gers for each sample. The integer vector stream can be compressed

in many ways.

ScalableCompressionMechanismRequirements:There are
two aspects that need to be considered in order to devise a scalable

compression mechanism. The first aspect is suitable compression

Pattern Mining Based Compression of IoT Data ICDCN ’18, January 4–7, 2018, Varanasi, India

Figure 1: Office building - Illustrative IoT Layout

mechanism for a segment of data that we want to keep, where a

segment could be defined as a relatively long period over which

the same amount of compression would be desirable. Such tech-

niques are discussed in the literature under the area of time series

approximation and representation. Several techniques like Fourier

transform [7], wavelet transform [12], piecewise polynomials [20],

singular value decomposition [6] etc. fall in this category. However,

these techniques don’t preserve the information about the sequence

of events, which is crucial in IoT context.

The second aspect is how we vary compression over successive

data segments. For example, each segment may represent one year’s

worth of data, and as we go into the past, we use more compression.

In such techniques, the compression is not homogeneous, rather

heterogeneous across time. In [8, 11] the authors have modeled

such aspects as “amnesic” functions, that represent recent data

with better precision than the past.

Lossy compression: Straightforward lossless compression such

as LZ is rarely appropriate in this scenario, because a lossless com-

pression does not provide any opportunity to increase compression

as the data ages, and depending on the type of data, the compres-

sion ratio may be rather poor. Thus, our interest is primarily in

lossy compression, where the key issue is what we are willing to

lose and that in turn depends on the usage model. A simple lossy

compression technique is the aggregation of data, which could be

done on many levels. Lossy compression we envisioned could be

regarded as similar to summarization of provenance information.

Similar approaches: Provenance can be represented by a graph,
with a standardized representation called Open Provenance Model

(OPM) [10]. In OPM, the nodes are artifacts (states), processes (ac-

tions), or agents (enablers) and arcs represent dependencies such

as “derived from”, “generated by”, “used by”, “controlled by”, and

“triggered by”. One approach, discussed in [1] defines a distance

function between provenance expressions based on the intended

use, and optimizing this distance while still obtaining small expres-

sions guide the summarization. Given the provenance graph form,

techniques similar to ones used for web graph compression can

be applied to compressing provenance [18, 19]. The steps are: (a)

encode the successor list of one node by using similar successors of

another node as a reference, thus efficiently avoiding encoding the

duplicate data, (b) encode consecutive numbers by only recording

the start number and length, reducing the number of successors

that need to be encoded, (c) encode the gap between the successors

of a node rather than the successors themselves, which typically re-

quires fewer bits to be encoded, and (d) add dictionary compression

on top of compressing provenance graphs.

Approximate Vector Stream Compression (AVSC): In this

paper, we propose to use a sequence pattern mining based compres-

sion. The purpose of this is to ensure that the sequence of events

can be derived (or inferred) from the compressed data, which are

crucial for conflict resolution, intrusion or malfunction detection in

a complex IoT system as discussed in section 2. While performing

compression we want to keep some events intact and approximate

other events to improve the compressibility. Our proposed method

runs in two stages.

In thefirst stage, we use the SQS (Summarizing event seQuenceS)

proposed in [16] to generate a summarization of the data. SQS uses

a single parameter heuristics to find a good set of patterns. That

parameter is a threshold, which is the number of times a pattern

shows up in a sequence, with the default number being one. Varying

the threshold gives us the opportunity to vary the value of the

patterns. The method formalizes how to encode a sequence dataset

given a set of patterns. It uses the Minimum Description Length

(MDL) principle to identify the best set where the encoded length

is used as a quality score. The complexity of the method is linear

in a number of events, objects, and patterns. In effect, the SQS

method efficiently discovers high-quality patterns that summarize

data well and correctly identify key patterns. However, the SQS

method does inexact matching, i.e. patterns are allowed to have

gaps, but the objective function heavily penalizes long gaps. Thus

the summarization is necessary, but it is not sufficient.

In the second stage, using that summary as a basis for a dictio-

nary we try to approximately match the remaining events with the

patterns in our dictionary. Events that can’t be matched to any of

the patterns are added to the dictionary. We denote the resultant

scheme as AVSC i.e. Approximate Vector Stream Compression. We

consider the following two ways to apply AVSC:

(Correlated) Directly compress each vector, i.e., look for simi-

larities across vectors. This retains the correlation across streams

perfectly, but it may show poor tradeoff of compressibility and

accuracy because of lack of too many similar vectors. We denote

correlated version as AVSC-C.

(Uncorrelated) Compress i-th stream separately, but with a

possibility that the information about corresponding streams is cap-

tured approximately due to different approximations across vectors.

This method is expected to yield much better compression but the

correlation across attributes may be somewhat compromised. We

denote uncorrelated version as AVSC-NC.

The overall scheme is depicted in Algorithm 1. In the first stage,

we discretize the time series and apply the SQS method in order to

determine the patterns (with gaps). After the original SQS method

determines the patterns, we preserve the identified patterns in

the dictionary P and identify set of remaining subsequences U. In
the second stage, we try to approximately match the remaining

subsequences with the patterns in our dictionary. To determine

how close a subsequence matches with the existing patterns, we

ICDCN ’18, January 4–7, 2018, Varanasi, India Dusan Ramljak, Amitangshu Pal and Krishna Kant

define a threshold τ which is the Euclidean distance between the

subsequence and the existing pattern from the dictionary. If the

tested subsequence doesn’t closely match with any of the identified

patterns (i.e. their Euclidean distance is more than τ), we break

the subsequences with length ℓ and try to find a match with the

existing patterns. If no matches are found, the subsequence is added

in the dictionary. We keep doing this until the entire time series is

covered. This yields a compressed stream, which can be inverted

to get an approximate representation of the original stream.

Algorithm 1 Approximate Vector Stream Compression (AVSC)

global variables
OT : Original time series ◃ INPUT

P: Ordered set of patterns found ◃ SQS Output

U: Ordered set of remaining subsequences ◃ SQS Output

I: List of tuples ⟨ time series index (ind), element of {P ∪ U}⟩ ◃ SQS Output

d (s, p): Euclidean distance between vectors s and p
s : Top element of U
p
best

: Element of P that has a closest match with s
B : Number of bins for discretization ◃ Input Parameter

τ : Max Euclidean distance ◃ Input Parameter

ℓ: Pre-defined sequence length ◃ Input Parameter

COT : Compressed version of OT ◃ OUTPUT

end global variables

procedure AVSC
Discretize the OT into B bins;

Run SQS to identify P, U, and I;
while U not empty do

p
best

= NULL;

Remove s from U;
Match s with elements of P; ◃ p

best
=NULL if no match found of same length

if p
best
, NULL and d (s, p

best
) < τ then

I(ind, s) = I(ind, p
best

);

else
if length(s) > ℓ then

Break s to r subsequences of length ℓ;
Add r subsequences to the top of U in proper order;

else
Add s to P;

end if
end if

end while
LZ compress I to identify COT ;

end procedure

Accuracy evaluation: Given the original stream and the ap-

proximated reconstructed stream, we can compare the two using

time series similarity measures in order to determine how similar

the two are. This provides us with a measure of accuracy, or fidelity

of the compression. We could thus evaluate the compressibility vs.

accuracy trade-off.

There are many methods in the literature to assess the similarity

of two-time series. Reference [14] provides a survey of several meth-

ods. The main methods include similarity based on (a) Euclidean

distance, (b) Fourier coefficients, (c) autoregressive models of the

time series, (d) dynamic time warping (DTW), (e) Edit distances

(ED), (f) Time warped edit distance (TWED), and (g) minimum jump

cost dissimilarity (MJC). It turns out that the last four methods show

almost the same performance. For our experiments we consider

the Euclidean distance based metric explained in the evaluation

section.

Algorithm discussion: Note that AVSC-NC maintains the cor-

relations across vector elements approximately, since each series

when reconstructed independently, will still yield approximately the

right value for each attribute going across the attributes. However,

the pattern driven approximation could also add some spurious

correlation. AVSC-C, on the other hand, preserves the correlations

exactly at the cost of lower accuracy. The accuracy of our method

could be further improved if we run a second pass through subse-

quences that remained after running SQS. This is due to the fact

that some of the sequences that are added to the dictionary might be

a better match and reduce the loss of accuracy stemming from this

approximation. The second pass could be particularly important for

vector streams where the first pass does not find too many patterns.

Both accuracy and compressibility might also be improved by a

proper choice of parameter ℓ, which is currently set to number 3.

Approximatematching as an amnesic function?Notice that
there is a trade-off between the accuracy and storage. We increase

the accuracy at the cost of more storage. This trade-off can be

extended to model amnesic function, that allows us to represent

the recent past with greater precision. A simple way to integrate

amnesic function in our representation is to require more accuracy

for recent past and lesser for the older ones. A more sophisticated

framework will allow more accuracy in the “area of interest” while

requiring less accuracy elsewhere.

4 EVALUATION
For the evaluation, we consider the home energy usage data avail-

able from [4]. The dataset consists of a wide variety of data collected

from three real homes (named as home-A, B, and C), including elec-

trical (usage and generation), environmental (e.g., temperature and

humidity), and operational (e.g., wall switch events). We mainly

use the electricity usage data for these three homes as a function of

time and weather. The data corresponding to home-B and home-C

are obtained over a period of 3 months (from May to July 2012)

from various sensors with readings every 5 minutes. We also use

the data for home-A where readings are taken at every hour. Since

there is a strong correlation between weather and energy usage

(due to the use of HVAC), we consider a time series with 4 element

vectors. The vector elements are, respectively, outdoor temperature,

outdoor humidity, wind velocity, and power usage. Unless other-

wise mentioned we use 128 bins for discretization of all attribute

values.

Notice that while compressing the original time series (OT), we
(a) first discretize the samples into bins, then (b) compress the

bins using AVSC scheme, we call these two intermediate series of

bins as S1 and S2. From S2 we can approximate (or reconstruct)

the original time series which we denote as reconstructed time

series or RT . To compare the accuracy and compressibility of the

original time series (xt) with the reconstructed one (x̂t), we use two
metrics named Relative Compression Ratio (RCR) and Relative Root-
Mean-Square-Error (RRMSE). The former represents the amount of

compression with respect to the LZ compression, and the latter

gives the normalized root-mean-square error of reconstructed time

series, i.e.

RRMSE =
RMSE

RMSorig
=

√∑n
t=1 (xt − x̂t)

2
/
n√∑n

t=1 (xt)
2
/
n

(1)

Pattern Mining Based Compression of IoT Data ICDCN ’18, January 4–7, 2018, Varanasi, India

Figure 2: Home-C’s power measurements: Comparison of the original and reconstructed time series

Notice that a lower RRMSE represents higher accuracy (or fi-

delity) and vice versa. The combined RRMSE of multiple measure-

ments (i.e. temperature. humidity, wind velocity and power usage)

is obtained by taking the root of the sum of squares of the individual

RRMSE values. Because of this reason, with higher dimensions, the

combined RRMSE has a higher value compared to the RRMSE of

the individual time series.

Comparison of OT and RT : To show the accuracy of the pro-

posed compression scheme we compare the original power mea-

surements of home-C along with the reconstructed one for AVSC-C.

The result is shown in Figure 2 where τ is 0.1. From this figure, we

can observe how well the reconstructed samples approximate the

original measurements. The combined RRMSE corresponding to

Figure 2 is found to be 0.15.

Evaluation of uncorrelated compressionAVSC-NC: Figure 3
shows the variation of RRMSE and RCR with τ corresponding to

the data obtained from three homes using AVSC-NC compression

technique. From Figure 3 we can observe that AVSC-NC provides

better compression ratio for the dataset from home-A than that

of homes B and C. Notice that in case of home-A the readings are

obtained at every hour, whereas for homes B and C the samples

are taken at every 5 minutes. Because of this reason, the identified

patterns obtained in case of homes B and C cannot replace a large

section of the remaining subsequences with reasonable accuracy.

We can also observe that the improvement in compression ratio

becomes marginal beyond τ = 0.2, however, the RRMSE keeps in-

creasing especially in case of homes B and C. This brings the notion

of finding the optimal τ for a given measurement data, which needs

further investigation in future.

Figure 3 also shows the discretization error (i.e. RRMSE at τ =

0) due to the binning operation, which is found to be significantly

smaller compared to the accuracy loss due to compression.

Evaluation of correlated compression (AVSC-C):While eval-

uating the effect of correlated compression with the above datasets,

we couldn’t identify a correlated pattern with more than 32 bins. In

case of home-A, we had to decrease the number of bins even further

to 16 however, even after doing so we obtain no compression gain

until τ reaches 0.6. We, therefore, ignore the case of home-A, and

(a) RRMSE

(b) RCR

Figure 3: AVSC-NC Evaluation

only show the comparison of homes B and C in Figure 4, while

keeping the number of bins equal to 32.

From Figure 4 we can observe that RCR increases with the in-

crease in τ as more subsequences are approximated with the iden-

tified patterns in the dictionary. However, doing so increases the

RRMSE significantly, i.e. using the above datasets, even though we

can obtain a considerable gain in terms of compressibility, it comes

at the cost of low accuracy.

ICDCN ’18, January 4–7, 2018, Varanasi, India Dusan Ramljak, Amitangshu Pal and Krishna Kant

(a) RRMSE

(b) RCR

Figure 4: AVSC-C Evaluation

Comparison of AVSC-NC and AVSC-C: In order to directly

compare the benefits and downsides of two compression techniques,

we repeated experiments for homes B and C for 32 bins discretiza-

tion. In the repeated experiments we observed that AVSC-C method

in comparison with AVSC-NC provides similar compression ratio

for smaller thresholds τ , but the loss in accuracy is almost 60%

worse for AVSC-C (From 0.10 RRMSE for AVSC-NC to 0.18 RRMSE

for AVSC-NC). Since AVSC-C does a somewhat better job in pre-

serving correlation, a more detailed analysis is required for a fair

comparison; however, based on the results so far, it appears that

AVSC-C is not a very attractive method. It is worth noting that the

observed behavior is domain specific. There is a strong correlation

between weather and energy usage and discretization smooths the

differences between the vectors such that there are enough patterns

that AVSC could exploit.

5 CONCLUSIONS AND FUTUREWORK
In this paper we discussed mechanisms for lossy data compression

that provide a trade-off between compression ratio and data useful-

ness for offline statistical analysis in IoT. We considered sequence

pattern mining based compression strategies for multiattribute

IoT data streams. For each method, we evaluated the compressibil-

ity of the method vs. the level of similarity between original and

compressed time series in the context of the home energy manage-

ment system. In particular, we showed gains over the plain lossless

compression for a specified amount of accuracy for purposes of

identifying the state of the system. This comparison shows a clear

tradeoff in between the compressibility and fidelity with respect to

distance threshold τ , i.e., in general, the amount of fidelity increases

with small thresholds, but at the cost of poor compressibility.

A similar trade-off between compressibility and accuracy can

also be drawn with respect to the number of bins used in the dis-

cretization process. We will explore these characteristics in more

detail in the future to change the distance threshold τ and the num-

ber of bins dynamically with age as well as for different regions of

interest in a time series. Along the same lines, we want to extend

AVSC to explore the notion of progressive compression, where we

re-compress the older at a higher compression level in order to

keep maintenance of the measurement information scalable. We

also need to investigate how to devise the optimal threshold τ
and optimal breakup of long non-matching subsequences. More

investigation is needed to find a better fidelity metric and then

more validation is needed using more data from different domains.

Another line of investigation is the accuracy of the compressed

representation for specific event detection, such as home occupancy

detection, intrusion detection etc. Finally, we do a more compre-

hensive evaluation of the proposed compression scheme and its

enhancements.

REFERENCES
[1] Eleanor Ainy et al. 2015. Approximated Summarization of Data Provenance. In

ACM CIKM.

[2] Muhammad Naveed Aman et al. 2017. Secure Data Provenance for the Internet

of Things. In ACM IoTPTS. 11–14.
[3] Khaled Bachour et al. 2015. Provenance for the People: An HCI Perspective on

the W3C PROV Standard Through an Online Game. In ACM CHI. 2437–2446.
[4] Sean Barker et al. 2012. Smart*: An open data set and tools for enabling research

in sustainable homes. (2012).

[5] Sabine Bauer et al. 2013. Data provenance in the Internet of things. In Conference
Seminar SS.

[6] Kaushik Chakrabarti et al. 2002. Locally Adaptive Dimensionality Reduction for

Indexing Large Time Series Databases. ACM Trans. Database Syst. 27, 2 (2002),
188–228.

[7] Christos Faloutsos et al. 1994. Fast Subsequence Matching in Time-series

Databases. In ACM SIGMOD. 419–429.
[8] Sorabh Gandhi et al. 2010. Space-efficient online approximation of time series

data: Streams, amnesia, and out-of-order. In IEEE ICDE. 924–935.
[9] Jayavardhana Gubbi et al. 2013. Internet of Things (IoT): A vision, architectural

elements, and future directions. Future generation computer systems 29, 7 (2013),
1645–1660.

[10] Luc Moreau et al. 2008. The Open Provenance Model: An Overview. 323–326.
[11] Themistoklis Palpanas et al. 2004. Online Amnesic Approximation of Streaming

Time Series. In IEEE ICDE. 339–349.
[12] Ivan Popivanov et al. 2002. Similarity Search Over Time-Series Data Using

Wavelets. In IEEE ICDE. 212–221.
[13] Karen Rose et al. 2015. The internet of things: An overview. The Internet Society

(2015), 1–50.

[14] Joan Serra et al. 2014. An empirical evaluation of similarity measures for time

series classification. Knowledge-Based Systems 67 (2014), 305–314.
[15] Salmin Sultana et al. 2015. A distributed system for the management of fine-

grained provenance. Journal of Database Management 26, 2 (2015), 32–47.
[16] Nikolaj Tatti et al. 2012. The long and the short of it: summarising event sequences

with serial episodes. In ACM KDD. 462–470.
[17] Rob van der Meulen. 2017. Gartner Says 8.4 Billion Connected âĂŸThingsâĂŹ

Will Be in Use in 2017, Up 31 Percent From 2016. (2017).

[18] Yulai Xie et al. 2011. Compressing Provenance Graphs.. In TaPP.
[19] Yulai Xie et al. 2013. Evaluation of a hybrid approach for efficient provenance

storage. ACM Transactions on Storage 9, 4 (2013), 14.
[20] Byoung-Kee Yi et al. 2000. Fast Time Sequence Indexing for Arbitrary Lp Norms.

In VLDB. 385–394.

	Abstract
	1 Introduction
	2 IoT Data Use Cases
	3 Background and Proposed Methodology
	4 Evaluation
	5 Conclusions and Future Work
	References

