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Abstract—Large-scale IoT systems are likely to involve mul-
tiple subsystems deployed and operated by different “parties”,
which must collaborate to ensure that their operational rules
do not conflict. We codify the smooth functioning of the entire
system through a set of “safety properties” that must be enforced
collaboratively. However, this requires cross-party access to
the sensors/actuators state and the ability to request remote
actuations. In this paper, we define an access control architecture
for such situations where we distinguish between the static
authorization problem that selects parties tasked with safety
property enforcement and the dynamic (run-time) control over
accesses. This results in a unique enforcer selection problem
for which we develop efficient algorithms and quantify their
performance through a comprehensive emulation of an extensive
smart home. We also show that the additional cost of granting
access rights to the parties is quite small in a medium-size
emulated multiparty IoT environment.

Index Terms—Access control, multi-party IoT system, safety
properties, combinatorial optimization

I. INTRODUCTION

IoT deployments continue to accelerate worldwide for

various applications, particularly the multifaceted smart city

applications. Most of such deployments invariably consist of

multiple subsystems, each controlling a different aspect of

the system. For example, a smart building would include

subsystems focused on smart lighting, climate control, surveil-

lance, fire management, etc. These subsystems are likely to

be designed/deployed by different vendors and managed by

various administrators, referred to as “parties”. Consequently,

their operational rules (ORs) are developed independently

and may primarily concern only the sensors/actuators of the

subsystem (though we do allow for cross-party ORs). Thus

these subsystems may conflict when operated in a shared

environment.

In [1], we have explored such inter-party conflict detection

and resolution. The approach is based on defining a set of

“Safety Properties” (SPs), again expressed in the same way

as ORs, except that these are now requirements for acceptable

collective behavior. The SPs necessarily involve some cross-

party aspect since we can assume that any intra-party con-

flicts have already been resolved. The conflict detection and

resolution are then reduced to checking for conflicts between

ORs and SPs and enforcement or suitable dynamic alteration

of ORs to avoid the conflicts. Although the inherent conflicts

between ORs and SPs can be detected statically, much of the

conflict detection and resolution depends on the context and

thus needs to be done at run-time.

Our work in [1] assumed that any accesses needed to

evaluate ORs and SPs (which would require the current state of

sensors and actuators) and any resolution actions (which would

require sending appropriate actuation command to a controller)

could be done freely since we did not consider any access

restrictions. This is undesirable even when assuming that the

parties are mutually trusting and non-malicious; as we do, a

successful attacker can get free access to the entire system.

This motivates us to consider the issue of accessibility driven

by the principle of least privilege. In this paper, we define an

architecture that separates authorization (i.e., selection of the

most suitable party to enforce each SP, which is done rather

statically) and the run-time access management. We develop

algorithms for each and evaluate them comprehensively by

emulating a large smart-home environment. To the best of our
knowledge, access control in the context of dynamic conflict
detection in multiparty IoT systems has not been considered
in the literature.

The rest of the paper is organized as follows. Section II dis-

cusses the related work and highlights specific contributions.

Section III provides the necessary background and describes

the two sides of the problem: namely authorization (determin-

ing SP enforcers) and run-time access control and describes

our overall architecture. The next two sections (IV and V)

then discuss the enforcer selection algorithms and section VI

focuses on the run-time access management. Section VII

evaluates the efficiency of our approach. Finally, section VIII

then concludes the discussion.

II. RELATED WORK AND OUR CONTRIBUTIONS

A. Related works and their limitations

Access control is a very well studied topic with many

well-known approaches, including Role-Based Access Control

(RBAC) [2] which controls access based on the role of

the individual, Attribute-Based Access Control (ABAC) [3]

which controls access based on the attributes of the users and

objects, and Capability-based Access Control (CAC) [4] which

provides an unforgeable ticket for access to the authorized

entities. However, traditional access control methods are inad-

equate in large-scale multi-party IoT systems due to both the

complexity of ABAC and RBAC models [5] and the dynamic

and context-specific nature of the access control problem. OnThis research was supported by NSF grant CNS-1527346.
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the other hand, CAC models have limitations like lack of

context awareness, access rights propagation, revocation, etc

Ouaddah et al. [6] analyze various access control models

for IoT systems. The article discusses the advantages and

disadvantages of different access control models and protocols

in an IoT environment. Pal, et.al. [7] present a policy-based

approach in the context of IoT for providing fine-grained

access for authorized users to services while protecting valu-

able resources from unauthorized access. An attribute-based

access control mechanism is presented in [8] that can enforce

access control based on the attributes of the devices, users,

and environment context. However, these mechanisms do not

consider dynamic context based access control needed in a

multiparty IoT system.

Recently, the Blockchain technology has been examined

extensively to manage cooperation among non-trusting parties.

In [9] the authors present FairAccess, a decentralized access

control framework for IoT based on blockchain. Other similar

studies on access control models using blockchain are reported

in [10]–[14]. However, these approaches achieve scalability by

distributing access permissions via a hub acting as a manager,

posing a security risk if the manager is malicious. Additionally,

blockchain mechanisms proposed in [9] do not support self-

enforced access control policies. The use of Blockchain is not

only expensive but also has several downsides. It requires

broad consensus, meaning disclosure of a lot of data, and

it does nothing about the publication of incorrect data (e.g.,

incorrect sensor values) unless that data can be verified by

independent means (e.g., by giving all parties isolated mech-

anisms to access each sensor’s value). But even then, if the

sensor is faulty or otherwise compromised, Blockchain cannot

address that.

B. Proposed Access Control Architecture

We split the access control problem into two parts: (a)

Authorization, which chooses, for each SP, which party is

best suited to do the enforcement, and (b) Real-time Access
Control, which must be applied during SP enforcement at run-

time. Note that the authorization (and hence enforcer selection)

is essentially static, although it can be redone if needed.

Accordingly, authorization relates to the more static aspects

of the access, including (a) Communications difficulty (e.g.,

intermediate hops, provisioning cost, etc.), (b) Sensor/actuator

state sharing risk as perceived by the target party. We capture

these aspects via a “cost” factor and regard it as only a party-

to-party cost for simplicity. We specifically avoid defining this

cost in dynamic terms (e.g., number of bytes of data) since

the focus here is not performance but rather data exposure

across parties or the difficulty of communication. In particular,

if a party needs to enforce two different SPs that require a

state of the same remote sensor/actuator, the cost needs to be

considered only once from an authorization perspective, even

though these SPs will be enforced as and when necessary at

run-time.

Since a SP involves attributes (defined as sensor/actuator

values and actuation operations) from two or more parties,

there is no “natural” enforcer for a SP. Overall, we want to

distribute the enforcement responsibilities among parties to

minimize the “cost” (which includes risk, among other things)

of non-local attribute access and avoid too much concentration

in one party (which is both risky and may cause performance

bottleneck). In general, the SPs may range in importance from

critical to merely desirable so that the least the important ones

may even be ignored if they require too much work.

Following the selection of enforcers, we have the access

control problem, which determines when under what con-

ditions or how long the actual access is provided to the

authorized parties.

Fig. 1: Authorization and Access Control Model

We assume that all subsystems have physical interconnectiv-

ity through which any pair of them can communicate. We can

assume a standard web-services interface for each controller

through which they can discover each other and then commu-

nicate [15], [16]. To protect the system from external security

threats, we assume standard cryptographic mechanisms such as

each controller using PKI to authenticate other controllers and

Diffie-Hellman key exchange for establishing session keys. It

should be adequate for a controller to verify a standard group

key for all its devices [17], but we do not address that part

here. We need to provide appropriate authorization to enforce

the SPs for inter-controller interaction. We assume that the

ORs and SPs are themselves not considered sensitive and thus

can be pooled and operated upon at a single node, hereafter

called the root node. This could be either one of the controllers

or yet another trusted node.

Fig. 1 shows the overall structure of our work. In phase1

(authorization), the root node executes the suitable algorithm

from section V by using as inputs the details of each subsystem

(party) and the SPs to determine the enforcing party for each

SP. Next, in phase2 (access control), discussed in section VI,

the root node prepares suitable attribute lists along with “ca-

pabilities” (or cryptographically signed access specifications)

and distributes them to both SP enforcers and attribute owners.

Phase3 then uses these for actual access control.

C. Our contributions

As discussed in section II-B, the authorization cost has a
unique property in that the cost of an attribute is counted only
once even if multiple SPs enforced by a party need it. This

property sets our problem apart from the very well-studied

assignment problems in operations research. To the best of
our knowledge, such a problem has not been considered in
the past in the literature. Since the problem is easily shown

to be NP-hard, we devise two different algorithms, one based

on a step-by-step assignment of safety properties to parties
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and the other based on recursive partitioning. We also address

the problem of distributing the access rights, verifying them,

and ensuring that authorized enforcers get limited ability to

request actuations.

As stated above, we evaluated our solutions comprehen-

sively using the Home-IO simulator [18], whose extensive

physics modeling capabilities of the environment make it

much more extensive and flexible than simple experiments

that one could conduct with actual devices. The experimental

evaluation indicates that both approaches rapidly converge

to the optimal solution, but partitioning is better. We also

conducted experiments to request/grant the needed access

rights and have shown that the cost is rather modest.

In this paper, we have assumed that the parties in our

application are cooperative and non-malicious. We believe that

is a proper assumption in a setting where the subsystems are

deployed and operated by reputable companies/organizations

along with severe legal and market-related costs of delib-

erate misbehavior. Dealing with cooperation in an arbitrary

malicious environment is generally infeasible or expensive.

For example, the Byzantine agreement [19] concerns only

broadcast consistency, assumes only a limited number of

dishonest parties, and still is very expensive.

III. ACCESS CONTROL IN IOT SYSTEMS

A. Multiparty Operation and Conflicts

Fig. 2: Illustration of a multi-party IoT
system

As mentioned

above, a large-scale

IoT system may have

multiple subsystems,

each with one or

more controllers.

These controllers

can become

interdependent

for several reasons,

as discussed in [20]

and thus may conflict. Fig. 2 illustrates some of the access

control issues and conflicts with a simple example of two IoT

subsystems deployed and operated by two different parties.

Controller 1 owns sensor 1,2,3 and actuator 1, Controller 2

owns sensor 4,5,6 and actuator 2. These relationships are

shown using solid lines. As shown by dotted lines, some of

the operational rules also need nonlocal sensor values. The

two subsystems operate in two adjacent and overlapping areas

called areas1 and 2. When a single-step greedy algorithm

is used to solve this simple example, the assignment cost

slightly differs compared to greedy used in combination with

some additional heuristics.

For example, suppose that in Fig. 2, the two systems are

fire management (controller 1) and climate control (controller

2), Sensor3 is the smoke detector for the entire space, and

Actuator2 opens/closes a window. Suppose that controller1

determines smoke and opens the window in area2, letting

cold air inside. This would cause HVAC to be triggered and

may act oppositely (i.e., run the heater). Note that in this

case, the HVAC cannot enhance its actuation condition to

suppress heating since it does not know why the temperature
dropped. Instead, if Controller 1 shares the sensor readings

with Controller 2, such an exception is not only possible but

can be incorporated as a more direct rule independent of the

temperature. Such actions do require a deep analysis of various

possibilities and their consequences. For example, it would be

inappropriate to use a rule that stops the window from opening

due to smoke if the heater is running.

IoT deployments continue to evolve over time due to phys-

ical, operational, and environmental changes. For example,

devices may fail, be taken out temporarily for maintenance,

new devices added, operational policies changed either perma-

nently or temporarily due to some event (e.g., fire), etc. This

requires the ability to rerun authorization algorithms whenever

needed, grant new authorizations, and revoke unneeded ones.

B. Operational Policies and Rules

An operational policy Pi for controller i essentially moves

the subsystem from one state to another. The policy can be

expressed as the following triple:

Pi=[prei,Ai,posti] (1)

Where prei and posti are the precondition and postcondition

assertions about the state before and after taking the stated

action Ai, the index i here emphasizes that this policy deals

only with what is visible to controller i. The pre/post con-

ditions are Boolean expressions over various state variables,

including the status of an actuator and the sensor’s values.

An operational policy can also be considered as an opera-
tional rule (OR), denoted R(o)

i , expressed in first order logic

by simply viewing it as follows:

R(o)
i =[prei&Ai =⇒ posti] (2)

As a concrete example, consider a policy that turns on cooling

when the room temperature goes above 25C. This can be

expressed as [(temp>25C & cooling=off & turnon cooler)

=⇒ cooling=on]. As another example, rule R4 in Table II can

be expressed at [Motion & luminance<B0 & turnon lights

=⇒∀ilighti=on].

C. Safety Properties

A Safety Property (SP) requires an action to be taken so

that “something bad” (which we generically call as conflict)
should not happen due to independent operation of different

subsystems. For example, the SP “if smoke detected then

open windows” intended to avoid an undesirable behavior and

may be needed since the climate control subsystem controls

the window. In contrast, smoke detection is a function of

the fire management subsystem. The SPs, like the ORs, may

involve time and event frequency (e.g., turning a device on

and off in quick succession may be undesirable). One issue

with specifying SPs explicitly is that the “bad” things need to

be anticipated in advance. In a complex system, this may be

difficult, and new problems may emerge over time either via

actual occurrence or through some prediction mechanism (e.g.,

machine learning). However, this is not a problem since the
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TABLE I: Table of notations

Notations Meaning
Stot Set of SPs (N denotes #SPs)
Ptot Set of Parties (K denotes #parties)
Cenf(s) Cost of non-enforcement for each SP s∈Stot

Cnenf(s) Cost of enforcement for each SP s∈Stot

Cauth(p,p
′) Inter-party authorization cost between parties p and p′

conflict detection/resolution in [1] and the access control are

dynamic, and the authorizations can be reassigned occasionally

as needed.

IV. DECIDING SAFETY PROPERTY ENFORCERS

A. Rule Enforcer Problem

We have a universal set of attributes denoted Atot, i.e.,

the set of state variables (or attributes) corresponding to all

the sensors and actuators in the entire system. We also have

a set of parties denoted as Ptot. Each attribute a∈Atot has

an associated owner party Pattr(a)∈ [1..K]. Similarly, let

us define the opposite function Aparty(p) that provides the

attributes owned by party p. We also have a set of safety

properties, denoted Stot. Each of these SPs involves some

subset of the attributes which we denote as Asp(s). Obviously,

∪s∈SAsp(s)⊆Atot. We denote by Penf(s)∈Ptot the “enforcer

party” that we want to select for each SP s.

For party p∈Ptot, R(a,p)∈ [0,1] denotes the access rights to

attribute a (0 means no access, 1 means access). The baseline

accessibility is given, i.e., ∀a,p, R0(a,p) has the following

accesses enabled: (a) By default, each party has access to its

attributes, i.e., R0(a,O(a))=1, and (b) R0(a,p)=1 for p �=
O(a) if an operational rule of party p requires such an access.

For all others R0(a,p)=0.

For each authorization granted to attribute a to party p,

there is a positive cost denoted as Cauth(a,p). We assume that

all SPs that already hold in the baseline scenario and do not

require any additional access rights are excluded. Thus, each

SP s∈Stot SPs does involve some cost for non-enforcement,

denoted as Cnenf(s) and enforcement, denoted, Cenf(s). The

key notations are summarized in Table I.

The problem now is to determine the weighted partial cover

S0⊂Stot with a given threshold for the total cost of the

uncovered SPs. That is, we want
∑

s∈Stot−S0
Cnenf (s)≤w0

while minimizing the total authorization cost of the attributes

in S0, i.e., the SPs that are enforced. For any s∈S0, we

need new access rights for the enforcer party Penf(s) over

attributes for which the access does not already exist, i.e.,

for all a∈Asp(s) such that R0(a,Penf(s))=0. That is, if

we define η(s) as the total cost of all attributes in SP

s that the enforcer does not initially have rights to, i.e.,

η(s)=
∑

a∈Asp(s),R0(a,Penf (s))=0Cauth(a,Penf(s)), we want to

minimize
∑

s∈S0
η(s).

B. Formulating Minimum Cost Enforcement Problem

The goal of minimum cost enforcement problem is to

partition the set of SPs Stot among the Ptot parties such

that the overall cost of nonlocal accesses is minimized. Let

xs,p denote the assignment function for SP s to party p, i.e.,

xs,p=1 party p is the enforcer of SP s, i.e, p=Penf(s). Let

Fig. 3: An Illustrative Example

X denote the enforcement assignment matrix x(s,p)s. Thus

our assignment problem can be stated as:

Minimize Ctot(X)
Subject to

∑N
p=1X(s,p)=1, ∀ s=1,..,N

xs,p∈(0,1)∀s=1,..,N,∀p=1,..,K (3)

The constraint above states that each SP will be assigned

only to a party. Now if SP s is assigned to party p, the attribute

set X(s,p) will be local and thus have zero (or small) cost,

whereas everything else will have a nonzero cost. Furthermore,

if another SP s′ is also assigned to party p, the cost of

common non-local attributes accessed by s and s′ should be

counted only once. That is, if X(s,p)=X(s′,p)=1 the costs

of attributes Asp(s)∪Asp(s
′) should be counted only once.

Now the set Acom(p,p′)=∪N
s=1X(s,p)[Aparty(p

′)∩
Asp(s)] represents all the attributes that are common parties

p and p′, i.e., in party p′ but also accessed by SP’s assigned

to party p. The total cost then is the sum of costs of the

elements of Acom(p,p′) times the inter party authorization

cost denoted by Cauth(p,p
′) as shown in the equation below.

Ctot(p,p
′)=

∑

∀a∈Acom(p,p′)

c(a)∗Cauth(p,p
′)

(4)

Then the objective function corresponding

to a given assignment matrix X is given by

Ctot(X)=
∑K

p=1

∑K
p′=1,p′ �=pCtot(p,p

′). This function is

being minimized above. The resulting optimal X(s,p) is

precisely the enforcer list, i.e., X(s,p)=1 iff p=Penf(s).

C. Complexity of the Enforcement Algorithm

The classical assignment problems are NP-hard, and so

is ours. However, as explained in section II-C, ours is not

a classical assignment problem because of the unique cost

structure that we need to assume to deal with accessibility.

This requires developing new efficient heuristic algorithms that

we develop in the next section.

Because of this unique cost structure, a simple greedy

approach may not provide good results. A simple example

illustrates this in Fig. 3, which is later used as a running

example to illustrate our algorithms in the next section as well.

In this example, with three parties <P1,P2,P3> and three SPs

<SP1,SP2,SP3>. The figure depicts the attributes owned by

parties P1, P2, and P3, and the attributes SPs SP1, SP2, AND

SP3 require access. When a single-step greedy algorithm is

used to solve this simple example, the assignment cost slightly
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differs compared to greedy used in combination with some

additional heuristics. The detailed steps in the calculation of

cost are shown in section VII-C.

V. ALGORITHMS FOR ENFORCEMENT PROBLEM

A. Greedy+Movement+Deletion (GMD) Approach

Since the cost of the assignment is unknown in our problem

until all the SPs have been assigned to the parties, we consider

a greedy assignment followed by a few rounds of movement

and/or deletion.

The initial greedy assignment assigns each SP to the party in

the order of the maximum local attributes covered by the party.

If multiple parties have the same number of local attributes for

SP, the party ID is used to break the tie. Following this greedy

assignment of SPs to parties, the next step is to identify a SP

that can be reassigned to a different party to reduce the overall

cost, which is calculated using equation (4). We perform a

lookup of all SPs associated with each party that requires

access to non-local attributes. We consider all K−1 parties for

reassignment for each such SP, excluding its original enforcer,

to reduce the overall cost. Given that the parties incur an inter-

party access cost reassigning an SP to another party should

account for this cost and prefer the party with the lowest cost

compared to the original enforcer party. Given that it is not

always possible to satisfy SPs while loosening access controls,

or vice versa, a balance between SPs and access restrictions

may be required. As noted earlier, certain non-critical/optional

SPs may have higher cost of enforcement than risk of ignoring

them; these are removed in the last step of our algorithm.

With this, we develop a heuristic algorithm named Greedy

Movement Deletion (GMD) as shown in Algorithm 1, which

is motivated by our earlier work on access control in collabo-

rative multiparty databases in [21]. The first function employs

greedy heuristics that map each s to a party p with maximum

local attributes and outputs the enforcers(parties) for each s
and the total cost of the assignment. The primary approach

is to start with the local attributes contained in all parties

and attributes in all SPs. This step is done by checking the

overlapping of attributes in each SP with the local attribute

set of each party. Then for each SP, we determine the number

of times it appears in a local attribute set of every party and

assigns it to the party with the highest count (line 6). This

process is repeated for all the SPs, and the cost of the entire

assignment is calculated using Equation. 4 (Line 7 to 8).

The second function takes the set of enforcers obtained

via greedy assignment and counts the number of non-local

attributes each s should access before evaluating reassignment.

The count of non-local attributes is calculated for each s, and

its enforcer party p, and s for movement is determined for

those that need access to at least one non-local attribute (Line

15,16). Once the SPs to be moved are decided, we consider all

the K−1 possible parties (excluding the original enforcer) for

reassignment and obtain the new set of enforcers by invoking

the greedy assignment function for each SP in the new list X
(line 19). The function returns a new group of enforcers (E′)
and the improved cost (COST ′).

Algorithm 1 GMD: Greedy Movement Deletion Algorithm

1: void GMD Algorithm() //
2: Stot is set of SPs, Ptot is set of Parties
3: procedure Greedy Assignment(Stot,Ptot):
4: E= [] // Set of enforcers
5: COST = 0 // Cost of the entire assignment
6: pmax,s ← getMaxAttributes(Stot,Ptot) /* assigns each SP s to a

party with maximum local attributes (pmax) */
7: E ← Map(pmax,s)
8: Calculate the COST of the assignment Equation. 4
9: return E,COST

10: procedure Movement(E,COST ):
11: E′= [] // New Set of enforcers
12: COST ′ = 0 // Cost of the new assignment
13: M= [] // Set of SPs to be reassigned/moved
14: for each entry [p,s] in E do
15: s′ ← getNonLocalAttributes(p,s) /* determine SP s that require at

least one non-local attribute access from its enforcer party p */
16: M = M ∪{s′};
17: if q is enforcer(s′) then
18: K

′ = Ptot \ q
19: E′,COST ′ = Greedy Assignment(X ,K′)
20: return E′,COST ′
21: procedure Deletion():
22: delete(s where Cenf(s)>Cnenf(s)); // sp is not a critical
23: Calculate the COST using the Equation. 4
24: return COST

The third function considers removing any safety properties

to reduce the total cost further. Each safety property s has a

cost associated with enforcing and not enforcing it, which is

determined by the significance of the s. After finalizing the set

of enforcers by the Movement function; if the cost of enforcing

a s is greater than the cost of not enforcing it (line 21), the

corresponding s is deleted, and the cost is recalculated without

this s resulting in the total cost (line 22).

The key quantity in the running time of the algorithm is

K, the number of parties, NAtt, the total number of attributes

across the entire subsystem, Stot is set of SPs. Therefore, the

overall worst-case complexity of the greedy algorithm we have

developed is O(K ∗N ∗NAtt).

B. Partitioning Approach

In this section, we present a recursive partitioning approach

for the problem of assigning all the SPs to the parties. For

a large-scale IoT system composed of numerous subsystems,

each with its own controller/party operating cooperatively,

we propose a modified scheme of the Kernighan-Lin algo-

rithm [22]. The proposed algorithm bisects the IoT system of

multiple parties based on the authorization cost between them.

The IoT system can be modeled as an undirected weighted

graph GI =(V,E), with vertices vk, k=1..K representing

parties and edges representing the authorization cost between

pairs of controllers/parties. The adjacency matrix W for the

graph GI contains the cost of the edges, for each wij ∈W ,

wij represents the authorization cost between a party vi and

a party vj .

The original Kernighan-Lin (KL) algorithm is an iterative

algorithm that starts with an initial bi-partition of a graph GI =
(V,E) with |V | = K, partitions V into Y and Z such that VY =
VZ , VY ∩VZ=∅ and VY ∪VZ=V . If no good initial partition

is known, the algorithm is repeated with a variety of randomly
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chosen initial partitions, and the one with the smallest edge-cut

is chosen. The algorithm searches for a subset of vertices in

every iteration such that swapping them results in the partition

with the smallest edge-cut. If such a subset is found, it is

used as the partition for the following iteration. The algorithm

repeats the procedure and terminates if it cannot discover two

subsets. The KL algorithm finds locally optimal partitions with

a good initial partition. Since we are partitioning a smaller

graph with fewer parties, the algorithm requires fewer runs to

find a good partition in a shorter amount of time.

Based on the KL algorithm, we propose a recursive parti-

tioning algorithm as presented in Algorithm 2. The algorithm

has two phases: the partitioning phase and the assigning

phase. In the partitioning phase the undirected weighted graph

GI =(V,E), the set P0=V is partitioned into two partitions

Py and Pz with minimum average edge-cut, so that two parties

in Py and Pz respectively has least inter-party authorization

cost (Cauth(p,p
′)) (Line 4). Each vertex in the resulting

partition has an associated external and internal cost which is

defined as follows: For each y∈Y , the external cost is given

by, Ey=
∑
∀v∈Z cyv which is the sum of the costs associated

with all edges connecting each vertex in Z. Similarly, the

internal cost is defined as, Iy=
∑
∀v∈Y cyv which is the sum

of the costs associated with all edges connecting each vertex

in the same partition Y . Each vertex in the partition has the D-

value, defined as the cost reductions associated with moving

a vertex which is calculated using,

Dy=Ey−Iy for any vertex y in Y (5)

The primary parameter that determines whether two vertices

y∈Y and z∈Z is swapped or not is given by Gain, gyz:

gyz=Dy+Dz−2∗cyz (6)

where gyz is the sum of the D-values of vertex Y and Z and

difference from the value multiplied by twice the cost of the

edge connecting vertex Y to vertex Z.

At Line 8, the function pick max() calculates the D-values

and chooses two vertices y and z that maximize the Gain,

gyz from the partitions Py and Pz , respectively. The vertices

with the highest gain are swapped between partitions and

marked as locked, indicating that they are not subject to further

exchanging (Line 9 and 10).

If any pair of vertices y∈Y and z∈Z is swapped, the

algorithm updates the D-values (Line 10), denoted by the

symbol D′ and calculated using

D
′
i=Dy+2ciy−2ciz, ∀i∈Y −{y}

D
′
j=Dz+2cjz−2cjy, ∀j∈Z−{z}

(7)

The swapping process is repeated until the sum of the

gain values between each pair of vertices equals zero. After

optimizing the partition, in the assigning phase by calling

function at Line 16, we divide the N SPs into resulting the

partitions by calculating the number of overlapping attributes

between SPs and the parties in the partitions, and the cost of

this assignment is calculated using Equation. 4. The process is

then repeated recursively until we reach a partition size of one

(Line 14). Then, we delete the non-critical SP and calculate

the resulting cost. (Line 15).

Algorithm 2 Partitioning Algorithm

1: The initial partition is
∏

initial={P0}, store
∏

initial, P0=V , P =P0

2: procedure compute partition(P )
3: while |P |> 1 do
4: Initially partition P into Py and Pz arbitrarily
5: repeat
6: /* Now improve the partitions */
7: compute D-values, ∀y∈Py and ∀z∈Pz using (Eqn.5)
8: (y,z)=pick max(Py ,Pz ,W ) /* Pick pair of unlocked vertices

y∈Py and z∈Pz , such that Gain, gyz in Eqn.(6) is maximized
*/

9: swap vertices(y,) between Py to Pz

10: Lock vertices y and z, store gyz , Update new D-values, ∀y∈Py

and ∀z∈Pz (Eqn.7)
11: until sum(Gain = 0);
12: Store the partition P −→{Py ,Pz}
13: assign(P )
14: Compute partition(Py) and partition(Pz),
15: delete(s where Cenf(s)>Cnenf(s)); // sp is not a critical
16: procedure assign(P )
17: for each partition p in P do
18: Assign SPs based on count of overlapping attributes and calculate

cost of assignment using (Eqn.4)

VI. DESIGNING ACCESS CONTROL INFRASTRUCTURE

The algorithms in the previous section would partition the

SPs into sets, say Si, i=1..K, where Si denotes the set of SPs

enforced by party i. (Note that some of these sets could be

null.) Following this, each enforcer and the regular party must

be provided the appropriate access lists (phase2). Next, these

lists should be used to request and enforce access control at

run-time. We discuss these in the following.

A. Constructing Enforcement Repositories

Let Si={Sij ,j=1,2,..} denote the individual SPs that

party i will enforce. Let RAij and WAij denote the set

of nonlocal read and write (actuation) attributes in SP Sij .

Then for enforcement, party i needs to obtain values of RAij

from their owner parties, evaluate Sij , and if necessary send

a request to the owner parties in WAij . This brings in three

key questions: (a) when and how often does party i evaluate

Sij , (b) when and how party i gets access to RAij and Wij ,

and (c) how is the access claim verified by the target party?

We address these questions in the following.

Since the “state” represented by RAij can change anytime,

and it is nonlocal to party i, a straight pull or push is required

to read them. We will assume a web-services-based publish-

subscribe interface for reads. Thus an attribute owner publishes

a new value whenever it changes, and the subscribers can de-

cide how to act on it. In our case, the subscription is not open;

instead, only the enforcers should be allowed to subscribe to

the attributes they need. The notion of capabilities [4] provides

a convenient mechanism for this.

The root distributes the capabilities to both the publisher and

subscriber nodes to do the appropriate checking as part of the

subscription protocol. The changed values can be delivered to

a subscriber either via a push mechanism (usually based on a

change threshold) or pulled in periodically by the subscriber.
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The pull mechanism is more straightforward but may incur

high communication costs (frequent pulls) or miss out on

events that substantially change the pulled value (infrequent

pulls). Besides, it implies permanent access granted to the

subscriber. The push mechanism amounts to a remote interrupt

delivery to each subscriber and may have scalability issues.

However, it can control (a) the change threshold for the pushes

and hence the overhead vs. accuracy tradeoff, and (b) the

accessibility itself – effectively, the subscriber has no access

until a new value is pushed.

Fig. 4: Enforcing Run-time Access Control

As for WAij , when an enforcer determines that actuation

is required, it needs to send an explicit request to the owners,

who perform the requested actuation. We again propose to

use capabilities for this so that every actuation request can be

checked. The root node again does the capability distribution.

A key advantage of the capability mechanism is that the access

rights can be revoked if enforcers are changed or are found to

be faulty/compromised. The access information is maintained

in a repository at each node as illustrated in Fig. 4 where

we arbitrarily chose 3 SPs (S2, S4, S6) and four parties as

indicated. S2/S6 are enforced by party Pi, and S4 by Pk.

Parties Pm and Pj host some of the sensors/actuators needed

for the enforcement.

B. Enforcing Run-time Access Control
As stated earlier, the root node prepares the necessary access

lists (along with capabilities) and distributes them to all the

parties for use in access control, arranging to publish the

required state data, handle subscriptions, and start the run-time

operation. As an illustration, for party Pi to enforce S2, it must

be subscriber to Pm and Pk for “main door, “patio door” and

“windows” respectively. Also, Pm and Pk must honor request

from Pi to open the “main door”, “patio door” and “window”.
One issue in the design so far is that a legitimate enforcer

will be able to make the actuation request any time, which

is risky if the enforcer gets compromised. Ideally, we want

to allow the actuation only under the precise scenario of the

enforced SP, but this is nontrivial. For example, if Pi gets only

conditional access, both Pk or Pm must have an independent

way of verifying that “fire alarm=on for >1 minute”, but

this is not possible in a model where each party “owns” its

devices. Furthermore, multiple independent access paths are

very expensive, hard to manage, and actually, increase the

attack surface of the system.

TABLE II: Operational rules for different controllers

ID Rule Description
Operational rules for Light controller

R4 The lights for any area A must be turned on when a motion is detected and
luminance value is less than a threshold (B1)

R5 The lights for any area A must be turned off after 2 minutes, when there is
no motion is detected, and luminance value is greater than or equal to the
threshold (B1)

R9 If the motion detected for any area A is more than 3 times then, user is
present in the area

R11 When the user is present in area A for more than 5 minutes then user present
mode is activated

Operational rules of Fire controller
R13 After two minutes the fire is detected, fire-alarm is turned on

R16 The doors(main door, patio) and windows must be open and unlocked until
the smoke level is less than threshold t

R18 If the room temperature is greater than or equal to 155F then sprinkler head
is activated and water pump is open

R23 Once the sprinkler is on, turn off the sprinkler after 4 to 6 minutes

Operational rules for Climate controller
R25 When the room temperature ≥ 75F then turn on cooler

R26 When the room temperature ≤ 68F then turn on heater

R32 If the room temperature is in between 66F and 71F then turn off the cooler
after 3 to 5 minutes

R35 The flood sensor is deactivated after two minutes and evaporation starts with
a constant rate of V until the water level reached zero

Operational rules for Security controller
R37 The doors(main door, patio) must be closed and locked when the door sensor

is inactive

R39 The garage door must open when motion is detected and when
valid keypad code is entered

R45 The intruder alarm should go off after 3 minutes

Operational rules for Surveillance controller
R47 For any area A, Until the user present mode is activated the security cameras

(indoor camera,outdoor camera) should record video for ‘t’ time slots

R50 The security alarm is turned off after two minutes

Instead, we exploit other physical system constraints to

limit remote actuation. At least two types of constraints can

be easily recognized in this regard. The first relates to the

time/frequency of state change requests from other parties,

such as not allowing repeated on/off or open/close requests.

The second one concerns the operational constraints of the

(local) subsystem, such as a request to open one window and

close one nearby in the context of climate control. These can

be regarded as Local Safety Properties (LSPs), i.e., safety

properties that only involve attributes of one subsystem. Recall

that we had earlier assumed that such local constraints are

always satisfied. While this is reasonable for the correct

remote actuation requests, actuation requests from a faulty

or compromised remote controller could violate the LSPs.

An efficient “what-if” analysis of LSPs before granting the

actuation request can avoid this problem. Algorithms for this

can be designed along the lines of our work in [1].

VII. EXPERIMENTAL EVALUATION

A. Smart-home emulation

To experiment with a wide variety of processes and events in

a smart home, we use a comprehensive smart home emulator

called Home-IO, built by CReSTIC laboratory [18]. The

simulator is a virtual house’s real-time simulation software

that can modify the environment and automation level.

Home-IO simulates real-time heat transfer via radiation,

convection, and conduction. Inter-air mass exchanges are

simulated. Due to temperature differences and airflow, the

temperature changes when doors and windows are opened and
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TABLE IV: Safety Properties

ID Rule Description
S1 When the sprinkler is on for three minutes, then the water valve is off

S2 When the fire alarm is on for more than 1 minute, main door, patio doors
and window are opened for 8 to 10 minutes

S3 The windows must not be unlocked and open when the heater or cooler
is on

S4 When the heater or cooler is on, the main door and patio door should not
be open for more than 5 minutes

S5 If the garage door is opened for more than 2 hours then close the
garage door

S6 During night if the fire alarm is on then turn on the lights for 3 to 4
minutes

S7 The AC and the heater must not be on at the same time

S8 All the doors and windows must be closed within 2 minutes when
user present mode must is activated

closed as in a real house. The wind helps heat transfer between

the house and the outside air. Upwind house walls react more

to heat transfer. Cloud cover reduces solar radiation. The

humidity changes the dew point, affecting how the outside air

affects the house temperature. The home has multiple rooms

with smoke and CO detectors, smart lights, window blinds,

and doors. So the house is a data source and a testing ground.

Because of all these features, we believe that the use of

Home-IO is far more powerful than a real smart home con-

troller (e.g., Samsung SmartThings [23]), where the readings

of various sensors/actuators would be either extremely limited

or artificial (e.g., pretending that there is a fire). Our control

and analysis logic was implemented in Python (32 bit) using

visual studio (version 1.46) installed on an Intel(R) Core(TM)

i7-7700 CPU@3.6 GHz, 32 GB RAM and 1 TB SSD.

Fig. 5 shows our simulated scenario using Home-IO. To

increase the complexity of the model, we consider eight

different rooms, including a kitchen, pantry, garage, and the

home’s exterior. This yields 130 IoT devices, which helps

us emulate rather complex scenarios. Operational rules for

automation of these devices are implemented as appropriate

Python routines. Fig. 6 shows the number and type of devices

in the Home-IO model.

B. Emulated IoT system in Home-IO

TABLE III: Home areas & controllers (one
party per area)

Subsystem total #areas #cntrls
type #cntrls (parties) per party

Lighting 10 2 5

Fire&safety 6 2 3

Security 10 2 5

Surveillance 12 3 4

Climate 14 (2,1) (5,4)

The emulated IoT

system comprises of

five types of con-

trollers as shown in

Table III, along with

their further division

into subsystems, each

of which is deployed

in an area of the home and controlled by a different party.

(The precise description of home areas is omitted due to lack

of space). Overall, we have 12 various parties. Fig. 6 shows

the devices owned by each type of controller. We designed

interaction between the smart devices as “routines” that may

be either user-invoked or event/time-triggered. The simulated

model can catch and respond to any concurrency conflicts and

safety property violations in real-time.

For experiment purposes, we created 50 ORs and 7 SPs, and

these rules are verified against five types of safety properties

defined in our previous work [1]. We have shown some

examples of ORs and all the SPs in the Tables II-IV. We

only list the textual version of the rules for readability and

space reasons rather than the actual LTL version used for the

implementation. As an illustration, rule R35 can be translated

to LTL using the until (U) operator as follows:
G[X2(flood sensor = activated ∧ deactivate flood sensor =⇒
flood sensor = deactivated ∧ evaporation(v) U (water level = 0)]

C. Results and Discussion

The first task in calibrating the model is to generate ORs and

SPs. We do this by a systematic substitution of devices from

a baseline configuration. For example, the Home-IO model

includes five sprinklers and five water valves, using which we

generate 25 unique combinations of SPs for SP1. Overall, our

model has 130 devices (sensors/actuators) and a total of 1323

SPs to be assigned to 12 parties. Similarly, we generate a total

of 1674 ORs.

TABLE V: Sequence of Steps in GMD algorithm

Step 1- Initial Greedy Assignment
Assignment Cost of the Assignment

SP1 ->P3 55 * 1

SP2 ->P1 40 * 2

SP3 ->P1 10 * 2

Total cost 155
Step 2 - Movement/Reassignment
Movement Total Cost

SP2 moved to P2 (55 * 1) + (40* 3) + (10 *2) = 195

SP2 moved to P3 (55 * 1) + (40* 3 + 55*2) + (10 *2) = 305

SP3 moved to P2 (55 * 1) + (40* 2) + (40 *2 + 55*2) = 285

SP3 moved to P2 (55 * 1) + (40* 2) + (10 *2) = 155

SP1 moved to P1 (40 * 1 + 10 *3) + (40* 2) + (10 *2) = 175

SP1 moved to P2 (10 * 3) + (40* 2) + (10 *2) = 130
Step 3 - Deletion
Delete SP2? No 20<115? (deletion vs. nonenforcement cost)

Delete SP1? No 30<170? (deletion vs. nonenforcement cost)

Delete SP3? Yes 20<12? (deletion vs. nonenforcement cost)
After deletion, Total cost is 110

D. An Illustrative Example

In illustrating how our algorithms work, we consider a

toy example with three parties <P1,P2,P3> and three SPs

<SP1,SP2,SP3> as shown in Fig. 3. The figure depicts the

attributes owned by parties P1, P2, and P3, as well as the

attributes for which SPs SP1, SP2, AND SP3 require access.

The cost of enforcing and not enforcing each SP is also shown;

for SP1, the value is <28,170>, where the first value of 28

represents the cost of enforcing the SP and the second value

of 170 represents the cost of not enforcing the SP. The cost

of inter-party access is indicated by red dashed lines.

1) GMD Algorithm: : The key steps in applying the GMD

algorithm to our example are shown in Table V. We assign

SP1 to P1 and SP2 to P3 due to the most local attributes in

each case. SP3 can be assigned to P3 or P1 (equal number

of attributes), and we arbitrarily choose P1. The total cost

of the assignment is calculated using eqn* 4. In Step 2, we

reassign SPs to reduce the cost further by considering all SPs

for each party and selecting one that requires access to non-

local attributes from the assigned party. For example, SP3

requires access to non-local attributes <A31,A33> of party

P1. Hence SP3 is considered for movement. Similarly, both

157

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on October 15,2025 at 15:12:14 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 5: Virtual floor plan created in Home-IO

Contro- Actuator Sensor
llers type & count type & count

CtlFire

Fire Alarm 3
Flood 5

Sprinkler 5
Smoke Detector 5

Smoke 5
Water -Pump 5

CtlClimate

Heater 10

Temp 10
Cooler 10

Windows 10
Roller-Shades 10

CtlSurv

Indoor-cameras 1

Motion 12
Outdoor-cameras 1
Security Alarm 3
Intruder Alarm 3

CtlSecu

Main-door 1
Door 10Patio-door 1

Garage-door 1

CtlLight
Light-switches 19

Brightness 9
User-mode 1

Fig. 6: Ownership and Count of Devices with Controllers.

SP2 and SP1 are considered for reassignment. For movement,

we consider all other K−1 possible locations for the SP to

minimize the total cost. As shown, while no move is cost-

effective for SP2 and SP3, moving SP1 to party P2 does reduce

the total cost. In the final step, we consider deleting a SP if the

cost of enforcing a SP is greater than the cost of not enforcing

it by a party (a non-critical SP). In the end, we only enforce

SP1 and SP2 at a total cost of 110.

2) Partitioning Algorithm: : Table. VI sketches the overall

steps. For initial partition, parties with lower authorization

costs assigned to the same group, which results in the partition

1 containing (P1, P3) and partition 2 containing P2. The

algorithm then determines the D-values of the vertices(parties)

in each partition, which is the difference between the external

and internal costs of each vertex as specified by Eq.7. Since

the gain in D value is the largest between parties P2 and P3,

they are swapped. In the next step, the SPs are assigned based

on the maximum number of local attributes covered by the

partition, and SP1 is assigned to partition2, SP2 and SP3 are

assigned to partition1. The final step is deletion, identical to

GMD, and SP3 is deleted, reducing the total cost. Even this

example shows that the partitioning approach is significantly

faster than GMD and has a lower optimal cost than the GMD

algorithm.

3) Results of finding enforcers: We first evaluate our algo-

rithms on a small problem containing eight original SPs and

five parties. The exact (Brute Force) solution is feasible in this

case and takes only 6-7 minutes and yields an optimal cost of

130.

Fig. 7 compares the GMD, Partitioning, and Brute Force

algorithms where the x-axis shows the time taken in millisec-

onds which is in log-scale; and the y-axis indicates the cost

of the solution. Along with GMD/Partitioning, we considered

the Greedy approach, which performs only the initial greedy

assignment plus the deletion of non-critical SPs. It is seen that

in both cases, the cost of the solution converges to the optimal

solution as in brute force, but the Partitioning takes less time

than the GMD. Initially, the greedy approach has the highest

TABLE VI: Sequence of Steps in Partitioning algorithm

Step 1- Initial Partition
Partition1 Partition2

P1 and P3 P2

Step 2 - Calculate D-Value
Party Internal, External Cost and Y -Value

P1 Ip1=10, Ep1=40⇒Dp1=30
P2 Ip2=10, Ep2=55⇒Dp2=45
P3 Ip3=0, Ep2=90⇒Dp3=95
Step 3 - Swapping Between Partitions based on Gain
Gain between P1 and P2 gp1p2 = Dp1+Dp2−2∗Cp1p2=−5
Gain between P3 and P2 gp3p2 = Dp3+Dp2−2∗Cp1p2=30
Swap P3 and P2 Part#1 - {P1 & P2}, Part#2 - {P3}
Step 3 - Assigning SPs to the Partitions
Assignment Total Cost

SP1 assigned to Part#2 (50 * 1) = 50

SP2,3 assigned to Part#1 (50 * 1) = 50

After Assignment, Total cost is 100
Step 3 - Deletion
Delete SP2? No 20<115? (deletion vs. nonenforcement cost)

Delete SP1? No 30<170? (deletion vs. nonenforcement cost)

Delete SP3? Yes 20<12? (deletion vs. nonenforcement cost)
After deletion, Total cost is 80

cost value but then converges to GMD. Notably, Partitioning

has a lower overall cost than GMD, which has a higher initial

cost but still converges to the optimal solution.

To assess the scalability of our proposed algorithms, we

consider the full system described earlier, which has 1674

ORs, 12 parties/subsystems, and 1323 SPs. Since the exact

(Brute Force) algorithm has exponential complexity, it can

only go up to 16 SPs and five parties, or 221 combinations

(about one day of run-time), but others can all complete very

quickly. In addition to GMD/Partitioning, we also considered

the Greedy approach, which only does the initial greedy

assignment plus deletion of non-critical SPs. Fig. 8 shows the

comparison (note: y-axis is log scale). The Greedy approach

differs slightly in cost compared to both approaches but later

converges to optimal. This is because as the number of SPs

and parties increases, the marginal benefit of assigning a new

SP to any party decreases. This is because of the concept of the

fictitious locals, and the majority of SPs will be assigned to the

same party. It is seen that partitioning takes significantly less

time than the other two approaches, but their eventual costs are
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Fig. 7: Enforcement Cost vs. Time (5 parties) Fig. 8: Enforcement Cost vs. Time (12 parties) Fig. 9: No of Access Requests vs No of SPs

almost identical. The eventual costs of GMD and partitioning

are 125, while the optimal cost of the Greedy approach is 135.

4) Results of Run-time Access Control: We evaluate the per-

formance of phase2 and phase3 of our proposed architecture.

After assigning enforcers for the SPs, we built a repository

for each node as described in section VI. We then conducted

experiments to actually request and grant access rights as

needed by the enforcers.

TABLE VII: Run-time Ac-
cess control results

#Access Requests 105

Min Time (ms) 15.5

Max Time (ms) 35.1

Avg Time (ms) 21.5

Std Dev 2.40

In our experimental setup consist-

ing of 1323 SPs and 12 parties, there

are a total number of 105 access

requests made between the enforcer

parties and the parties owning the

attributes. The results are shown in

Table. VII, it can be seen that the average time taken per

SP is around 21.5 milliseconds. This does not account for

the network delay, which would vary by the type of network

and the message encryption used. However, we do show the

number of communications required in Fig. 9 as a function

of system size (in terms of the number of SPs). As expected,

the total no of communications increases almost linearly with

the size, with roughly five comm/SP enforcement. We believe

that the access control costs are pretty modest for use in real

multiparty IoT systems.

VIII. DISCUSSION AND CONCLUSIONS

In this paper, we consider the problem of access control in

large-scale IoT systems consisting of multiple subsystems (or

“parties”), which must collaborate to avoid or resolve opera-

tional conflicts. Even in a trusted environment, careful access

control is essential to lower the attack surface. We address

this problem in three phases. First, we explore approaches

to efficiently assign enforcing parties to each safety property

(SP) in the system based on an authorization cost metric. All

of these approaches quickly converge to the exact solution

for small problems (where the exact solution is feasible).

For larger problems, they all converge to the same value,

thereby strengthening the belief that they provide a good,

if not optimal, solution. In phase2, we build the access-

control infrastructure, which phase3 then uses for run-time

access control. In the future, the work can be extended along

many vectors, including placing restrictions on the sharing of

operational rules and safety properties, and tighter control over

the provided run-time accesses.
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