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Non-Intrusive Driving Behavior Characterization
From Road-Side Cameras

Pavana Pradeep Kumar1, Krishna Kant1 and Amitangshu Pal2

Abstract—In this paper, we demonstrate that Deep Learning
(DL) and spatiotemporal reasoning can effectively identify driv-
ing behavior based on the videos captured by roadside cameras.
The use of roadside infrastructure for such determination is
twofold: (1) a global view of the vehicles and their interactions,
and (2) no involvement or awareness of the vehicles or their
drivers, so the determination is inexpensive, easy to deploy,
and entirely non-intrusive. Furthermore, our method uses deep
learning only for object detection and tracking and builds a
flexible and explainable reasoning model to identify the driving
behavior. The essential advantage of this approach is that we use
deep learning only for tasks that can be accomplished efficiently
and with high accuracy (i.e., object detection and tracking),
which can be done in real-time. Although there are deep learning
models for detecting complex activities (e.g., aggressive driving),
they are much harder to train, require higher accuracy, and
inferencing time may not satisfy real-time constraints. By using
a setup with program-controlled robocars, we demonstrate that
we can achieve accuracies of 98–99% for driving behavior
characterization, and the mechanism can provide detection of 650
ms on a very dated desktop. The characterization can provide
feedback to the driver (or the automated car) for improved traffic
safety and roadway throughput.

Keywords: Intelligent Transportation Systems, Reasoning,
Event Logic, Smart Cities, Cyber-Physical Systems.

I. INTRODUCTION

Road accidents are responsible for ∼5 million severe in-
juries and ∼50K deaths annually in the USA [1]. Many of
these accidents are caused by risky driving behavior [2];
therefore, monitoring driving behavior and providing feedback
can significantly reduce the accidents or their severity. This
paper aims to demonstrate that it is possible to accurately and
non-intrusively characterize driving behavior from roadside
camera views. We believe such techniques will be valuable
even as Connected Automated Vehicles (CAVs) enter society.
This is because the CAVs are likely to offer “personalization”
to the users, allowing them to make the driving more or less
aggressive [3], [4].

Vehicular and Driving Behavior Characterization: There
is a tremendous amount of work on vehicular behavior charac-
terization, mostly based on the in-vehicle monitoring of the (a)
vehicular parameters (e.g., acceleration, braking, distance to
the next car, speed and speed variability, lane change behavior,
etc.) [5], and/or (b) driver (e.g., monitoring by various means
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whether the driver is drowsy, drunk, distracted, etc.) [6].
Extensive research has been conducted on intrusive meth-

ods of detecting driving behavior largely through smart-
phone video and other sensors. For example, a multi-sensor-
smartphone-based mechanism is reported in [7]. A similar but
vehicle-mounted acceleration measurement-based technique is
discussed in [8]. The dashboard camera-based driver state
identification is also explored extensively, e.g., yawning ges-
tures [9], eye tracking [10], facial expressions) [11], etc.

The main problem with such methods is that they require
initiatives on the part of the users to be monitored, and in many
cases, even set up the equipment (e.g., smartphone) themselves
to enable monitoring. Also, in most cases, the data would need
to be streamed out of the car to a node for analysis, which
has privacy issues and requires a stable internet connection
which is not always available. Also, since each vehicle only
has a local view, the behavior of a group of vehicles traveling
together or nearby becomes interdependent, which makes
it challenging to identify the cause-and-effect relationships
among the vehicles. For example, a sudden slowing of a
vehicle will cause the vehicle behind it also to slow suddenly.
Thus, unless the movement data from multiple vehicles can
be co-processed, in-vehicle monitoring cannot deal with such
dependencies. Consequently, we do not believe such methods
are practical, regardless of sophistication.

Our contributions: In this paper, we demonstrate that it
is possible to characterize vehicular behavior very accurately
using only the roadside cameras of the ITS system. To the best
of our knowledge, this is the first such study; its key advantage
is that it is entirely non-intrusive, inexpensive, and does not
impact driving behavior in any way. Also, the global view
can deduce the more obvious cause-and-effect relationships
between adjacent vehicles (e.g., whether the car decelerated on
its own or due to diminishing distance from the vehicle ahead).
The proposed framework integrates (1) Deep Learning (DL)
on camera images to recognize vehicles and estimate their
kinematic parameters and (2) Spatiotemporal logic reasoning
to characterize driving-related “micro-behaviors” (µBs) and
their combination to identify driving behavior. We recognize
three classes of driving behaviors, with an average accuracy
of approximately 99%. Furthermore, we show that the error
is primarily attributable to instances where a vehicle is not
identified correctly in the image and thus can be improved by
more robust tracking. The monitoring can provide feedback to
the drivers (or automated vehicles) for improving both traffic
safety and enhancing the roadway throughput.

Paper outline: The remainder of the paper is organized
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as follows. Section II presents our driving behavior charac-
terization framework. Section III presents the experimental
evaluation, and then Section IV concludes the paper.

II. FRAMEWORK FOR DRIVING BEHAVIOR PREDICTION

A. Categorizing Driving behavior

Driving behavior is important from a safety perspective,
but no standard way to characterize driving behavior exists.
This paper adopts a 3-way classification, where driving is
designated safe, aggressive, and distracted [12]. Please note
that our “safe” category includes any behavior that is not
considered aggressive or distracted; therefore, there is no
undetermined behavior. For this categorization, we define a
small set of “micro-behaviors” (µBs) and then characterize
the driving based on the combination of those. Table I shows
the µBs and abbreviations we use in the rest of the paper. For
example, aggressive driving can be identified by a combination
of µwv , µos, µhb, and µtg . In this paper, we formulate
the driving behavior detection problem using spatiotemporal
reasoning based on the location and movements of the vehicles
determined from the YLLO-based analysis of video frames.

B. System Architecture

We assume that the camera deployment is such that all
vehicles on the roadway are visible without excessive image
distortion. Given the increasing processing power in smart
cameras, each camera can do the object detection and tracking
tasks discussed here rather than sending the raw video feed to
the next level, Road-Side Units (RSUs). In our earlier work,
we designed a lightweight object recognition and tracking
algorithm called YLLO (You Look Less than Once) that
can run in the cameras and avoid transmission of redundant
frames to RSUs [13]. The RSUs receive video streams from
multiple cameras along a road segment and use them to
monitor driving behaviors and associated anomalies. Further
processing, including perspective transformation and estima-
tion of orientations and speeds of the objects, may be done
by the camera itself or the RSUs. The RSU can then build a
spatiotemporal logic model of the situation that includes all
“facts” of different driving behaviors, the conditions leading
to near-miss accidents, and the supporting “theories” (i.e.,
Newton’s laws, arithmetic, etc.)

Table I: Microbehaviors for Driving Characterization

Microbehavior Meaning
µwv : Weaving Swerving between lanes
µss: Sudden Steer Abrupt heading changes on a straight road
µhb: Hard Braking Braking deceleration is -8 m/sec
µld: Lane Drift Not keeping in the center of the lane
µst: Straddling Alternatively hugging left & right side of lane
µos: Overspeeding Driving 25% above the speed limit
µtg : Tailgating Following a vehicle at distance < 2m

Fig. 1 depicts our overall architecture, comprised of two
different frameworks. One framework is based on Deep Learn-
ing (DL) and logical reasoning that runs on roadside cameras
receiving traffic videos as input. The other is based on logical
reasoning that runs on individual vehicles receiving in-vehicle
parameters as inputs.

The initial stage of the roadside camera framework is a
lightweight object detection and tracking model based on a
Convolutional Neural Networks (CNNs) model called YLLO
that we have developed for video analysis [13]. YLLO per-
forms the processing of video sequences in a highly efficient
manner. The second stage for each detected object (e.g.,
vehicles, pedestrians, etc.) is a spatiotemporal logic-based
reasoning system that captures the relative movements of the
objects in real time to identify various driving behaviors. An
event recognition tool uses a formal specification of driving
behavior as part of the reasoning framework that operates on
individual vehicles.

C. YLLO-based Object Detection and Tracking

YLLO is a lightweight object detection technique based on
YOLOv6 [14] and is optimized for continuous video streams
by utilizing redundancy to identify the “only” essential frames.
It is a three-stage process that begins with a scene change
detection algorithm and progresses to object detection via
YOLOv6. The Simple Online and Real-time Tracking with
a Deep Association Metric (Deep-SORT) algorithm assign a
tracker to each detected object or multiple objects. YLLO
decouples classification and regression tasks to eliminate
redundant objects between the frames. Additionally, before
sending frames to object detection, for the scene change
detection, it generates Color Difference Histograms (CDH)
for edge orientations, where edge orientations are determined
using the Laplacian-Gaussian edge detection framework.

D. Spatio-Temporal Reasoning

We formulate our reasoning as a Boolean satisfiability
problem so that the popular SMT (Satisfiability Modulo The-
ory) [15] based tools can be used along with suitable theories.
To reason about temporal aspects, we make use of a popular
framework called Event Calculus (EC) that introduces the
concept of Events, which are actions that occur at a specific
point in time, and Fluents, which are entities whose state
changes in response to the occurrence of an event or action.
In particular, we have used an open-source prolog imple-
mentation termed “Event Calculus for Run-Time Reasoning”
(RTEC) [16]. RTEC specifies temporal relationships using
LTL (Linear Time Logic) but with integer time points which
makes it possible to speak of real-time as well.

We can define µB in RTEC as rules that define the event
instances using the predicates ‘‘happens at" (hA) and
‘‘happens for" (hF). The fluents that have time-varying
properties and the effects of events on fluents are defined using
the inA and tA predicates. The value of fluents at any time
point is defined using the hoA and hoF predicates. If F is
a variable ranging over fluents, the term F=V denotes that
the variable F has a value V. Boolean fluents also exist with
values true or false. Table II shows the predicates used
in the RTEC tool.

Characterizing driving in terms of µBs brings up one
important issue: some µBs are more important than others.
Some might even be essential for the driving classification
to be valid (e.g., hard braking for aggressive driving). We
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Fig. 1: Driving Behavior Characterization Framework.

Table II: Main predicates of RTEC

Predicate Meaning
hA(E,T) Event E happens at time T
hF(E,I) Event E happens for I intervals
in(F=V) Initial value of fluent F =V at time 0
hoA(F=V,T) Value of fluent F holds at V at time T
hoF(F=V,I) Value V of fluent F holds for I intervals
inA(F=V,T) Fluent F with value V initiated at time T
tA(F=V,T) Fluent F with value V terminated at time T

consider the corresponding µBs assertions hard in that they
must hold. The others can be considered soft with a suitably
assigned weight that reflects their importance. Let Sk denote
the soft assertions for driving behavior k. We define weight
as wik for each member i of the set Sk. Then, the driving
behavior k will be recognized as (a) all hard assertions (µBs)
holding and (b)

∑
i∈Sk

wik >Wk for some threshold Wk. Note
that the weights need not be static but depend on various
spatiotemporal factors and context (e.g., day vs. night time,
roads with different speed limits, etc.) A weight change would
require pausing all current condition evaluations, changing all
weights that need to be changed simultaneously, and then
restarting the evaluation. To handle hard/soft conditions, we
can use an extension to the Boolean Satisfiability problem
known as Weighted Partial Maxsat (WPM2). In WPM2, each
clause is designated as either hard or soft with a given weight.
We then have an optimization problem to find an assignment
that satisfies all hard clauses and minimizes the total weight
of soft clauses. The SAT core that the WPM2 solver returned
confirms the existence of driving behavior.

E. Defining Events and Fluents in RTEC

The RTEC tool receives input as Event Calculus (EC)
predicates representing time-stamped microbehaviors detected
on individual video frames or the recorded in-vehicular param-
eters as shown in Fig 1. µBs such as acceleration, braking,
lane change to the left or right, etc., are represented as
events in EC that are defined along with their associated
timestamps, which indicate the point in time at which the
activity occurred. The hA predicate establishes this type of
input. For instance, hA(hardBreaking(id6, 60) indi-
cates that an object(id6) engaged in hard or sudden braking
at video frame 60, which is determined by comparing the
deceleration value going beyond a predefined threshold. Some
of the microbehaviors are represented as fluents in the EC. We
use the inA and tA predicates for expressing the conditions
in which these fluents initiate and terminate a specific driving
behavior described above.

The µBs represented as EC events are defined with hF
predicate, which can also compute the associated inter-
vals. For example, hF(laneDrifting(id3) = true,
[(0, 60),(210, 280 )] indicates that object3 was not
keeping the center of the lane during the intervals (0, 60) and
(210, 280). A few examples of events and fluents as follows
:hF(proximityRight(v) = true) is a Boolean event
that indicates that vehicle v is close to the right side of the lane,
which is a combination of other related fluents and events,
hoA(normalBraking(v)= true) is fluent that indicates

that vehicle v executes normal braking) i.e., normal braking
deceleration is denoted by a constant nbd of -3 m/s2.

After defining events and fluents, we must define an initia-
tion and termination map for each defined fluent in the system,
indicating which events initiate and terminate which fluents.
The next step is to specify the relation between fluents and
events in the form of rules. For example, the initiation and
termination map for fluent overSpeed(v) is shown in the
following expression:

inA(overSpeed(v) = true, T) ← hoA(speed(v,
Sv), T) ∧ hoA(atLane1(v), T) ∧ th(os, Sv >=
os).
tA(overSpeed(v) = true, T) ← hoA(speed(v, Sv),
T) ∧ hoA(lane1(v), T) ∧ th(os, Sv < os)

Here, overSpeed, speed are input events, and Sv de-
notes the momentary speed of vehicle v, and lane1 is the
input fluent indicating the presence of the vehicle in lane1.
th is a temporal predicate indicating the numerical threshold
of driving parameters, and in this case, it represents the user-
specified speeding threshold denoted by os. The ruleset de-
fined states that overSpeed(v) is a Boolean fluent, which is
invoked when a speed event is detected. Further, the vehicle
is present in lane1, which is detected by fluent lane1, and
the momentary speed of the vehicle, Sv is more than the user-
specified speeding threshold (os). The event overSpeed(v)
is terminated when the vehicle vs. speed is smaller than the
speeding threshold. The exact definition applies when the
vehicle is located in lane2, as indicated by fluent lane2
to detect the vehicle’s speeding in lane2.

F. Characterizing Driving Behavior

As discussed in II-A, each category of driving behavior
combines different types of µBs, wherein all µBs defining
a driving behavior must be satisfied. For instance, the µBs
that represent aggressive driving behavior as RTEC events
or fluents include events such as suddenSteer, weaving, and
fluents such as laneChange, atLane1, atLane2, overSpeed,
tailgating, and hardBraking. The aggressive driving behavior
is represented as a Boolean fluent as follows:

inA(aggressiveDriving(v) = true, T) ←
hoA(atLane1(v), T) ∧ ¬ hoA(atLane2(v), T) ∧
hoA(hardBraking(v), T) ∧ hoA(laneChange(v), T)
∧ hoA(overSpeed(v), T) ∧ hA(weaving(v), T) ∧
hA(suddenSteer(v), T) ∧ ¬ hA(safeDriving(v),
T) ∧ ¬ hA(distractedDriving(v), T)

Similarly, distracted driving behavior is a Boolean fluent
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defined as a conjunction of events like laneDrifting, straddling,
and fluents like laneChange, atLane1, atLane2, slowSpeed, and
normalBraking.

To express the dependencies when modeling the driving
behavior, we define derived events, i.e., the events that occur
due to the change in state or value of another fluent and/or
the occurrence of another event (e.g., the effect of normal
or harsh braking on a vehicle’s speed). These events indicate
when specific actions occur in the traffic due to a combination
of particular conditions. If R denotes the rules passed to
the WPM2 solver before invoking the WPM2 solver, we
find relevant rules corresponding to derived events based on
current ongoing events. We identify the rules or relations
R’⊆R that lead to derived events based on the current events,
either directly or indirectly. The dependency is expressed
via a dependency graph G, where the vertices denote the
rules/relations, and the (directed) edges denote the dependency
between them. Finally, the rules R’ expressed in Conjunctive
Normal Form (CNF) are passed on to a WPM2 solver [17].

III. EXPERIMENTAL EVALUATION

In this section, we evaluate our framework on our collected
PiCarX dataset. The following metrics determine the effective-
ness of our framework: (a) the accuracy and (b) the percentage
of errors in driving behavior recognition. The experiments
were performed on a computer with Intel(R) Core(TM) i7-
7700 CPU @ 3.60 GHz, 32 GB RAM, and 1 TB SSD.

A. Modeling Vehicular Driving

The vehicular traffic on a roadway has been characterized
by numerous models starting with the early 1950s. The models
can be microscopic (i.e., model the behavior of each vehicle)
or macroscopic (i.e., model the behavior of the traffic as a
whole). Numerous microscopic (or “car-following”) models
exist, which are reviewed in a recent article [18] that also
examines the incorporation of human factors into these mod-
els. Most models are continuous time, continuous space type,
and for a single lane, express acceleration of a vehicle as a
function of its current speed, distance to and speed of the
next vehicle (and sometimes the previous vehicle), etc. Most
models also introduce random slowdowns to model human
behavior and break the strict vehicle-following behavior. Gen-
erally, lane change behavior is tacked on to the single-lane
models with rules concerning when lane change can occur;
however, such models quickly become very difficult to analyze
mathematically.

In our implementation, we used the so-called Cellular
Automaton (CA) model [19], simplifying the introduction of
complex rules and simulation implementation by discretizing
time and space. A roadway is seen as a sequence of fixed-
sized cells in the CA model. At any point in time, a cell could
be empty or occupied. That is, a cell can be occupied by only
one vehicle, although it is possible to model large vehicles that
occupy multiple consecutive cells. In each time step, a vehicle
may move over some integral number of cells depending on
its speed and the availability of the cells ahead. The CA model
makes it easy to introduce complex rules that account for

Table III: Statistics of Datasets Used

Data Collected Behavior #Samples

Road-Side Camera
Video Data (PicarX)

Safe 410
Distracted 340
Aggressive 300

In-Vehicular
Data (PicarX)

Safe 125
Distracted 115
Aggressive 110

TU-DAT Dataset
Safe 1200
Distracted 720
Aggressive 960

various situations, including the presence of signals or other
traffic control mechanisms. Complex lane change rules can
also be coded, such as a lane change decision based on the
number of free cells ahead and behind in both the source and
target lanes. It is typical to assume that a lane change always
occurs in a single step, and the discrete model is well suited
for this kind of discontinuous change. CA model makes it easy
to provide various forms of driving personalities to a vehicle
in terms of the vehicle following, lane change, safe/unsafe
vehicle position in a cell, etc.

B. Experimental Setup and Dataset Collection

One significant difficulty in conducting this work was the
scarcity of real datasets that provide the vehicular motion
parameters and the external videos we can analyze.

This paper can be considered a proof of concept (PoC)
of characterizing the vehicular behavior remotely and non-
intrusively without any involvement of the vehicle/driver or
deployment of any further instrumentation in the vehicles. In
particular, this paper aims to study how accurately this can be
done by comparing it against the ground truth. Unfortunately,
conducting such a study with actual vehicles on the road
is impossible because of safety concerns since we need the
vehicles to perform unsafe maneuvers. Also, to compare the
video monitoring results against the ground truth, we must
tap into the Onboard Diagnosis (OBD) systems and obtain
detailed vehicular information.

In order to get around these difficulties, we set up an
entire infrastructure using the automated toy cars, known as
“PiCarXs” [20] in an indoor basement environment. Each
PiCarX carries a raspberry pi board for programmatically
controlling the car. We assembled six such cars and used a
logically centralized controller to independently control each
car’s behavior remotely over the WiFi link. We also set up a
“roadside” external camera to record the videos of the cars
independently and analyze those videos in real-time to deter-
mine and classify the behavior of each PiCarX. Each PiCarX
used the 2-lane extension of the basic Cellular Automata (CA)
car-following model [21] and further updated the model to
introduce different driving behaviors. The software control of
the vehicles can read their current speed and other parameters
via appropriate sensors. This PicarX is equipped with speed
sensors, acceleration sensors, heading sensors, proximity sen-
sors, and a lane detection camera. These sensors are utilized to
record ”only” the ground truth values necessary for validation
with the proposed roadside camera framework. We analyze the
driving behavior for both in-vehicle sensing units and roadside
camera units using a mixture of CNN models and logic-based
behavior analysis. Finally, we validate our claim of analyzing
driving behavior “only” from the roadside units by correlating
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the in-vehicle data and the roadside data.
We captured High Definition Video Streams (HDVS) at 30

FPS with PicarX cars imitating different driving behavioral
patterns on the road as discussed in section II-A. By varying
speed limits, we also capture the driving traffic patterns on
different road types, such as highways versus local roads.
Along with capturing the video streams, we also record the
eight in-vehicular driving parameters from all six robot cars,
including vehicle orientation, acceleration, deceleration, brak-
ing, steering angle, lateral position, and lane change maneuvers
to the left and right lanes.

Fig. 2(a) shows the side view of PicarX used in the
experiments, respectively. The experimental setup is shown in
Fig. 2(b) and shows two distinct lanes with a single-direction
traffic flow and detection of Picars. We use a tripod and Sony
FDR-AX33 Camcorder to record the simulation videos.

(a) (b)

Fig. 2: (a) Side View of PiCarX, (b) PicarX detection and tracking.

We conducted five video simulations for our controlled
environment, with each video being around 2-3 minutes long
and averaging around 27,000 video frames. In addition, to
simulate the in-vehicle framework as discussed in section II,
we have approximately 27000 seconds of time-series data for
all required in-vehicle driving parameters as discussed above.

In addition to the simulated videos, we select approximately
48 real-world traffic videos from our other dataset, TU DAT
dataset, to evaluate the effectiveness of our proposed work.
TU DAT dataset was used in our previous work [22] to predict
and resolve anomalous situations in CCTV traffic videos,
which contain a diverse collection of accident videos collected
in challenging environments. Table III shows the details of the
data collected and the number of samples.

C. Implementation of Cellular Automata (CA) Model

We implement the CA car-following model in each PiCarX
and then extend the model to implement different driving
behaviors. A classical CA model is a uniform lattice of
cells representing an identical finite automaton with a state
and a transition function; each cell takes its state and the
states of a set of neighboring cells defined by a time and
space-invariant geometrical pattern. Starting with an initial
condition, the CA evolves by activating all transition functions
simultaneously and sequentially. We use a generic, multi-
layered, and complete cellular automaton simulation engine
in Python called “Cellular Automata General Environment”
(CAGE) [23]. The transition rules in CAGE can be specified
at different spatial levels and can change as a function of
space and time, making it suitable for use alongside a logical

reasoning tool.
In our two-lane experimental setup, we implement abstrac-

tions of the CA model, road topology, and neighborhood in-
formation in CAGE to represent the various driving behaviors
and a two-lane car-following model. An address in CAGE is
a tuple of one or more integers representing the location of a
cell within a given topology. Topologies determine the arrange-
ments of cells in a network, and neighborhoods encapsulate the
translation of addresses to a list of their neighbors, considering
the topology they are connected with. For our experiments, we
implemented a line map topology with a radial neighborhood
for each lane having a total of 35 cells.

D. PicarX Object Detection

As discussed in II-C, the roadside camera or RSUs use
YLLO-based object detection and tracking framework and a
logical-reasoning-based method to classify the driving behav-
ior into one of three categories. The YLLO running on the
cameras must be able to detect and classify the robot cars
since we use robot cars to simulate road traffic of different
driving behaviors. To train YLLO to recognize the robot cars,
we constructed our training and testing set by selecting positive
samples from the recorded videos. For negative samples, we
have used the frames from our toy car experiment videos in
our previous work [13]. Overall we have a total of 18,550
samples used to train the model. To reduce the workload
of annotating the dataset, we have used an auto annotation
tool [24], which is based on a semi-supervised architecture,
where a model trained with a small amount of labeled data is
used to produce the new labels for the rest of the dataset.
Since YLLO is a CNN-based object detection model, it
requires large amounts of data. Hence, we have used various
augmentation techniques to reach sufficient data amounts,
with most augmentations occurring at run-time using Keras
built-in functions. Keras offers several techniques for online
image augmentation, meaning that the augmentation is done
as the network processes each image. Consequently, multiple
augmentations can be performed without saving each image
separately on the computer. The augmentations used were
flipping, translation, shear, and rotation. The trained model
has an overall identification accuracy of 90.11%. Fig. 2 (b)
shows the PiCarX detection and tracking results of the trained
YLLO model. Due to space limitations, the trained model’s
results are omitted from this paper.

We evaluate the performance of the proposed driving behav-
ior detection system using both roadside cameras and an in-
vehicle framework. We evaluate the classification performance
of the driving behavior using standard performance metrics
such as precision, recall, and accuracy.

E. Results and Discussion

Estimating various vehicular parameters, such as speed,
vehicle orientation, etc., forms the basis of driving behavior
analysis. For this, we first need to calibrate the camera so that
it is possible to correct the inherent perspective distortion in
the images. The perspective effect relates 3D points on the
world coordinate system to 2D pixels on the image plane
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differently. This effect assigns distinct informational contents
to different image pixels. Inverse Perspective Mapping (IPM)
aims to invert the perspective effect, thereby imposing a
uniform distribution of information across the image plane.
To map the front-view image smoothly into a bird’s-eye view
for videos captured with PicarX cars, we employ the IPM
technique.

Table IV: Performance Results using PicarX Dataset

Data
Collected

Driving
Behavior

Precision Recall Accuracy

Road-Side
Camera

Safe 100 98.78 99.52
Distracted 95.95 98.22 98.09
Aggressive 97.98 97.0 98.57

In-Vehicular
Data

Safe 100 99.2 99.71
Distracted 98.28 99.13 99.14
Aggressive 99.09 99.09 99.43

The performance of the proposed roadside camera-based
driving behavior analysis framework is evaluated by first
detecting a set of micro behaviors, which are then composed
to classify the driving behavior into safe, distracted, and
aggressive driving behaviors. We validate the proposed frame-
work against the logic-based reasoning framework operating in
individual vehicles, which provides the actual values of driving
parameters such as speed, orientation, distance from the car
in front, distance from the left or right side of the lane, etc.
Table IV shows the results, and it can be seen that the roadside
camera framework achieves an average precision and recall of
97.98% and 98.05%, respectively, and an average accuracy of
98.73% which are averaged over five runs of the experiments.
The difference between these performance metrics values and
those of the in-vehicle framework is small, ranging between
1-2 percent.

Table V: Performance Results using TU DAT (without IPM)

Dataset Driving Styles Prec. Recall Accuracy

TU-DAT
Safe 95.0 95.0 95.83
Distracted 83.5 84 91.7
Aggressive 93.75 93.75 95.8

In addition, we analyzed the errors that may arise when
characterizing driving behavior via roadside cameras. We
observed that object detection and tracking errors are approx-
imately 0.57%, and driving signal parameter estimation errors
in comparison to the ground truth values are approximately
1.33%. Errors are nearly negligible, demonstrating the effec-
tiveness of roadside camera-based driving behavior character-
ization. Based on our analysis, we conclude that the proposed
framework can be used effectively to determine a vehicle’s
non-intrusive behavior without requiring the installation of
additional sensors within the vehicles. We use land markings
and standard formulas for the calculation to measure the speed
and acceleration of PicarX vehicles from roadside cameras. In
reality, these land markings could be located near the light
poles where the roadside cameras are installed.

In addition to the recorded videos using PicarX, we have
evaluated the proposed mechanism using the TU DAT dataset.
Since this dataset is comprised of CCTV traffic videos of
anomalous situations from various parts of the world, these
cameras’ intrinsic and extrinsic parameters may be unknown
or different from one another due to mounting setups and
camera types. Therefore, individual calibration of the captured

videos is not possible. Table V shows the performance results
of the proposed roadside camera framework on TU DAT.
The average precision and recall values are 90.694%, and the
accuracy is approximately 94.5%. It is important to note that
the worse accuracy here is primarily due to lack of perspective
correction; if the camera position and angles were known, we
believe that the accuracies here would be similar to those
obtained using PiCarX. The datasets used in this paper are
made available for research use and can be found in GitHub1.

1) Comparison with Machine Learning (ML) baseline models

We compare the performance of our proposed Roadside
camera framework with existing Machine Learning models as
shown in Fig. 3(a) where the x-axis shows the ML models used
for comparison and the y-axis shows accuracy. We include
different classifiers for comparisons like Decision Tree (DT),
Support Vector Machine (SVM), Naı̈ve Bayes (NB), Random
Forest (RF), and Bagging Classifier (BC). Simple kinematic
parameters like each vehicle’s relative speed, acceleration,
orientation angle, distance between vehicles, etc., and the
micro behaviors collected for each frame are the inputs to
these ML models. These collected data are sampled every five
seconds and labeled into one of the three categories of driving
behavior. We observe that the ensemble learning-based models
are showing better results because they aggregate results
of individual weak classifiers based on different strategies,
and our logical reasoning-based method outperforms the ML
baseline models.

2) Comparison with time-series baseline models

To show the effectiveness of our proposed roadside camera
and in-vehicular framework, we compare them with several
baselines that work with multivariate time series classification
using sktime library [25] as shown in Fig. 3(b). We train
the following time-series classifier models, Supervised Time
Series Forest Classifier (STSF), Time Series Forest Classifier
(TSFC), Time Series Support Vector Classifier (TSSVC), Ran-
dom Interval Spectral Ensemble (RISE), Ensemble of Bag of
Symbolic Fourier Approximation Symbols (BOSS). As shown
in Fig 3 (b), our proposed roadside camera framework achieves
better accuracy than the above-mentioned time-series models.

3) Comparison with state-of-the-art Deep Learning (DL)
baseline models

We compare our proposed framework with three other ex-
isting driving behavior classification models proposed in [26]–
[28], and the performance results are shown in Fig 3(c). The
authors in [26] have used a simple Recurrent Neural Network
(RNN) to detect seven types of driving events, using data
collected from an accelerometer sensor that can be found in
an Android smartphone. Reference [28] is a 2D CNN model
for analyzing driver behavior based on vehicle signals during
driving. The recurrence plot technique converts the driving
signals, including acceleration, gravity, throttle, speed, and
RPM, to the images, which are then fed to a CNN to classify
the image into five driving styles. In [27], the authors have

1https://github.com/pavana27/Driving-Behavior.git
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(a) (b) (c)

Fig. 3: Comparison of Accuracy of proposed Roadside camera framework to (a) ML classifier models, (b) Time-series classifier models, and (c) State-of-art
DL models.

classified driving behaviors through smartphone raw sensor
data which are used as input to stacked Long Short Term
Memory (LSTMs).

It can be observed from the results in Fig. 3(a) and (c)
that DL-based approaches work better than classical ML ap-
proaches since they are capable of handling sequential data and
capturing temporal dependencies existing in data. In contrast,
our proposed model, which combines DL and a spatiotemporal
logical reasoning-based approach, captures driving-related µBs
with the highest accuracy compared to ML, DL, and time-
series models. The accuracy of the in-vehicular framework
is nearly identical to that of the roadside camera framework,
as shown in Table IV compared to ML, DL, and time-series
models. And therefore, these results are omitted from the
paper.

4) Running Time Comparison

Fig. 4(a) compares the inference time of our framework
against DL-based methods considered in section III-E3. For
our framework, the reported time includes YLLO-based ob-
ject detection, estimation of their kinematic parameters, and
reasoning to determine µBs and final classification. For DL
models, it is inference time for classification. It is seen that
our inference time is the lowest. Though not reported, our
mechanism would not incur additional training time beyond
the image recognition tasks. The time required by DL models
to classify driving behavior is proportional to the number of
layers and the size of the model. Since the DL models must
learn the µBs, they must be deeper. However, our proposed
framework uses DL solely for object detection and does not
need to learn the µBs, thereby maintaining a decent inference
time to characterize the driving behavior. The average time
taken by our framework depends on how complex the driving
behavior is and to recognize the safe, distracted, and aggressive
driving behavior is 580, 610, and 720 ms, respectively.

5) Prediction of Microbehaviors

As per Section II-A, the classification of driving behavior
in this study is a combination of µBs that comprise road
traffic parameters such as speed, distance to the car in front,
braking acceleration, etc. In the context of the Advanced
Traffic Management System (ATMS), precisely predicting
these traffic parameters becomes increasingly crucial. Using
forecasted data, such as a reduction in speed on the route
ahead, travelers can reroute to save time. Many approaches

(a) (b)

Fig. 4: (a) Average Running Time Comparison, (b)VAR results - Forecast vs.
Actual.

adopt a black-box approach to traffic prediction, e.g., principal
component analysis-based techniques and neural network-
based techniques [29].

We utilize a classic statistical model, Vector Auto Regres-
sion (VAR) [30], to predict the aforementioned µBs and traffic
parameters. The VAR model can capture dynamic interactions
between multiple interrelated time series data and is used
to predict the parameters based on their past values and
the parameters collected along with them. In this study, the
VAR is trained on the most recent measurements and then
periodically retrained in the same manner, i,e., at any time t,
the model is trained based on the past observations between
t - W and t - 1 where W is the training window length. W
is determined heuristically through cross-validation using the
training dataset, which is 30 seconds of the training window.
This training window length minimizes the Mean-Absolute-
Percentage-Error (MAPE) of point predictions, the cost func-
tion used to evaluate the predictors’ estimation. Figure. 4 (b)
shows the plot of actual vs. forecast speed values with a MAPE
of 3.8% where the x-axis shows the time steps and the y-axis
shows the speed values given in m/s. The trained VAR model
provides a better estimate of future µBs and related traffic
parameters; however, due to space constraints, the remaining
results of the trained VAR model are omitted from this paper.

6) Contribution of Microbehaviors

Table VI: Impact µBs on Driving behavior

Micro Behaviors Aggr. Distr.
µwv : Weaving 0.8 0.71
µss: Sudden Steer 0.71 N/A
µhb: Hard Braking 0.81 N/A
µld: Lane Drift 0.72 0.75
µst: Straddling 0.85 0.72
µos: Overspeeding 0.76 N/A
µtg : Tailgating 0.71 0.84
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Since the contribution of various µBs to the overall driving
classification varies, their improvement will also have varying
impacts. To evaluate this sensitivity, we considered a scenario
where the drivers are asked to change a specific µB associated
with aggressive and distracted driving, and they comply 50%
of the time. Fig. VI reports the relative number of instances
where the driving behavior was aggressive or distracted with
and without the feedback. It is seen that keeping to the right or
left side of the lane is the most significant µB for aggressive
driving, but others are not far behind. For distracted driving,
we see that driving too close to the next vehicle is the dominant
behavior, but others are also significant.

Each row in this table represents the situation where the
driver is informed about its undesired µB, and as a result, the
driver reduces that behavior by 50%. (This is done one at a
time for each row, not cumulatively). The columns show the
aggressive and distracted driving occurrences, including the
µB. The reported quantity is the ratio of the instances after
and before the feedback and thus shows the impact of the feed-
back. The Not Applicable (N/A) reference indicates that the
corresponding µB is not considered when classifying a driving
behavior as aggressive or distracted. The table demonstrates
that the most effective µB improvements for aggressive and
distracted driving are speed control and maintaining the center
of the lane. Thus, such an analysis can tell us the most effective
feedback for manual or automated vehicles.

IV. CONCLUSIONS AND DISCUSSION

In this paper, we demonstrate a proof of concept for char-
acterizing vehicular behavior using only the roadside cameras
of the ITS system. The essential advantage of this method
is that it can be implemented in the roadside infrastructure
transparently and inexpensively and can have a global view of
each vehicle’s behavior without any involvement of or aware-
ness by the individual vehicles or driving. The monitoring can
be used for advising or alerting the driver and for improving
the signage on the road that warns the drivers or is used
the change the requirements (e.g., speed limit, lane following
requirements, traffic control options, etc.).

The work presented here can be extended in three ways: (a)
Fusing views from multiple cameras to cover areas that cannot
be covered well by a single camera and tracking each vehicle
individually through its features (color, shape, size, etc.), (b)
Determining what feedback to provide to drivers, how, and
how often to avoid distraction and enhance compliance, and
(c) Considering more general environments, such as those with
more than two lanes, bi-directional traffic, traffic signals, sharp
curves, poor road conditions, etc.
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