
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 8, AUGUST 2021 5751

A Fast Prekeying-Based Integrity Protection for
Smart Grid Communications

Amitangshu Pal , Member, IEEE, Alireza Jolfaei, Senior Member, IEEE,
and Krishna Kant, Life Fellow, IEEE

Abstract—In this article, we propose a prekeying-based
integrity protection mechanism for critical smart grid com-
munications that are often left unprotected due to tight tim-
ing constraints. Our mechanism computes the key for the
next message in advance followed by a simple exclusive-
OR operation with the message when it is generated. This
provides both integrity and confidentiality at a very low
latency cost. The rigorous security analysis shows that
the proposed method is secure against cyclic redundancy
check (CRC) and message replay attacks. The extensive
evaluation shows that the method is up to 21 times faster
than standard integrity protection algorithms, and can do
the message encryption in under 1 ms even on a very
low-end microcontroller.

Index Terms—Cybersecurity, generic object oriented sta-
tion event (GOOSE), IEEE C37.118, integrity protection,
smart grid communications, SV protocol.

I. INTRODUCTION

THE EMERGING smart grid architecture uses real-time
monitoring and control of the power grid in order to provide

high efficiency, stability, and robustness in the power supply. A
series of communications protocols have been defined for this
purpose over the years. In particular, there are three protocols
in existence currently. The earliest one is the IEEE C37.118,
which is now split into two parts, with C37.118.2 being aligned
with more widely deployed IEC 61850-9-5 for synchrophaser
communications [1]. It is currently the most widely deployed
protocol for synchrophasors but lacks security. On the other
end is the Department of Energy (DoE)-developed streaming
telemetry transport protocol (STTP) [2], which has been re-
cently picked up by IEEE for standardization, but currently
not deployed except on an experimental basis. Therefore, we
will largely focus on IEC 61850-9-5, although a wide-spread
deployment of even this protocol is likely to take many years.

Manuscript received April 20, 2020; revised July 2, 2020 and Septem-
ber 21, 2020; accepted October 1, 2020. Date of publication October
13, 2020; date of current version May 3, 2021. This work was supported
by NSF grants under Award CPS-1544904. Paper no. TII-20-2026.
(Corresponding author: Amitangshu Pal.)

Amitangshu Pal and Krishna Kant are with the Temple Univer-
sity, Philadelphia, PA 19122 USA (e-mail: amitangshu.pal@temple.edu;
kkant@temple.edu).

Alireza Jolfaei is with the Macquarie University, Macquarie Park, NSW
2109, Australia (e-mail: alireza.jolfaei@mq.edu.au).

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TII.2020.3030799

Although IEC 61850-9-5 includes integrity protection mech-
anisms for the communications; they are optional for critical
protection messages requiring very low latency. Without any
integrity protection, if a protection message is falsely set to
indicate abnormal voltage or current value, it could trigger
protective relays and/or the generation control equipment to
react, potentially leading to blackouts.

In this article, we propose a lightweight prekeying-based
approach named PreKIP, which generates the keys between
successive sample generations and, then, simply XORs it with the
sample. We apply this method both to the regular phasor mea-
surement unit (PMU) data (where the available key generation
time is strictly determined by the sampling rate) and for event-
based data with certain minimum interevent time. The rigorous
security analysis shows that the method can successfully thwart
both ciphertext-only attacks and known/chosen plaintext attacks.
Our extensive evaluation shows that the proposed method is up
to 21 times faster than the hash-based message authentication
code (HMAC) scheme (and even faster than others), and has
acceptable latency for typical power protection applications even
with a low-end microcontroller.

The remainder of this article is organized as follows. Sec-
tion II discusses the gaps in integrity protection mechanisms in
smart grid protocols. Section III discusses the proposed method,
Section IV analyzes its security, and Section V evaluates its
performance. Section VI summarizes the related work, and
finally, Section VII concludes the article.

II. SMART GRID ARCHITECTURE AND COMMUNICATIONS

A. Smart-Grid Architecture

The emerging smart grid architecture uses PMUs to continu-
ously monitor line data (for example, voltage, phase, frequency,
and GPS location) and communicates them to the supervisory
control and data acquisition systems to ensure that any issues
related to grid health are handled promptly. Fig. 1 shows the over-
all architecture where the data from PMUs are “concentrated”
through phasor data concentrators (PDCs) installed in key sub-
stations. PMUs collect and send samples 30 or 60 times a second
through a publish–subscribe mechanism, where the PMUs work
as publishers to which the PDCs subscribe. A PDC receives data
from many (typically 3– 32) PMUs and, then, sorts and aggre-
gates the received data based on the time-tag. The aggregated
data are then relayed using a two-way communication system
to a number of local control centers (LCCs), which coordinate
their actions interacting with a federated control center (FCC).
Subsequently, LCCs draw the best overall snapshot solution

1551-3203 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on July 22,2021 at 13:26:54 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-5478-4590
mailto:amitangshu.pal@temple.edu
mailto:kkant@temple.edu
mailto:alireza.jolfaei@mq.edu.au
https://ieeexplore.ieee.org


5752 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 8, AUGUST 2021

Fig. 1. Typical model of a power grid architecture.

Fig. 2. Communications protocols used in smart grid.

using all PMU measurements [3]. Control centers use the IEC
61850-90-5 standard to communicate with smart measurement
units [1].

The IEC 61850-9-5 standard is itself a collection of protocols,
each defined for a different set of smart grid applications. This
is shown in Fig. 2. The manufacturing message specification
(MMS) protocol connects communications centers and gate-
ways through a client–server connection with the intelligent
electronic devices (IEDs) inside the substation and TimeSync
provides time synchronization. The two important protocols
of interest here are sampled value (SV or SMV) and generic
object-oriented station event (GOOSE), and both were originally
defined to operate directly on top of Ethernet and, thus, are not
routable. The SV protocol is used to exchange messages con-
taining samples of electrical quantities such as the very fast rate
sampling of voltage/current at a relay. While SV was originally
designed for intrasubstation use, it is also useful for sending the
PMU data stream to PDCs and LCCs. The GOOSE protocol
is used to exchange information between intelligent electronic
devices (IEDs) based on the important events that occur in
the system. Such messages include power measurements going
between protection relays, status updates, sending command
requests, and critical messages that demand an immediate action,
e.g., a relay trip. The use of GOOSE for transporting PMU
data is also reported in several publications [1], but in this case,
repetition of the message would not be useful. Both GOOSE/SV
messages require very low transmission latency, which is the
main reason for running them directly on layer-2. However,
more recently, the routable version of these protocols known,
respectively, as R-SV and R-GOOSE has been defined, so that
it is possible to transport data from several substation networks
to a concentrator or a control center over user datagram protocol
(UDP) or transmission control protocol (TCP). Tunneling can

TABLE I
PAYLOAD DATA SIZE UNDER VARIOUS CONFIGURATIONS

also be used to carry layer-2 GOOSE/SV messages to points
outside a substation.

Assuming that the PDCs are located on the local substation
network, SV/GOOSE can be used for transmission from PMU
to PDC. However, since LCC is must necessarily be located
remotely and connect to multiple substations, all exchanges
between PDCs and LCC must be using either a routable protocol,
such as R-SV/R-GOOSE or by tunneling the SV/GOOSE proto-
cols. In the following, we largely focus on nonroutable versions
of SV/GOOSE, which can be carried over Ethernet frames riding
a SONET or similar lower level network. These are appropriate
for low-latency, and low-packet-loss communications. R-SV/R-
GOOSE instead usually rides TCP and are more appropriate for
less critical communications. Table I gives the size of payload
data in transmission and distribution substations under various
PMU/PDC configurations.

B. GOOSE Protocol

The GOOSE protocol operates on a publish–subscribe prin-
ciple, that is, each IED publishes its data stream, and other
interested entities (IEDs, PDCs, and LCCs) subscribe to it.
Thus, the communication is largely one-way; the subscriber does
not send any acknowledgement/negative-acknowledgement
(ACK/NACK) to the publisher, and thus, the publisher cannot
tell if the data were received correctly. The publisher can,
however, retransmit the data.

When GOOSE is used for communicating events, it will
typically generate bursts of messages (e.g., on an overvoltage
detection), with significant quiet periods in between. It continues
to retransmit these events (with successively increasing gap
between retransmissions) until a new event occurs. In such
a situation, the transmission interval exponentially increases
to the normal periodic interval. Assume that T0 is the time
interval between GOOSE messages in periodic mode, and
T1, T2, . . . , Tn = T0 are the time intervals in the burst mode,
with T1 < T2 < · · · < Tn. In IEC 61850, T0 is typically in the
range of 5–100 ms, whereas T1 is in the range of 0.5–5 ms [4].
After the first retransmission after T1, each successive interval
doubles until it reaches T0. The requirements for the delivery of
GOOSE messages are pretty stringent; the messages should be
delivered within 4 ms from the time an event occurs to the time
the message is received for protection and control applications;
this requirement is revised to 3 ms in IEC 61850-5 [4].

GOOSE tries to deliver messages in sequence by using two
fields called stNum (state number) and sqNum (sequence num-
ber). Every time a new event occurs, the transmitter increments
stNum and transmits a new message with this stNum. If no
event occurs and a time timeAllowedtoLive elapses, the
transmitted simply repeats the last message. Note that if the

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on July 22,2021 at 13:26:54 UTC from IEEE Xplore.  Restrictions apply. 



PAL et al.: FAST PREKEYING-BASED INTEGRITY PROTECTION FOR SMART GRID COMMUNICATIONS 5753

next event happens rather quickly, it is considered to override
the previous one and, hence, no repetition of previous message is
done. The countersqNum is incremented each time the previous
message is repeated.

C. SV Protocol

As stated earlier, SV protocol is primarily intended for fast
transmission of samples of analog measurements from various
substation devices on to the local bus for which it may use
very high sampling rates (e.g., 80–256 samples per cycle).
However, for use in the PMU context, the rates will usually
be far lower, perhaps less than once per cycle. Like GOOSE, it
also uses the publisher–subscriber model, it does not retransmit
data, since retransmission is not meaningful for data stream
delivery. Each SV PDU can include several measurements, one
per application service data unit (ASDU). Each ASDU contains
the measurement data (e.g., voltages and currents for each phase
in a three-phase circuit) plus some predefined fields, only one of
which is of interest here. This is smpCnt, which is incremented
each time a new data sample in ASDU is taken. smpCnt is only
2 B and it is reset every second through the TimeSync-based
synchronization protocol.

The sampling rate of SV involves two factors: measured signal
frequency and samples per period (SPP). IEC 61850-9-2LE
defines two SPP values of 80 and 256. Thus, if the measured
signal frequency is 50 Hz and SPP is 80, then the sending time
interval is 1/50/80, or 250 µs [5].

D. IEEE C37.118.2 Protocol

Even though this protocol is being replaced by IEC 81650-
9-5, it remains the most widely deployed protocol for PMU
communications and also lacks security. Each synchrophasor
measurement is tagged with a UTC timestamp consisting of
three components

1) Second-Of-Century (SOC);
2) FRACtion-of-SECond (FRACSEC);
3) Message time quality flag.

The SOC count is a 4-B integer count in seconds from UTC
midnight (00:00:00) on January 1, 1970. Each second is divided
into an integer number of subdivisions by the TIME BASE
parameter that is defined in configuration frame. The FRACSEC
count is an integer representing the numerator of the FRACSEC
with TIME BASE as the denominator. There is also a time
quality flag provides the accuracy of the time measurement.

E. Protecting Messages

In general, the adversaries may be passive or active. Passive
attackers eavesdrop on the communications between devices by
wiretapping the links between end devices and the substation
switches to obtain the message contents and traffic character-
istics of the substation; they neither modify the messages in
the channel nor communicate with the end devices. The objec-
tive of active attacks includes learning more about substation’s
operations, which can be helpful in later disruptions. In fact,
with the dramatic rise in analytics capabilities, a long-term silent
monitoring could derive important information about the types
and sources of messages. For example, an attacker may be able

to determine what type of perturbation will cause the greatest
disruption in the power flows through active attacks. Thus,
encryption may be desirable for privacy and integrity purposes,
although ensuring communication availability is regarded as the
primary goal in smart grids.

However, the current smart grid deployments generally do
not use any encryption or integrity protection to reduce com-
munication latency in time-critical applications; for example,
the standard for formatting and delivery of PMU data (IEEE
Standard C37.118 [6]) includes no end-to-end security mecha-
nisms. Although a standard IEC 62351 introduces several mes-
sage authentication code (MAC) algorithms to protect GOOSE
integrity, but it still allows an escape route for latency critical
messages by specifying an identifier in the message header to
zero. Thus, for time critical messages requiring a latency of
3 ms, no encryption is likely to be used. This includes GOOSE
and SV messages that are used to transmit both the stream-
ing PMU data and the event based data concerning load shed
and synchrophasor-assisted transfer trip [7]. The latter involves
sending a trip signal from one substation to another that could
be more than 100 miles away.

We make no assumption on the attacker’s ability to capture,
examine, or alter transmitted data or inject new data into the
system; however, we do not consider a persistent attack resulting
in denial of service (DoS). While our mechanism can detect DoS
attacks, it cannot prevent them; other mechanisms such as re-
dundant transmission or isolation may be necessary to deal with
DoS attacks. Our mechanism aims to harden the communication
protocol to ensure end-to-end confidentiality and integrity under
the assumption of trusted and uncompromised IEDs. Attacks
that exploit the hardware or firmware vulnerabilities to bypass
the integrity protection are beyond the scope of this article as
they require hardware and firmware attestation techniques.

Because of the one-way communication and a quiet overrid-
ing of previous message with a new one in GOOSE/SV, it is
simply not possible to synchronize the two sides precisely or
account for every message. Note that the PDC does have the
capability to send a message to PMU for special purposes (e.g.,
key exchange), which are outside the scope of the proposed
mechanism. The goal of our mechanism is to have the keys for
encrypting the next few messages ready before those messages
are generated, so that the encryption operation is a simple XOR

that can be done very fast. Such a mechanism can work well
in most situations, the only exception being cases where an
avalanche of messages is generated in short-time, possibly due
to many simultaneous faults.

III. PROPOSED INTEGRITY PROTECTION SCHEME

The purpose of the proposed mechanism is to ensure integrity
via the use of cyclic redundancy check (CRC) and confidentiality
via a fast encryption mechanism that generates a new key for
almost every message between transmissions so that the latency
can be largely hidden. This is summarized in Fig. 3. As depicted
in Fig. 3, the key Ki corresponding to Pi is calculated before
it arrives; thus, after the packet arrives, the payload is XORed
with the key to produce the ciphertext Ci before transmitting.
The XOR operation is very fast and does not have any significant
contribution to the encryption latency. Unfortunately, the use of

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on July 22,2021 at 13:26:54 UTC from IEEE Xplore.  Restrictions apply. 



5754 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 8, AUGUST 2021

Fig. 3. Timing diagram of PreKIP.

XOR along with CRC introduces some vulnerabilities that we
address by obfuscating the CRC, as discussed ahead.

A. Keystream Generation

Assume that the lengths of the original message and the CRC
checksum be Lm and Lc bits, respectively. Thus, we have a
plaintext of lengthL = Lm + Lc bits. Now, both the transmitter
and receiver need to generate the same keystream KS of length
at least L bits for a message without any explicit handshake. In
the following, we discuss the generation of KS, which will be
ultimately XORed with the plaintext to generate the ciphertext.

To generate KS for the jth new message, we start with a
one-time key skj , which is defined as

skj = K||saltj (1)

where || refers to the concatenation of a predistributed key K
and a per-transmission “salt” to make the key unique to each
transmission. We assume that K is either manually configured
on both transmit and receive sides, or communicated in an
out-of-band manner. Note that once we establish an encrypted
communication channel, K can be changed easily through a
handshake, and the best practice demands that this be done
periodically (e.g., once a month). The length of the preconfigured
key K should be adequate to avoid brute-force attacks, e.g.,
128 b.

However, saltj needs to be generated correctly for each mes-
sage by both transmit and receive sides without any further
message exchanges, as we shall discuss shortly in Sections III-
B–III-D for different communication protocols. The resultant
one-time key skj is not used directly for encryption; instead,
we compute a one-way, secure hash H over it so that the KS
does not reveal the key. The hash H could be SHA1, SHA256,
or another suitable one-way function. Notice that the resulting
message digest, say dj , will be a fixed length value Ld (e.g.,
160 b for SHA1 or 256 b for SHA256)

dj = H(K||saltj). (2)

Thus, to generate a long enough keystream, we utilize the
avalanche effect of the hash function H to output significantly
changing digests by adding an additional counter into the salting.
By concatenating the counter’s value cnt from 0 to N − 1
to saltj , we obtain N salts for each message, which are used

to generate N hash digests d
(i)
j , for i = 1, . . . , N . The final

keystream is then a concatenation of the hash digests.

KS = d
(1)
j ||d(2)

j || · · · ||d(N)
j (3)

whereN is chosen asN =
⌈

L
Ld

⌉
so that the KS is at least as long

as L. The KS is then XORed with the plaintext of length L. Our

salting scheme differs based on the communication protocols,
which we discuss in the following sections.

B. Salting Scheme for GOOSE

Here, we consider general GOOSE messages that are initiated
by specific events, as well as the retransmitted ones. The intent of
the salting scheme is to generate a unique KS for every message,
including both new and retransmitted messages; unfortunately,
given the lack of acknowledgements (ACK or NACK), it is very
difficult to realize this intent. As stated earlier, stNum is incre-
mented by 1 when the message transmits a new event andsqNum
is incremented by 1 if the message retransmits an old event. Thus,
to realize the intent, we need to set salt = stNum||sqNum for
every message, which means that stNum and sqNum must be
transmitted in the clear to the receiver, so that it too can construct
KS. However, that will expose the keys to the attacker, thus, the
receiver must be able to predict the pair (stNum,sqNum) before
it decodes the message, which we discuss in Section III-C.

One other situation to consider is the rollover of stNum.
First, the rollover of 32-b sqNum is a nonissue, since that can
only happen if the same message continues to be retransmitted
without success for a very long time. Note that sqNum will
be reset to 0 each time a transmission succeeds or the next
overriding event occurs. Furthermore, the rollover of stNum
is easily handled by the modulo arithmetic on both sender and
receiver sides, since there is no chance that a rollover would
collide with a previous message with stNum = 0.

C. Key Synchronization

To decrypt and verify the received message, the subscribers
need to use the same keystream KS. To this end, the subscribers
need to use the same salts as those on the publisher’s side. Recall
that each salt is computed from three parameters, i.e., 1)stNum,
2) sqNum, and 3) cnt. The cnt is easy to synchronize since it
takes the same values from 0 to N − 1 for all messages.

The challenge for synchronizing stNum and sqNum in
keystream generation is that both a publisher and its subscribers
cannot predict the next message is to transmit a new event or
to retransmit an old event (recall that keystreams are gener-
ated ahead of time and that the publisher keeps retransmitting
messages for an event until a new event comes). From the
publisher’s side, if a new event happens then it needs to send
a packet instantly with stNum = stNum+ 1 and sqNum = 0.
In an extreme scenario, multiple events can occur one after
other (or within an interval of very short time), the publisher
needs to prepare keystreams for the next several event driven
messages with increasing stNum values. The publisher can
do so by proactively maintaining a certain number (say N ) of
keystreams and storing it in a queue. Whenever a new event
occurs, the publisher can dequeue a new keystream, execute the
XOR operation and transmit. This is required only for critical
event reporting and not for PMUs. Furthermore, generation
of too many critical events at the same time is very unlikely;
therefore, a rather small value of N should be enough. The
publishers can generate the keystreams for the retransmitted
messages in between the message transmission intervals, with
sqNum = sqNum+ 1. As the minimum time interval for fast
retransmission is around 0.5–5 ms, such keystream generation

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on July 22,2021 at 13:26:54 UTC from IEEE Xplore.  Restrictions apply. 



PAL et al.: FAST PREKEYING-BASED INTEGRITY PROTECTION FOR SMART GRID COMMUNICATIONS 5755

process needs to be fast enough. Algorithm 1 summarizes the
keystream generation for the publisher.

On the other hand, the subscriber side also needs to generate
the same keystream to decrypt the incoming messages. To ensure
this, the subscriber follows the following set of steps after receiv-
ing the message. We assume that the subscriber is equipped with
a fast computing unit, so it can generate multiple keystreams
and try them out for decryption. Assume a normal operating
condition where the receiver knows stNum for the last received
message and sqNum = 0 (i.e., no message loss/retransmission).
Now, we have following four possible situations.

1) Next message also makes it to the receiver without corrup-
tion. In this case, the receiver can predict (stNum+ 1, 0),
decrypt the message, and do the integrity check. This is
the normal case and likely to occur in all but a small
number of cases.

2) Next k messages are lost (for some k ≥ 1), but the k + 1st
message, which is correctly received, is still generated
before the retransmission time of first lost message. In
this case, the receiver can estimate the number of lost
messages and predicts (stNum+ k + 1, 0) for a suitable
k. The probability of this case should vanish rapidly as k
increases.

3) No new messages are generated until it is time for retrans-
mission of the last message. This is the normal case of
retransmission, so the receiver can predict the keystream
with sqNum = sqNum+ 1.

4) Several messages are lost, including some new messages
and some retransmitted ones. In such a scenario, the re-
ceiver tries all combinations of (stNum+ k1,sqNum+
k2), where (k1, k2) vary from 0 to a certain threshold K.
A very smallK (e.g., 2) should be adequate in most cases.

In all cases, after decoding, the receiver will know the cor-
rect stNum and sqNum, which means that the operation can
continue. With PMU data, as long as the retransmission time is
larger than the time of next event, there is no situation where
a retransmission will be received. In other cases, the receiver
can infer from the timings how to predict stNum and sqNum.
The only situation where a prediction could be incorrect is if the
transmission delays vary a lot, so that the elapsed time does not
provide a reliable basis for prediction. This is unlikely to be the
case in SCADA networks.

The most time-consuming operation in the key generation is
the secure hash; therefore, to ensure that the key is ready for each

transmission, we require that the keystream generation time TKS

should satisfy the inequality

TKS = N · TH =

⌈
L

Ld

⌉
· TH ≤ T1 (4)

where T1 is the minimum retransmission interval and TH is the
time to execute the hashing once.

Note that in case of message loss, the receiver may need to
try decoding the message with multiple potential keys. This is
acceptable for the following reasons:

1) The receiver, being a PDC or LCC, has substantially
more computing power than the sender (a PMU), for
example, a desktop/server level machine as opposed to
a microcontroller.

2) The message loss probability is expected to be quite low
for nonroutable critical communications, and thus trying
with multiple keys is needed only occasionally.

3) When a message loss does occur, the 3-ms latency objec-
tive is unlikely to be met already, and a small additional
delay should not be significant.

D. Salting Scheme for SV and IEEE C37.118.2

Since SV is specifically intended for streaming data without
any retransmissions, the proposed mechanism is ideally suited
for it. The salting scheme for SV is a little more complex since
SV does not have an explicit sequence number. We can try to
generate it by using smpCnt of the first ASDU as the salt;
however, smpCnt is only 2 B, and it is reset every second. Thus,
smpCnt by itself is unable to provide a unique sequence number
for an ASDU. However, this issue can be addressed by defining
a virtual sequence number VsqNum, which is incremented each
time the smpCnt of first ASDU is reset to zero. Note that for
this to work, we need to make the implicit assumption that the
first ASDU sent by a PMU always concerns the same entity (e.g.,
the same bus). A 32-b counter is quite adequate as it overflows
in about 138 years. Thus, the pair (smpCnt, VsqNum) can
be a unique sequence number.

IEEE C37.118.2 messages are transmitted at relatively lower
frequencies, around 30–60 frames/s [1], which gives a gap
of 16.67–33.33 ms. Thus, the key generation key of around
10 ms should be sufficient for IEEE C37.118.2. As for IEEE
C37.118.2, we can use a combination of SOC and FRACSEC as
salt. The “TIME BASE” that defines the range of FRACSEC is a
configuration parameter and should not be changed during oper-
ation (it may be changed by taking the IED offline and making
configuration changes). As the IEEE C37.118.2 messages are
generated and transmitted periodically, the receiver can predict
the next salt (or set of salts in case of packet loss) for generating
the keystream. Effectively, the pair (SOC, FRACSEC) can act
like a unique sequence number.

E. CRC Obfuscation

The common practice of appending CRC code to the message
introduces a vulnerability in XOR-based encryption due to the
linearity property of CRC [8]. It is easy to verify that CRC(X
⊕ Y ) = CRC(X) ⊕ CRC(Y ). Thus, an attacker could XOR the

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on July 22,2021 at 13:26:54 UTC from IEEE Xplore.  Restrictions apply. 



5756 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 8, AUGUST 2021

TABLE II
KEYED OBFUSCATION AND DEOBFUSCATION

ciphertext X with an arbitrary message Y through a man-in-the-
middle attack and XOR CRC bits with CRC(Y ). This is easy to do
if the CRC bits appear in a known position in the message (e.g.,
at the end). The attacker could also choose Y such that CRC(Y )
= 0. To address this, we employ a keyed obfuscation algorithm
to shield the CRC bits, disabling CRC cracking attacks. The
obfuscation function should alter the CRC significantly and yet
should be easily recoverable using the key.

In the obfuscation approach used here, we apply a trans-
formation involving the nth bit of the CRC by using the 2n
and (2n+ 1)th bits of the keystream KS, as shown in Table II.
As a result, the bits in the CRC segment become obscure and
“nonlinear” to attackers (unless they have access to the key). It
also becomes impractical to perform brute-force attacks since
repeated CRC verification failures is unusual and can be used to
trigger alarm.

F. Message Embedding and Verification

After obfuscating the CRC, the publisher uses the first L bits
of KS to encrypt the concatenation of the message and the ob-
fuscated CRC by performing an XOR operation. Upon receiving
the message, the subscribers reverse the previous process by the
following:

1) decrypting the message with the first L bits of KS;
2) deobfuscation the CRC based on the operations in

Table II;
3) verifying the derived CRC.

The received message is untampered if the CRC checking is
passed.

Notice that this mechanism achieves the confidentiality using
the one-time key encryption mechanism, whereas the message
integrity is provided in two ways. First, the receiver predicts the
salt for the next message to decrypt it, and after the decryption it
matches the salt with the corresponding portion of the message.
For example, in case of GOOSE, the salt consists of stNum
and sqNum, which can be matched with the original message
after decryption. Similarly, in case of SV, the smpCnt is used
in the salt, which can also be checked with that of the decrypted
message. In addition to matching the salt fields, CRC can further
check for integrity.

G. Secret Key Management

Recall that the initial secret key K is shared among the
publisher and its subscribers. In XOR-based stream ciphers,
attackers who have access to the original plaintext afterwards
(from published PMU datasets) can gain access to the keystream
by XORing the plaintext and the sniffed ciphertext, namely theN
hash digests dj . However, because of the one-way hash function,

it is very difficult to derive the original string from there (which is
required to get at the underlying fixed key). Nevertheless, there is
some risk in using the same fixed secret key for extended periods.
Therefore, the transmitter can exploit our encryption mechanism
to occasionally provide a new key to the subscribers.

IV. SECURITY ANALYSIS

The proposed scheme provides confidentiality and integrity in
the presence of passive or active attacks. A powerful attacker (for
example, an inside attacker) can acquire both the plaintext and ci-
phertext of messages transmitted in the substation system. Thus,
it can obtain the historical keystreams easily by performing an
XOR calculation over the plaintext and ciphertext of the same
messages. Note that the keystreams are the digests output by
hash functions with the shared secret key and the synchronized
salts. Through the historical keystreams, the attacker can collect
hash samples, mappings between hash salts, and hash digests.
Then, the attacker can make attempts to find out the secret keys
ski with these samples.

With a 128-b preconfigured key, a brute-force attack needs
2127 attempts to discover it. The SHA1 secure hash used as the
H(·) function is known to have a collision attack length of 63 b.
In practice, this is more than adequate since the collision attacks
are unstructured. However, we did use of SHA-256 as well,
which not only raises the collision attack length to 128 b [9],
but turns out to be more efficient overall for reasons mentioned
later. We have also tried SHA-512, which may or may not be
desirable depending on the availability of long-word arithmetic.
In the following, we analyze the security of the proposed method
with respect to CRC and replay attacks.

A. CRC Attacks

We assume an active, strong adversary who has access to
the encryption machine without the knowledge of the secret
key. The adversary can control the parameters stNum, sqNum,
and cnt, and can input arbitrary measurements to the en-
cryption machine and generate corresponding ciphertexts. Such
an adversary is able to encrypt different measurement pay-
loads using the same keystream. In particular, to mount a
successful attack and perturb a message y without disturbing
the integrity, the adversary only needs to generate a message
x such that CRC(x) = 0. If CRC(x) = 0, then for all y,
CRC(x ⊕ y) = CRC(x) ⊕ CRC(y) = CRC(y). The adversary
can compute (KS ⊕ (x||CRC(x)))⊕ (KS ⊕ (y||CRC(y))) =
(x||CRC(x)))⊕ (y||CRC(y)), where KS is the keystream. If
CRC(x) = 0, then for all y, CRC(x ⊕ y) = CRC(x) ⊕ CRC(y)
= CRC(y).

The CRC obfuscation avoids such an attack by altering the bit
value or the position of every CRC bit to the key KS. The result
is an obfuscated CRC with length more than 32 b. Without the
key, attackers cannot determine which bits belong to the original
CRC and, therefore, cannot leverage the linear properties of CRC
to perform active attacks. Moreover, the intercepted messages
are encrypted with a stream cipher, which further random-
izes the bit value distribution of the obfuscated CRC. When
intercepting a ciphertext, the attackers cannot determine the
correct positions and, thus, cannot modify the original message
at will.

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on July 22,2021 at 13:26:54 UTC from IEEE Xplore.  Restrictions apply. 



PAL et al.: FAST PREKEYING-BASED INTEGRITY PROTECTION FOR SMART GRID COMMUNICATIONS 5757

Fig. 4. Performance of PreKIP. (a) PreKIPvs. AES and HMAC. (b) SHA-1 versus SHA-256 for key generation. (c) PreKIP performance on LPC2148.

B. Replay Attack

The adversary can launch a replay attack by overhearing
a legitimate message and replaying it at some later time. In
PreKIP, as the hashing is salted by incorporating the state
number, sequence number, and a counter, a replayed message
can easily be identified and discarded at the control center. The
adversary may only succeed if he replays a message within a
short time window of its origin; however, such an attack will not
have a detrimental impact on knowing the current state of the
grid and it cannot perturb the state as it would be easily detected
and discarded.

V. PERFORMANCE EVALUATION

A key issue in the performance of an integrity protection
algorithm is the resource-constrained microprocessors used by
PMUs. Although the power of these processors is increasing,
it will always be limited because of the small form factors.
In this section, we show that PreKIP is substantially faster
as compared to other well-known cryptographic algorithms
and can meet the timing requirements of IEEE C37.118 even
when implemented on a rather low-end microprocessor, such as
LPC2148 [10].

Comparison between PreKIP and other schemes: We first
compare between PreKIP and other well-known security and
integrity techniques are summarized in Fig. 4(a). The results
are obtained from an Intel Core i5-6500 T @ 2.50 GHz pro-
cessor with 16 GB RAM, with compiler optimizations set to
minimize execution time. The motivation to use a desktop-class
processor is to check how well the algorithm will perform for
intrasubstation use of the GOOSE/SMV protocols, which are
likely to have such processors. We will later study performance
on a microprocessor as well.

All the simulations are averaged over 100 runs. In PreKIP,
we define the postprocessing stage as the stage after the event (or
packet) arrival, which includes CRC computation, obfuscation,
and encryption. The postprocessing stage on the subscriber side
is symmetric.

In Fig. 4(a), we have compared the postprocessing stage of our
proposed PreKIP scheme along with 1) AES-CBC-128 (128-
b AES with block chaining) and 2) HMAC-256 (256-b hash-
based MAC). As compared to AES encryption, HMAC signature
generation is∼3× faster with a payload size of 400 B. However,
AES decryption performs poorly, which results in ∼16× slower
decryption than HMAC verification.

While comparing between PreKIP and HMAC-256, we
observe that PreKIP is roughly 21× faster with a payload
length of 10 B, and ∼4× faster with 400-B payload, than its
nearest competitor HMAC-256, and even more as compared to
others. In fact, PreKIP only takes 3–4 µs in the postprocessing
stage with is much lesser than the interpacket transmission
time of SV (i.e., 173–416 µs) and the minimum retransmission
interval of GOOSE (i.e., 0.5–5 ms). Notice that in Fig. 4(a),
HMAC embedding and verification takes up to 12 and 14 µs,
respectively, which also fulfills the timing requirement of both
SV and GOOSE. However, PreKIP is several times faster and,
thus, can be implemented even older/cheaper processors than
HMAC. At the same time,PreKIP also provides confidentiality
of the information in addition to integrity. This experiment
clearly shows the lightweight nature of PreKIP that makes it
suitable for such low-latency crypto applications.

Key Generation Latency of PreKIP: Fig. 4(b) shows the
key generation latency of PreKIP. We have compared SHA-
1, SHA-256 and SHA-512 for generating the digests. From
Fig. 4(b), we can observe that the key generation using SHA-256
is faster as compared to SHA-1, whereas SHA-512 is the fastest.
This is because of the fact that for a message with length L, and

a digest length of length Ld, the hash function is called
⌈

L
Ld

⌉

times. Even if SHA-1 is faster than SHA-256, the
⌈

L
Ld

⌉
for

SHA-1 is larger due to its smaller digest size (20 B as compared
to 32 B in case of SHA-256). Hence, SHA-256 performs much
faster than SHA-1 in key-generation phase, especially for larger
message length. For the same reason, the key generation time
of SHA-512 is also faster than the other two. Also notice that
the key generation of PreKIP is actually slower than HMAC
embedding. This is because of the fact that, in PreKIP, the

hash function is called
⌈

L
Ld

⌉
times, as opposed to just once in

HMAC. However, this does not matter for smart grid message
forwarding so long as the keystream is generated in between the
samples (or retransmissions).

Performance of PreKIP on LPC2148: Fig. 4(c) shows
the performance of PreKIP on LPC2148 microprocessor.
LPC2148 ARM7TDMI microcontroller has a limited memory
with 40 kB of on-chip static RAM and 512 kB of on-chip
flash memory. Because of this limitation, it is not possible to
implement arbitrary algorithms on it. Therefore, we have shown
our evaluations only for PreKIP. Fig. 4(c) also shows faster
key generation with SHA-256 as compared to SHA-1. Even

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on July 22,2021 at 13:26:54 UTC from IEEE Xplore.  Restrictions apply. 



5758 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 8, AUGUST 2021

with the largest message size of 400 B, the key generation is
only 11 ms with SHA-256. With typical PMU reporting rate
of 60/s, the total intersampling time is 16.67 ms, which is ade-
quate for key generation, CRC computation, obfuscation, and
encryption using the LPC2148 microprocessor. Furthermore,
the postprocessing stage is extremely fast, and just takes less
than a millisecond. This shows the feasibility of implementing
PreKIP on a low-end microprocessor for real-life applications.

From Fig. 4(c), we can also observe that LPC2148 micro-
processor will not be suitable for SV or GOOSE message
integrity checking when the sampling rate is 173–416 µs or the
minimum retransmission interval is 0.5–5 ms. However, such
high rates are unnecessary for transmitting PMU data (30–60
samples/s or 1/2 sample/cycle). In such applications, PreKIP
can provide a secured communication even with an inexpensive
microprocessor like LPC2148.

It is seen that the key generation with SHA-512 is slower than
that of SHA-256 in Fig. 4(c). This is due to the use of 16/32-b
ARM7TDMI-S microcontroller [10] in LPC2148, which does
not do well on long-word arithmetic as compared to a 64-b Intel
processor used in Fig. 4(b).

VI. RELATED WORK

Cybersecurity in smart-grid communication system is a well-
mined area, and multiple research studies have been conducted
in this area [11], [12]. As already indicated, IEEE C37.118 does
not provide any security features [6]. Ustun and Hussain [13]
provide a very recent review of cybersecurity challenges in IEC
61850-substation network. To alleviate the security issues, IEC
62351-6 [14] recommends RSA digital signature algorithm for
signing and verifying the substation messages. However, the
timing-related performances are studied in [15]–[18], which
raised concerns over the applicability of RSA-based signature
scheme for GOOSE messages.

Ishchenko and Nuqui [15] and Elbez et al. [18] have fur-
ther studied that HMAC-based schemes provide faster integrity
check as compared to RSA-based schemes and can satisfy the
timing requirements for the GOOSE messages with today’s
commodity processors. Farooq et al. [19] have implemented
and compared a framework for RSA- and MAC-based digital
signature schemes. Mohammed [20] has presented a sequence
hopping algorithm for securing the GOOSE messages. However,
this requires a separate sequence synchronization and monitor-
ing server, thus needs a separate infrastructure to be installed. As
opposed to these contributions, we proposed a novel lightweight
solution for the confidentiality and integrity problem mecha-
nism, where the key is generated within subsequent message
transfer, and thus the postprocessing stage is about 4–21 times
faster than an HMAC scheme. The scheme also provides extra
confidentiality and is secure from well-known attacks.

VII. CONCLUSION

The article presented PreKIP, a lightweight and secure
integrity protection algorithm for critical smart-grid communi-
cations. It achieved low latency by generating a new key between
samples that can be simply XORed with the generated sample.
We showed that our mechanism incurs negligible latency during
the postmessage arrival stage and is secure against powerful
adversarial attacks. The proposed scheme was 4–21 times faster

than competitive HMAC schemes, and even faster than other
crypto algorithms. The proposed algorithm can also be used
in other applications so long as there is a minimum gap be-
tween successive messages to allow for key generation without
increasing the latency (e.g., vehicle-to-vehicle communications
in intelligent transportation systems).

REFERENCES

[1] S. R. Firouzi et al., “Design, implementation and validation of an IEC
61850-90-5 gateway for IEEE C37. 118.2 synchrophasor data transfer,”
M.S. Thesis, Energy Eng., Escola Tècnica Superior d’Enginyeria, Valen-
cia, Spain, 2015.

[2] J. R. Carroll et al., “A comparison of phasor communications proto-
cols,” Pacific Northwest National Lab., Richland, WA, USA, Tech. Rep.
PNNL-28499, 2019.

[3] Y. Weng, R. Negi, C. Faloutsos, and M. D. Ilić, “Robust data-driven
state estimation for smart grid,” IEEE Trans. Smart Grid, vol. 8, no. 4,
pp. 1956–1967, Jul. 2017.

[4] S. Nohe, O. Hartmann, F. Becker, and C. Harispuru, “Designing non-
deterministic PAC systems to meet deterministic requirements,” [Online].
Available: http://rtpis.org/psc13/files/PSC2013_final_1358893882.pdf

[5] “IEC 61850 sampled values protocol,” [Online]. Available:
https://www.typhoon-hil.com/documentation/typhoon-hil-software-
manual/References/iec_61850_sampled_values_protocol.html

[6] I. Ali et al., “Performance comparison of IEC 61850-90-5 and IEEE
C37.118.2 based wide area PMU communication networks,” J. Modern
Power Syst. Clean Energy, vol. 4, pp. 487–495, 2016.

[7] P. Kundu and A. K. Pradhan, “Synchrophasor-assisted zone 3 operation,”
IEEE Trans. Power Del., vol. 29, no. 2, pp. 660–667, Apr. 2014.

[8] K. Lockstone and M. Lomas, “Active attacks on stream ciphers with cyclic
redundancy checks (CRCs),” 2000. [Online]. Available: http://www.cix.
co.uk/ klockstone/crchack.htm

[9] G. Leurent et al., “From collisions to chosen-prefix collisions application
to full SHA-1,” in Proc. Annu. Int. Conf. Theory Appl. Cryptograph. Techn.,
2019, pp. 527–555.

[10] “ARM7 LPC2148 development board,” [Online]. Available: http:
//www.nex-robotics.com/products/development-tools/arm7-lpc2148-
development-board.html

[11] A. Abuadbba et al., “Resilient to shared spectrum noise scheme for
protecting cognitive radio smart grid readings-BCH based steganographic
approach,” Ad Hoc Netw., vol. 41, pp. 30–46, 2016.

[12] S. Garg, K. Kaur, G. Kaddoum, J. J. P. C. Rodrigues, and M. Guizani,
“Secure and lightweight authentication scheme for smart metering in-
frastructure in smart grid,” IEEE Trans. Ind. Informat., vol. 16, no. 5,
pp. 3548–3557, May 2020.

[13] T. S. Ustun and S. M. S. Hussain, “A review of cybersecurity issues in
smartgrid communication networks,” in Proc. Int. Conf. Power Electron.,
Control Autom., 2019, pp. 1–6.

[14] Power Systems Management and Associated Information Exchange—Data
and Communications Security—Part 6: Security for IEC 61850, IEC TS
62351-6, 2007.

[15] D. Ishchenko and R. Nuqui, “Secure communication of intelligent elec-
tronic devices in digital substations,” in Proc. IEEE/PES Transmiss. Dis-
trib. Conf. Exp., 2018, pp. 1–5.

[16] S. M. Farooq, S. M. S. Hussain, and T. S. Ustun, “Performance evaluation
and analysis of IEC 62351-6 probabilistic signature scheme for securing
GOOSE messages,” IEEE Access, vol. 7, pp. 32343–32351, 2019.

[17] S. S. Hussain, S. M. Farooq, and T. S. Ustun, “Analysis and implementation
of message authentication code (MAC) algorithms for GOOSE message
security,” IEEE Access, vol. 7, pp. 80980–80984, 2019.

[18] G. Elbez et al., “Authentication of GOOSE messages under timing con-
straints in IEC 61850 substations,” in Proc. Int. Symp. ICS SCADA Cy-
ber Secur. Res., 2019. [Online]. Available: https://www.scienceopen.com/
hosted-document?doi=10.14236/ewic/icscsr19.17

[19] S. M. Farooq et al., “S-GoSV: Framework for generating secure IEC 61850
GOOSE and sample value messages,” Energies, vol. 12, no. 13, pp. 1–13,
2019.

[20] O. Mohammed, “Security aware microgrids: Securing GOOSE messages
against cyberattacks,” Presented in the APPA FMPAA Southeast Regional
Municipal Utility Cybersecurity Summit, 2019. [Online]. Available:
https://www.publicpower.org/system/files/documents/Security%
20Aware%20Microgrids%20Securing%20Goose%20Messages%
20against%20Cybersecurity_Osama%20Mohammed.pdf

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on July 22,2021 at 13:26:54 UTC from IEEE Xplore.  Restrictions apply. 

http://rtpis.org/psc13/files/PSC2013_final_1358893882.pdf
https://www.typhoon-hil.com/documentation/typhoon-hil-software-manual/References/iec_61850_sampled_values_protocol.html
http://www.cix.co.uk/ ignorespaces klockstone/crchack.htm
http://www.nex-robotics.com/products/development-tools/arm7-lpc2148-development-board.html
https://www.scienceopen.com/hosted-document?doi=10.14236/ewic/icscsr19.17
https://www.publicpower.org/system/files/documents/Security%20Aware%20Microgrids%20Securing%20Goose%20Messages%20against%20Cybersecurity_Osama%20Mohammed.pdf


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


