
Provisioning Differentiated QoS for NVMe over Fabrics
Joyanta Biswas∗, Jit Gupta∗, Krishna Kant∗, Amitangshu Pal†, Dave Minturn‡
∗Computer and Information Sciences, Temple University, Philadelphia, PA 19122, USA
†Computer Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, India

‡Intel Corp, Hillsboro, OR 97291, USA

Abstract—In this paper, we propose a quality of service (QoS)
aware transport solution for storage access over data center
network. Motivation for QoS differentiation comes from the
emerging storage technologies which not only provide network
comparable latency but also overwhelm the network bandwidth
close to the storage servers. We consider both throughput and
latency related QoS requirements and demonstrate how they
can be enforced by Explicit Congestion Notification (ECN)
enabled switches. The mechanism can be viewed as a way of
adding QoS capability to the existing data center transport
solutions. Our scheme can co-exist with existing congestion
management schemes and ensures RTT fairness while providing
service differentiation. We show that our scheme can provide
differentiated treatment and besides achieving better throughput
fairness during the congestion episode, our solution can reduce
the target latency misses by up to 71% and 80% as compared
to the existing TCP and RDMA transport.

I. INTRODUCTION AND MOTIVATION

Traditionally, storage devices and the storage access pro-
tocols have been rather slow and thus the network latency
in remote access storage has not been an issue. However,
with the emergence of high performance storage devices and
emerging remote access protocols such as NVMe over Fabrics
(NVMe-oF) [1], network congestion is becoming a significant
issue [2]–[4].1 For example, even a cheap consumer SSD can
drive ∼25-35 Gb/sec of throughput. The Mellanox NVMe-oF
performance report shows that 4 NVMe SSDs can saturate 100
Gb/sec links in time, whereas 250 SATA HDDs are required
to saturate the same links [5]. Thus, the end-to-end quality of
service (QoS) is becoming essential for storage access, and
the network becomes a crucial piece of it.

NVMe-oF establishes the host to target connection and thus
needs an underlying transport layer such as TCP or RDMA
(remote direct memory access). Data centers currently use both
Layer2 (L2) and Layer3 (L3) switches; therefore, an end-to-
end QoS is best implemented at the transport level. This may,
in turn, use features provided by lower layers, if available,
but we focus on the transport layer only in this paper. Two
examples of lower level QoS features are (a) the data center
bridging (DCB) [6], which includes the priority flow control
(PFC) and enhanced transmission selection (ETS), and (b) IP
level DSCP (differentiated services code point) [7]. While
DCB is becoming more generally available in data center
switches, it must be augmented with additional mechanisms to
provide an end-to-end solution. The DSCP mechanism is not

1NVMe is a hardware-supported, low-latency storage access protocol that
is becoming ubiquitous, and NVMe-oF is its extension that essentially handles
NVMe requests over the network.

very useful because (a) it is defined in terms of packet losses,
which are highly undesirable in data centers, and (b) it is a
hop-by-hop control, typically implemented in the routers [8].

For NVMe-oF transport, we shall consider both TCP and
RDMA transports. TCP is predominant in data centers; how-
ever, because of its kernel-based and software-centric imple-
mentation, it results in high latencies. RDMA, in contrast, is
largely supported by the hardware, is much leaner, and also
avoids kernel transitions. RDMA is essential for access to
remote persistent memory (PM) and to other emerging high-
speed technologies where low latency is crucial [9].

Because of the undesirability of packet losses, we shall
focus on lossless versions of TCP where the congestion control
is initiated before any loss can occur. A popular and widely
implemented version in this regard is the Data Center TCP
(DCTCP) [10], which relies on the ECN (explicit congestion
notification) mechanism for congestion feedback, but in a
lossless way. In particular, if the switch buffer occupancy
exceeds some threshold much below the actual buffer size,
the congestion is indicated, and the source then aggressively
reduces the flow so that the congestion is contained quickly
and decisively. The ECN mechanism involves two bits; the
Congestion Encountered (CE) bit in a packet is set when it
encounters congestion on some switch in the path. When the
packet reaches the receiver, and the CE bit is set, the receiver
sets the ECN-echo (ECE) bit in a reverse packet (such as ACK)
to inform the source of the congestion. However, DCTCP does
not provide differentiated service during congestion. Thus a
goal of this paper is to propose a DCTCP-like mechanism
called Quality Aware TCP (QTCP) that allows differentiated
treatment to TCP connections belonging to different QoS
classes that happen to pass through a bottleneck link.

On the other hand, RDMA was originally developed for
the InfiniBand (IB) technology and implemented entirely in
hardware for low-latency lossless transfers. It has been suc-
cessfully transported to Ethernet. In particular, RDMA over
Converged Ethernet (RoCEv1) is an Ethernet layer protocol
that allows IB traffic to be Ethernet (L2) compatible. Its
successor, RoCEv2 [11], replaces the IB header with the UDP
and IPv4/IPv6 header, eliminating the need for the IB stack
entirely. It also allows RDMA to utilize the feature of both
L2 (Ethernet) and L3 (IP). Data Center Quantized Congestion
Notification (DCQCN) is an end-to-end congestion control
protocol that works with ROCEv2, and leverages both the
PFC and ECN for congestion management. Like DCTCP,
DCQCN also lacks differentiated service during congestion.
Our work addresses this limitation and introduces a Quality

978-1-6654-1886-7/21/$31.00 ©2021 IEEE 154

20
21

 IE
EE

 4
6t

h
C

on
fe

re
nc

e
on

 L
oc

al
 C

om
pu

te
r N

et
w

or
ks

 (L
C

N
) |

 9
78

-1
-6

65
4-

18
86

-7
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
LC

N
52

13
9.

20
21

.9
52

49
67

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on December 20,2021 at 09:46:42 UTC from IEEE Xplore. Restrictions apply.

Aware RDMA (QRDMA) mechanism similar to QTCP, but in
the context of RDMA.

The novelty of this paper is to develop QTCP and QRDMA
specifically targeted for handling NVMe-oF related storage
traffic flows inside the confines of the data center. Although it
is possible to use them elsewhere in the data center as well,
that aspect is beyond the scope of this paper. Therefore, we do
examine the coexistence of QTCP/QRDMA with flows using
the regular (non-differentiated) versions of these protocols.

The rest of the paper is organized as follows. We first
provide an in-depth discussion of how QoS can be infused in
DCTCP, its analytic modeling, and the corresponding results.
In particular, section II discusses the limitations of DCTCP and
introduces QTCP. Analytical modeling of QTCP is explored in
section III and the evaluation results are covered in Section IV.
Section V then discusses QRDMA briefly and shows the
results. Because of the significant similarities in the design
of QTCP and QRDMA, we keep the discussion of the latter
short. Section VI summarizes the related works. We conclude
the paper in Section VII.

II. QOS DIFFERENTIATION IN QTCP
A. Overview and Limitations of DCTCP

DCTCP uses an exponentially smoothed version of the
ECN feedback to modulate the congestion window (cwnd) for
reducing the amount of traffic into the network. The underlying
control parameter is the fraction of acknowledgments in a
window that arrive with the ECE bit set. Consider I competing
TCP connections (or flows). Let fi(n) denotes this fraction for
ith flow during its nth window. Then we can obtain an expo-
nentially smoothed version of this quantity over successive
windows, popularly denoted as αi, as follows:

αi(n) = (1− g)αi(n− 1) + gfi(n− 1) (1)
where 0 < g < 1 is a smoothing constant (independent of the
flow id i). DCTCP reduces the window per round-trip time
(RTT) in proportion to the latest estimate of αi such that in
the limiting case of αi = 1, the window is halved. That is, the
window control follows the following rule:

Wi(n) =Wi(n− 1)
(
1− αi

2

)
(2)

Despite all the pros, DCTCP is not designed for any service
differentiation and thus effectively results in an equal division
of the available bandwidth amongst the existing flows during
the congestion episodes. As a result, in the presence of
congestion, a high priority flow may suffer more as compared
to other low priority flows if both of them react to the same
congestion event similarly. That means, regardless of the QoS
management in NVMe storage protocol (e.g. queue arbitration,
block layer flow control [1]), the end-to-end QoS objective
remains unattainable.

B. QoS Specification

We assume a fixed set of I QoS classes and all the existing
applications are classified into one of these classes. Thus each
application uses a specific class throughout in its lifetime,
which is our notion of a “flow”. In general, each class has
a specified tail latency objective and a minimum bandwidth

objective, e.g., at least 200 Mb/sec with a 90 percentile latency
of 100 µs. We consider two regimes of operation:

1. The bottleneck link has enough bandwidth to accommo-
date the average bandwidth demand of all the flows.

2. The bottleneck link is lacking the capacity to satisfy the
minimum bandwidth of some of the flows. In this case, it
is necessary to ensure that various classes get a predefined
fraction of the bottleneck link capacity. We assume that the
total available bandwidth of the bottleneck link is known here,
which can be estimated from the techniques used in [12].

We further assume that all tail latencies are specified using
the same percentile value, e.g., 90 percentile. If originally the
latency is specified differently (e.g., 99 percentile), we then
need some way to estimate the corresponding 90 percentile
value. For example, if the mean and variance of the latency
distribution are known, we can use Chebychev inequality to
estimate the tail latency. That is, for a random variable X
with given expected value E[X] and standard deviation σX ,
we have:

Pr[|X − E[X]| ≥ δσX] ≤ 1/δ2 for any δ > 1 (3)
The reason for assuming the same percentile is that it enables
us to control the window size directly based on the ratios of
achieved and target latency values.

The “desired bandwidths” of a flow must be limited if the
total offered traffic exceeds the bottleneck link capacity C.
Thus, there are two situations to consider for each class i:
1) No congestion: Desired BW = Offered load of the class i
2) Congestion: Desired BW = C × Desired BW ratio for class

i
The congestion state and extent of congestion can be

estimated using the ECN mechanism explained earlier.

C. Quality Factor and Flow Rate Control of QTCP

We now define a measure called quality factor and denote
it as Qi for class i. Let Lia and Lit denote, respectively, the
actual and target tail latency for class i. We express Qi as a
ratio of the two, with actual latency smoothed over time. That
is,
Qi = Lit/L

′
ia where L′ia = (1−γ)Lia+γL′ia, i = 1..K (4)

where γ is the smoothing factor. Qi is a dimensionless number,
ranging from 0 to some maximum value limited by the
admission control. If Qi > 1, corresponding flow has a slack
(i.e., its window can be squeezed), and if Qi < 1, then flow
has a deficit, and its window needs to be increased. Since we
assume that each flow uses a separate connection, the flow
rate for each of them is controlled independently based on its
Qi.

A similar Qi can be defined for bandwidth centric control,
i.e.,
Qi = λ′ia/λit where λ′ia = (1− γ)λia + γλ′ia, i = 1..K (5)

where we have reversed the ratio, to keep the same sense for
the Qi factor (Qi > 1 means that we have slack, and Qi < 1
means that we have deficit).

The flow rate modulation for different QoS aware flows is
done based on both the value of αi (probability of congestion
a.k.a. percentage of packets that are ECN marked) and their

155

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on December 20,2021 at 09:46:42 UTC from IEEE Xplore. Restrictions apply.

Qi. If the current window size of a flow is Wi, then the overall
flow rate control mechanism for a single flow is:

Wi(n) =

Wi(n) + 1, No ECN
Wi(n)(1− αi

2), αi ≥ 0 and Qi > 1

Wi(n)(1− αi

2)Qi, αi ≥ 0 and Qi ≤ 1

(6)

The above scheme works in every update interval (i.e. RTT) as
follows. When there is no congestion indication, the window
size of each flow would increase by 1 unit. In case there is a
congestion indication (marked ECN packets from the receiver)
during successive update intervals, Wi(n) will be updated in
proportion to αi and Qi. As discussed earlier, Qi > 1 means
that the flows have not satisfied the QoS requirement yet, so
the modulation would only be based on the αi. When Qi ≤ 1,
the flow has already met the QoS demand, so it is okay to back
off from the assigned bandwidth resources to make room for
others.

III. ANALYTICAL MODELING OF QTCP

A. A Simple Operational Model

The essential aspects of QTCP can be captured via a discrete
time model (DTM). Our proposed DTM model considers the
change in flow rate from one update interval to the next. The
behavior may also be approximated via a fluid flow model
(FFM) as in the analysis of DCTCP in [13]. Note that unlike
DCTCP, where only one flow can be analyzed in isolation, our
model must analyze a coupled system of equations involving
all classes. Both models have their strengths and weaknesses.
The main issue with DTM is that it considers the behavior of
TCP only at certain discrete points and thus cannot model the
intra-update state. On the other hand, the main issue with FFM
is that it incorrectly assumes infinitesimal control of state and
because of that cannot easily handle the notion of state during
the update. In particular, the FFM in [13] uses an average value
of RTT to refer to the last RTT cycle. We focus on DTM only
in this paper.

For the DTM, we continue to use n as the current “time-
slot” or current update duration. Consider i = 1..I active
connections, each belonging to a distinct class, so the notion
of class and flow can be used interchangeably. Let C denotes
the capacity of the bottleneck link used by these classes with
Ci(n) as the share of class i at slot n, with

∑I
i=1 Ci = C. Let

Ri(n) denote the round-trip time (RTT), and q
(i)
aj (n) denote

the queue length of class j at the bottleneck egress port of
the switch as seen by an arriving class i packet. Furthermore,
let pi(n) denote the event that the switch queue is already at
or beyond the threshold K when a class i packet arrives, and
thus this packet has its CE bit set. Note that in the current
window, the relevant event is from the last window. That is,

ei(n) = I∑I
j=1 q

(i)
aj (n−1)≥K

(7)
In general, each arriving class i may see a different distribution
of packets in the queue; however, since we assume that the
switch uniformly marks packet of any class that sees a “full”
queue, the dependence of q(i)aj (n) is likely to be weak, if any.
Therefore, we henceforth assume that such a dependence does

not exist, and denote the queue full event as simply e(n).
However, for a DTM, we need not observe the individual
events but rather the probability of the queue being full,
henceforth denoted as p(n). We can estimate this as follows:

p(n) =

{
1− K−1

B(n−1) if B(n− 1) ≥ K
0 if B(n− 1) < K

(8)

where B(n− 1) =
∑I
i=1 qai(n− 1).

The overall latency Lai(n) observed by an arriving class i
packet is given by Lai(n) = di+qai(n)/Ci(n) where di is the
baseline delay independent of queuing (including send/receive
processing delay, link propagation delay, switch processing
delay, and transmission time of one arriving request). We
assume that the feedback packets (ACKs) do not face any
significant queuing delay, and thus Ri(n) = d′i where d′i is the
backwards delay. For simplicity we will assume that d′i = di
for all i.

We assume that suitable admission control is in place so
that the average total offered traffic to the bottleneck link
is always strictly less than the link bandwidth C. In other
words, we assume that the packets cannot build up at the
transmit nodes indefinitely. Thus, the congestion is a result of
the burstiness in individual class traffic, including the overlaps
in high traffic periods of various classes such that the link
capacity is temporarily exceeded but no packet is ever dropped
either in the switches or at the transmitter. That is, the long-
term throughput of the system equals the offered load.

Throughout Ratios: Class i is targeted to get the given
BW ratio of ri relative to class 1 (i.e., r1 = 1). That is, Ci =
C.ri/

∑
i ri and is independent of slot. Since no packets are

lost, the actual throughput can be estimated from the number
of packets transmitted Wi(t − Ri) in the last update interval
Ri(t−Ri), i.e., λi(n) = Wi(t−Ri)/Ri(t−Ri). Therefore,
Qi(n) = λi(n)/Ci.

Queuing Latency: We assume that the classes are ordered
according to an importance score, with class 1 being the most
important. The queuing latency target Lit for these classes
must be chosen sufficiently large to be realizable, particularly
since the switch is assumed to use FCFS (first come first serve)
scheduling for all packets.2 The actual congestion Li(n) =
d + qai(t − Ri)/Ci(t − Ri) where Ci(n) = Wi(n)/Ri(n).
Therefore, Qi(n) = Li(n)/Lit.

We could then write the equations for all quantities. In the
following we assume that the bandwidth, transferred data and
throughput are in the units of packets rather than bytes. Based
on the discussion above, we first restate the basic quantities
below.

Ci(n) =

{
C.ri/

∑
i ri Throughput control

Wi(n−1)
Ri(n−1) Latency Control (9)

Qi(n) =

{
Ci(n)Ri(n−1)
Wi(n−1) Throughput control

di+qai(n−1)/Ci(n−1)
Lit

Latency Control
(10)

αi(n) = αi(n− 1) + γ[p(n)− αi(n− 1)] (11)

2One could use multi-class open-system queuing formulae [14] to estimate
range of values to use.

156

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on December 20,2021 at 09:46:42 UTC from IEEE Xplore. Restrictions apply.

The order of calculation is as follows: We first estimate p(n),
i.e., whether ECN was received in the last update event, based
on the queue length in the previous slot (qai(n − 1)). This,
in turn, is used to compute the fraction of BW given to each
flow in the current slot, Ci(n), and from there the quality
factor Qi(n). We next update α, which in turn provides all
the parameters required to update the packet transferred Wi(n)
and the update interval (Ri(n)) for the current slot. This is then
used to estimate qai(n), the queue length for the current slot,
so that the temporal evolution can continue. Thus,

Wi(n) =

Wi + 1 αi(n)≤ε
Wi[1− αi(n)

2] αi(n)>ε&Qi(n)>1

Wi[1− αi(n)
2]Qi(n) αi(n)>ε&Qi(n)≤1

(12)
Ri(n) = 2di +B/C (13)
qai(n) = max[0, qai +Wi(n)− CiRi(n)] (14)

where we have used C(n− 1) in the last equation, since the
known drainage rate is C(n− 1) during the nth slot.

One could seek the “steady state” from these equations by
considering the case where the Wi and Ri do not change from
slot to slot. However, it is clear from equation (12) that this
system does not have any fixed point.

The equations above assume that there are always enough
packets available at the transmitter so that it can fill whatever
the Wi is in each slot. We can extend the model further by
including a packet generation process and keeping track of
untransmitted packets for each class i, henceforth denoted as
Ui(n). The actual window size for class i, henceforth denoted
as W ′i (n), is then the minimum of the computed window size
Wi(n) (from W ′(n− 1) using equation like (12)). That is,

M = inf
(
∑M′

m=1G
(m)
i)>R(n−1)

(M ′) (15)

Ui(n) = Ui(n− 1)−W ′i (n− 1) +M − 1 (16)
W ′(n) = min[W (n), Ui(n)] (17)

where G(m)
i denotes the time between the mth and (m− 1)th

packet during an RTT. This gap is driven by the packet arrival
process which could be bursty.

B. Comparison of Model and Simulation

We validate the analytical modeling of QTCP with our
ns3 implementation in Fig. 1 with 3 applications. We set
the bottleneck bandwidth C at 10 Gbps; the applications are
injecting traffic at a rate of 3, 6 and 9 Gbps respectively. We
assume the threshold K to be 140 (K ∼ 0.17Cd, where C
= Bottleneck capacity, d= propagation delay), which is also
used in the DCTCP paper [10].

From Fig. 1 we can observe that our analytical model
shows similar behavior in terms of throughput of the individual
applications, as compared to the ns3 simulations. Thus this
validates that our analytical model closely approximates the
behavior that is obtained from the simulations.

C. Convergence and stability analysis

We next conduct the convergence and stability analysis of
the developed analytical model in presence of 3 applications.

Fig. 1. Comparison of throughput between model and simulation

Fig. 2. Variation of quality factor per RTT

Fig. 2 shows the vari-
ation of Qi with RTT
slots, where the RTT
and γ are assumed to
be 248µs and 0.02 re-
spectively. From this
figure we can ob-
serve that the Qi’s of
all three applications
converge to approxi-
mately 1 within 100
RTT slots. Because of the target throughput based window
modulation, the actual throughput of the applications reaches
close to the target throughput, which makes the quality factors
close to unity.

Fig. 3 shows the effect of different RTT values on the
convergence time. As expected the convergence time increases
with the increase in RTT values. In a data center environment,
the RTT is relatively small (∼150-200 µs) [15]; thus, the
convergence time will be fairly quick. Fig. 3 also demonstrates
that the quality factor of the applications will converge to 1.

IV. PERFORMANCE EVALUATION OF QTCP

We comprehensively evaluate the QTCP mechanism using
the popular ns3 network simulation package. For this, we

Fig. 3. QTCP convergence with different RTT

157

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on December 20,2021 at 09:46:42 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Simulation setup; all links are connected through 10 Gbps port

Fig. 5. Comparison of bandwidth distribution between QTCP (left) and
DCTCP (right). The bottleneck bandwidth is kept as 10 Gbps. The attained
throughput ratio of QTCP is approximately equal to the target throughput
ratio, 1.0 : 2.0: 3.0.

started with the detailed DCTCP implementation in ns3 (which
closely follows the RFC 8259) and also implemented the
proposed QTCP mechanism. In spite of the existence of
numerous data center network topologies, most data centers
still use the fat-tree topology as illustrated in Fig. 4. Note that
regardless of the size of network, the fat-tree topology always
has 3 levels of switches (edge, aggregation, and core), which
means that no request/response ever travels more than 6 hops.
Thus the network in Fig. 4 is adequate for exhibiting QTCP
performance, even though it is quite small. We used 10 Gb/s
links for simulation efficiency, but similar results apply to the
more contemporary 100 Gb/s links.

A. Bandwidth Distribution

In this section, we discuss the bandwidth distribution of
applications having different QoS requirements. In this exper-
iment, we have three applications carrying load of 3, 6, and 9
Gbps respectively; thus the accumulated offered load (i.e. 18
Gbps) exceeds the bottleneck link capacity of 10 Gbps. In the
perspective of QoS aware Fabrics, we expect to distribute the
available bandwidth in 1.0 : 2.0 : 3.0 ratio (i.e. 1.67, 3.33 and
5.0 Gbps respectively). Fig. 5 shows the comparison between
QTCP and DCTCP in presence of 3 applications. In case
of DCTCP, we can observe equal sharing of the bandwidth
between the 3 applications in Fig. 5, and the carried throughput
ratio is 1: 1.1: 1.1. In case of QTCP, the carried throughput
ratio is almost exactly equal to that of the target ratio. Thus
QTCP can achieve the desired QoS objective of allocating
the bottleneck link bandwidth in the desired proportions to
different classes. Also notice that the overall throughput in
case of QTCP is almost equal to DCTCP, i.e. 9.63 Gbps as
compared to 9.57 Gbps in case of DCTCP.

Fig. 6. Comparison of bandwidth distribution between (a) DCTCP and (b)-
(c) QTCP for different RTTs. In (a) and (b), the RTT of 9Gbps application
is higher as compared to other comparatively low priority applications. In
(c), all the three applications are put into different fat tree PoDs. In both the
cases, bandwidth distribution using QTCP is approximately equal to the target
bandwidth ratio.

B. RTT fairness Comparison

We define RTT fairness as the extent to which we can
achieve the target throughput ratios under different RTTs of
the flows. For this, we generate intra-pod and inter-pod flows
with different target ratios. Fig. 6 shows the results for both
DCTCP and QTCP. The average RTT of high QoS Application
(9 Gbps) is approximately 1800 µs, whereas the low QoS
applications (i.e. 3 Gbps and 6 Gbps) have a RTT of 350 µs.
It is clear that DCTCP has a bias against flows with longer
RTTs (Fig 6(a)), as flows with shorter RTTs grab bandwidth
more quickly. One can argue placing higher QoS applications
such that it experiences small RTT, but the problem is two
fold: 1) This will cause other applications to starve, and 2) in
a virtualized data center environment, this sounds impractical.

However, QTCP is not affected; it still offers the desired
throughput ratios and the same overall throughput as DCTCP
(9.6 Gbps). In QTCP, although the flows with shorter RTTs
grab window more quickly, the quality factor forces the low
QoS flows to make room for the high QoS flows, regardless
of the RTT. Fig. 6 compares the results when a congestion
occurs in several places, rather than only at the ToR (Top of
the Rack) layer. Fig. 6(b) shows the result when the congestion
is only at the ToR switch, whereas Fig. 6(c) shows the case
of congestion in both aggregation and ToR layers. In both the
cases, the bandwidth distribution ratio is close to the target
throughput ratio.

C. DCTCP friendliness

The estimation of available bandwidth may be inadequate
in a dynamic environment where new non-QTCP applications
may start or stop at any time. Therefore, we also consider
an alternate mechanism where the QTCP itself continuously
adjusts the bottleneck bandwidth by monitoring the impact of
any interfering traffic. For this, we assume that the bottleneck
bandwidth (λ) is known initially (given or estimated by explicit
methods like [12]). If an interfering flow alters this value, each
QTCP flow estimates it as shown in Fig. 8. Here targeti is
the QoS requirement of flow i when there is congestion in the
network, and actuali is the estimated throughput till that point.
Since quality factor Qi quickly converges to close to 1 (section

158

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on December 20,2021 at 09:46:42 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. Illustration of DCTCP friendliness of QTCP

III-C), its perturbation by more than σ is considered as a signal
of a new interference or disappearance of the interference. We
then change the target bandwidth targeti by the amount called
“factor” and change the window size accordingly.

Wi =Wi(1− α/2)
if (Qi − 1.0 > σ)) // means there is interference flow

factor = −σ;
else if (Qi − 1.0 < σ) //interference flow left

factor = σ;
else factor = 0.0
λ = (λ+ factor)× targeti
targeti = ratioi × λ; Qi = targeti/actuali
if (Qi < 1) Wi =WiQi

Fig. 8. Window modulation in presence of interfering flows. ratioi defines
the fraction of bottleneck bandwidth assigned), Qi defines the current quality
factor measured, Wi is the current congestion window size for flow i. λ is
the bottleneck bandwidth measured/estimated. Also for our experiment we
choose σ as 5% (i.e. 0.05).

Fig. 7 (a)shows the DCTCP friendliness results. When the
DCTCP flow leaves (after about 1500 milliseconds of simu-
lation time), the QTCP flows manage to grab the bandwidth
resources according to the QoS specified ratio (1 : 2 : 3). In
Fig. 7(b) we simulate the scenario where the DCTCP flow
enters and leaves during the simulation; in this scenario also
we observe that QTCP adjusts the remaining bandwidth among
the active flows. We simulate with multiple DCTCP flows and
get the expected result as 7(a) and 7(b) in all the cases. Another
solution to ensure the DCTCP friendliness could be to reserve
the bandwidth explicitly for the interfering flows as suggested
in [16]. However, this will result in network under-utilization
when there is no interfering DCTCP flow.

D. Comparison of deadline misses with DCTCP and D2TCP

We now consider the case of latency sensitive traffic,
where the QoS is defined in terms of target latency. For the
experiments, we categorized applications into four classes; 3
out of 4 classes have latency requirements of 5366, 6604,

7832 µs respectively, whereas class 4 is best effort and has
no QoS requirements. The mean transfer size we choose
is 2MB. The flow arrival rate follows Poisson distribution
and average utilization is 80%. Fig. 9 shows the comparison

Fig. 9. Deadline misses in case of DCTCP, D2TCP and QTCP under (a)
normal and (b) stressed situations.

between QTCP and DCTCP for latency sensitive applications.
In addition to that, we also simulate another QoS based
window modulation scheme, named D2TCP [17]. The D2TCP
proposal considers deadline of each class (or flow) while
modulating the congestion window and thereby attempts to
provide some level of service differentiation. In particular, for
class i, it computes a ratio di of an estimated actual delay and
the deadline, and skews the window modification by using αdii
instead of αi.

We simulate both the normal and stress situations to show
the effectiveness of our scheme. Fig. 9(a) depicts the normal
situation where the high priority flows (i.e. applications 1 and
2) generate packets at a frequency lower than that of others;
in our simulations their overall generated traffic is 10% and
20% respectively. In case of QTCP, almost all the applications
can meet their target latency, whereas in DCTCP ∼5-8%
packets miss their deadlines. In Fig. 9(b) we simulate a more
challenging situation, where each class contributes to 25% of
the overall load. As compared to DCTCP, in case of QTCP
the fraction of traffic with missed target latency reduces from
∼30-65% to ∼15-18% (i.e. ∼71% reduction as compared to
DCTCP). Notice that in Fig. 9, we do not report the latency
statistics for application 4, as it is of best effort type.

Fig. 9 also compares the performance of QTCP with D2TCP.
In the normal scenario, D2TCP does not miss any deadlines.
However, in stressed situation QTCP yields fewer deadline
misses. As compared to D2TCP, QTCP reduces the percentage
of missed deadlines from ∼35% to ∼18% for application 1,
whereas for the other applications the performance of both the
schemes are almost identical.

V. QOS DIFFERENTIATION IN QRDMA
A. An overview of DCQCN

We now switch our gear towards RDMA transport mech-
anism, where DCQCN is considered as the popular transport
protocol. DCQCN requires the PFC data center Ethernet
feature, which is a L2 QoS capability to guarantee lossless
transport for flows over a link. PFC cannot distinguish between
traffic of same priority class, going to different destinations.

159

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on December 20,2021 at 09:46:42 UTC from IEEE Xplore. Restrictions apply.

Thus the congestion along a given destination path will
generate a PAUSE frame, which causes blocking of all the
incoming flow packets belonging to the same priority class,
even if the destination is different and there is no congestion
at the corresponding path. DCQCN addresses these issues by
leveraging both the PFC and ECN mechanism. However, the
congestion feedback mechanism is different in DCQCN, since
the underlying ROCEv2 utilizes connection less protocol i.e.
UDP, so TCP like ACK feedback per frame transmission is
not implemented. As a result, congestion feedback mechanism
in ROCEv2 somehow needs to be request agnostic. Upon
receiving a ECN marked packet, the receiver NIC sends
ROCEv2 standardized congestion notification packet (CNP)
to the sender NIC in N microsecond time interval, until the
receiver NIC continues receiving ECN marked packets [18].
When the flow i sender gets a CNP, it reduces its current rate
(RCi) and updates the value of the rate reduction factor, αi,
like DCTCP, and remembers the current rate as target rate
(RTi) for later recovery, i.e.

RTi(n) = RCi(n− 1) (18)

RCi(n) = RCi(n− 1)
(
1− αi

/
2
)

(19)
The value of RTi(n) is used for flow rate increasing during the
non congestion episode. Rate increase has two main phases;
fast recovery, and additive increase. During the fast recovery
phase, the flow rate RCi is rapidly increased towards the fixed
target rate for F successive iterations, as follows:

RCi(n) =
{
RTi(n− 1) +RCi(n− 1)

}/
2 (20)

Fast recovery is followed by an additive increase, where the
current flow rate slowly approaches to the target rate, and the
target rate is increased by an additive constant RAI , which is
summarized as follows:

RTi(n) = RTi(n− 1) +RAI (21)

RCi(n) =
{
RTi(n− 1) +RCi(n− 1)

}/
2 (22)

B. QoS aware DCQCN - QRDMA

Similar to DCTCP, in case of DCQCN too the available
bandwidth is distributed equally among all the existing flows.
Thus, to implement QoS differentiation in RDMA, we develop
the scheme QRDMA which essentially uses the same mecha-
nism as developed for QTCP in section II.

Fig. 10. Bandwidth Distribution in QRDMA (left) and DCQCN (right).
Bottleneck bandwidth is 10 Gbps and attained carried throughput ratio of
QRDMA is approximately equal to the target throughput ratio, 1.0 : 2.0: 3.0.

In particular, we control the target rates to provide the

desired ratios for different classes. The analytic model in
section III can also be applied to quantify the performance
of various classes in QRDMA with some small changes, but
we omit the details here due to lack of space. Fig. 10 shows
the comparison between DCQCN and QRDMA with three
applications; the simulation environment is exactly same as
that of section IV-A. The attained throughput ratio of the
three applications is 1.0: 1.8: 2.6, which is also approximately
equal to the target throughput ratio (1.0: 2.0 :3.0). This
shows that the QRDMA scheme also achieves expected service
differentiation similar to QTCP.

Fig. 11. Deadline misses in
case of DCQCN and QRDMA

Fig. 11 compares the perfor-
mance of DCQCN and QRDMA
with latency sensitive applica-
tions in a stressed scenario as
in Fig. 9(b). From Fig. 11 we
can observe that as compared to
DCQCN, QRDMA demonstrates
fewer deadline misses. In fact, as
compared to DCQCN, QRDMA
reduces the deadline misses by
∼43-80%. However, while com-
paring Fig. 9(b) and Fig. 11, we
can observe that QRDMA yields
higher deadline misses as com-
pared to QTCP. This is mainly because the implementation of
DCQCN (on which QRDMA is implemented) requires careful
parameter tuning for the best performance. In our implementa-
tion of QRDMA, we have used the default parameter settings
as suggested in [18]. Parameter tuning for QRDMA is beyond
the scope of this paper and is left for future work.

C. Effect of different incast degree

Single I/O request from a data center application might com-
prise of response flows from multiple storage servers. These
multiple parallel flows can also be generated from complex
interplay between data center applications. For example, in
case of big data applications like Hadoop, or Spark, during the
shuffle/reduce phase, several concurrent flows are generated.
These concurrent independent flows can cause buffer overflow
all of a sudden, and thus decrease application level throughput
far below the link bandwidth. This phenomenon is known as
incast problem. To avoid long latencies due to the buffer-bloat
problem, the idea in DCTCP/DCQCN is to provision rather
small packet buffers in the data center switches and control
the traffic injection aggressively so the queues do not build
up much beyond the point where ECN is triggered. However
a switch queue to which a storage server is connected could
still be overwhelmed due to incast problem and result in packet
losses due to physical buffers being overrun. In this section,
we discuss how a QRDMA works for different incast degree.

Fig. 12 shows the result for different incast degrees. In case
of QRDMA, we observe a slight improvement (∼3%) in terms
of the overall throughput. Since the endpoint has a notion of
quality factor in QRDMA, it can modulate the data rate in a
more controlled way, as compared to DCQCN. We also notice

160

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on December 20,2021 at 09:46:42 UTC from IEEE Xplore. Restrictions apply.

Fig. 12. Comparison of bandwidth distribution between QRDMA (left) and
DCQCN (right) for different incast degrees.

that irrespective of the incast degree, QRDMA achieves QoS
differentiation for different applications.

The incast issue can happen with TCP as well, and the
experiments (not reported here) show we achieve similar QoS
differentiation with QTCP as compared to DCTCP.

VI. RELATED WORK

Although the main goal of conventional transport layer
solutions (either TCP or ROCEv2) is fairness (equal sharing of
bottleneck bandwidth) amongst different flows, some variants
address the differentiated treatment. To the best of our knowl-
edge, no work addresses the QoS issue in data center RDMA
transport. But unlike QoS aware RDMA, several works have
addressed the issue of QoS aware differentiated flow control
in the TCP context. Homa [19], L2DCT [20], D2TCP [17],
PDQ [21], D3 [22] consider QoS in terms of individual
flow completion time (i.e. deadline). Homa addresses head-
of-the-line (HoL) blocking issue posed by TCP streams. They
leverage in-network queue priority to provide low latency QoS
to the small messages (99 percentile latency of 10 µs). L2DCT
and D2TCP modulate TCP congestion window for different
flows based on the QoS parameter provided. One of the key
issue with these schemes is that the administrators need to have
prior knowledge about the network delay and RTT in order to
set the QoS parameters, whereas in the case of QTCP we
just need to specify the relative bandwidth ratio of different
flows. PDQ proposes distributed scheduling algorithm, where
the switches coordinate among themselves to schedule the
high priority flow earlier (i.e. flow with critical deadline). It
requires specialized switches and extensions to the protocol
header to convey the QoS hints. D3 is another deadline-aware
TCP variant, however, D3 [22] requires specialized switches
and is not feasible for a ubiquitous solution. D3 also requires
centralized control, so scalability might get affected badly by
the communication overhead.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we develop a lossless, QoS aware transport
solution for NVMe-oF that offers fairness by distributing the
network bandwidth to different applications according to the
relative QoS requirements. Our solution can be implemented
using ECN-capable switches and does not need any specialized
hardware. In this paper we considered QTCP and QRDMA

separately, but it may be necessary to enable both simultane-
ously – QTCP for storage and QRDMA for persistent memory
(PM). We shall examine this in the future. We shall also
implement the two mechanisms in real servers and switches
and explore a variety of storage and PM access scenarios. We
shall also consider a mixture of classes with both throughput
and latency related QoS requirements or a latency requirement
along with a minimum committed rate requirement.

REFERENCES

[1] “Nvm express over fabrics revision 1.1,” https://nvmexpress.org/wp-
content/uploads/NVMe-over-Fabrics-1.1-2019.10.22-Ratified.pdf, 2019.

[2] Z. Guz, H. H. Li, A. Shayesteh, and V. Balakrishnan, “Nvme-over-
fabrics performance characterization and the path to low-overhead flash
disaggregation,” in ACM SYSTOR, 2017.

[3] Z. Guz, H. H. Li, A. Shayesteh, and V. Balakrishnan, “Performance char-
acterization of nvme-over-fabrics storage disaggregation,” ACM Trans.
Storage, 2018.

[4] M. Ray, J. Biswas, A. Pal, and K. Kant, “Adaptive data center network
traffic management for distributed high speed storage,” IEEE LCN, 2019.

[5] R. Davis, “The network is the new storage bottleneck,”
https://www.datanami.com/2016/11/10/network-new-storage-
bottleneck/, 2016.

[6] “Addressing and data center bridging (dcb),” https://1.ieee802.org/dcb/.
[7] F. Baker, D. L. Black, K. Nichols, and S. L. Blake, “Definition

of the Differentiated Services Field (DS Field) in the IPv4 and
IPv6 Headers,” RFC 2474, 1998. [Online]. Available: https://rfc-
editor.org/rfc/rfc2474.txt

[8] J. Polk, F. Baker, and M. Dolly, “A Differentiated Services Code Point
(DSCP) for Capacity-Admitted Traffic,” RFC 5865, 2010. [Online].
Available: https://rfc-editor.org/rfc/rfc5865.txt

[9] S. Scargall, “Remote persistent memory,” in Programming Persistent
Memory. Springer, 2020, pp. 347–371.

[10] M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye, P. Pate, B. Prabhakar,
S. Sengupta, and M. Sridharan, “Data center tcp (dctcp),” in ACM
SIGCOMM, 2010.

[11] “Infiniband™ architecture specification release 1.2.1 annex a17: Ro-
cev2,” https://cw.infinibandta.org/document/dl/7781, 2014.

[12] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: congestion-based congestion control,” ACM Queue, vol. 14,
no. 5, pp. 20–53, 2016.

[13] M. Alizadeh, A. Javanmard, and B. Prabhakar, “Analysis of dctcp:
Stability, convergence, and fairness,” in ACM SIGMETRICS, 2011, pp.
73—-84.

[14] K. Kant, Introduction to computer system performance evaluation.
McGraw-Hill, 1992.

[15] G. Zeng, W. Bai, G. Chen, K. Chen, D. Han, and Y. Zhu, “Combining
ecn and rtt for datacenter transport,” in APNet, 2017.

[16] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn,
“Rdma over commodity ethernet at scale,” in ACM SIGCOMM, 2016.

[17] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware datacenter
tcp (d2tcp),” in ACM SIGCOMM, 2012.

[18] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye,
S. Raindel, M. H. Yahia, and M. Zhang, “Congestion control for large-
scale rdma deployments,” in ACM SIGCOMM, 2015.

[19] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout, “Homa: A receiver-
driven low-latency transport protocol using network priorities,” in ACM
SIGCOMM, 2018.

[20] A. Munir, I. A. Qazi, Z. A. Uzmi, A. Mushtaq, S. N. Ismail, M. S. Iqbal,
and B. Khan, “Minimizing flow completion times in data centers,” in
IEEE INFOCOM, 2013.

[21] C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing flows quickly with
preemptive scheduling,” in ACM SIGCOMM, 2012.

[22] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better never
than late: Meeting deadlines in datacenter networks,” in ACM SIG-
COMM, 2011.

161

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on December 20,2021 at 09:46:42 UTC from IEEE Xplore. Restrictions apply.

		2021-08-30T14:20:35-0400
	Preflight Ticket Signature

