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ABSTRACT
In this paper, we propose a holistic power management of
the data center network (DCN) via coordination among dis-
tinct controllers with different functionality and scope. This
includes - a local controller (LC) that has visibility only at
individual switch/router level, a global controller (GC) that
has a global view of the network, and a hint based topology
aware user request assignment controller (RAC) that controls
placement of the external requests on the endpoint hosts. The
key function of these controllers from energy management
perspective is to properly direct and consolidate network
traffic to maximize low power (or “sleep”) opportunities for
the network interfaces. We show that the coordinated “hints”
provided by the GC are vital to correct the myopic view of
LCs and RAC for both avoiding congestion and maximizing
network sleep opportunities. We show that these mecha-
nisms can reduce power consumption by upto ∼45% in the
common fat-tree based DCNs using the low power idle (LPI)
feature of the Ethernet.
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1 INTRODUCTION AND MOTIVATION
With increasing size and energy footprint of data centers,
their effective energy management is crucial. The major
power consumers of the IT infrastructure in a data center
are compute/memory subsystem, storage subsystem, and
data center network (DCN) [5] [9]. In this paper, our focus is
the DCN, which consumes an increasing percentage of power
as the network speeds and connectivity rise due to network
upgrade. For example, the power consumption of a 10 Gb/sec
Ethernet can be anywhere between 2-10 times the power
consumption of 1 Gb/sec Ethernet, depending on the num-
ber of ports and the technology used [25]. Also, the power
consumption goes up with the number of ports whether
they are used or not. Furthermore, the increasing speeds
generally result in much lower network utilization, since the
deployment of higher speed links is mostly motivated by the
technological availability, latency considerations, and ability
to handle highly bursty workloads, and much less by sus-
tained high bandwidth demands. This is particularly true in
HPC data centers with dense interconnects (e.g., hypercube,
toroid) [19] and HPC workloads that may go through multi-
ple steps of collective communication (high network traffic)
and parallel computation (very little network traffic). Such
situations make network energy management techniques
even more important.

Our underlying model of data center is one that serves ex-
ternal requests coming in through a user reuqest assignment
controller (RAC). Each such request lands on a server, and
in turn could generate internal flows across various servers
using the DCN. For example, an HTTP request may initi-
ate some application and database traffic across the servers.
Since our focus is on DCN, we avoid the issues of application
deployments and the complex multiserver interactions that
may ensue. Instead, we only consider source and destination
assignments for individual flows.
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As in any energy management context, there are three
potential ways in which energy consumption of DCNs can be
reduced: (a) Shape the workload at the source by techniques
like batching of requests or proper admission control policies,
(b) Reduce the link speeds commensuratewith the loading – a
kind of dynamic voltage/frequency switching (DVFS) control,
and (c) Assign the source, destination and network path for
each request so that the traffic is largely concentrated on
fewest links and thus maximizes opportunity for other links
to sleep.

Workload shaping [7] is a well studied subject and we do
not consider it here, although it could help in more effective
use of sleep modes that we do explore here. Link level DVFS
is also thoroughly explored, but it is practical only at a very
large time-scale and coarse granularity level. This is because
most networks provide only a few speeds (e.g., 40, 10 and
1 Gb/sec) and the switching is essentially amounts to PHY
switching and can be very slow. Although IEEE introduced
the Rapid PHY Selection (RPS) mechanism to allow for dy-
namic speed changes, such a mechanism is still too slow
and may cause packet drops and other problems [4]. There-
fore our focus is primarily on (c) and we use the link sleep
mechanisms defined at PHY and higher layers, as detailed in
section 4.
Flow path selection and consolidation to maximize sleep

opportunities can be quite challenging in a large data center
network because a workable scheme must simultaneously
consider availability of endpoint (or server) resources (CPU,
memory, etc.), local bandwidth demands at the switches,
and end-to-end blocking/delay on the network paths. In a
small data center, this can be accomplished via a central
controller that has global network and endpoint visibility,
however, such a scheme does not scale. In this paper instead,
we design a low-overhead semi-distributed scheme that in-
volves three cooperating mechanisms: (a) an energy aware
distribution of requests to the endpoints by the user request
assignment controller (RAC), (b) an intelligent routing of
a new flow at each switch by a local controller (LC), and
(c) a lightweight global controller (GC) that monitors net-
work traffic and provides hints to LC’s and RAC for better
placement of flows at endpoints.
We explore these issues in the context of the almost uni-

versal DCN topology in traditional data centers – the fat
tree. Although the underlying mechanisms are general and
can work for any regular network topology, applying them
well requires exploitation of the topology, and will not be
discussed due to lack of space. Similarly, while similar ap-
proach can be used to non-Ethernet interconnects as well
(e.g., infiniband), a proper investigationmust consider energy
management techniques applicable to the specific fabrics.
The rest of the paper is organized as follows. Section 2

provides a broad overview of our scheme along with the

key contributions. Section 3 reviews the related works on
network energy management. Section 4 discusses power
management mechanisms for a network interface including
the low power idle (LPI) mechanism for Ethernet. Section 5
discusses various controllers, their interaction, and how they
are implemented. Section 6 presents details on our simulation
based evaluation of the mechanisms as well as the simulation
results. Finally, section 7 concludes the discussion and lays
out the future work.

2 OVERVIEW AND CONTRIBUTIONS
An intelligent choice of flow paths through the DCN and
their potential reorganization requires global visibility into
the network that is not present in traditional networks. Al-
though a software defined network (SDN) can easily provide
such global visibility, we do not necessarily require SDN
deployment in the data center. Instead, we assume that the
management layer on each switch monitors the BW usage on
all the interfaces and periodically provides this information
to a global network controller or simply Global Controller
(GC) running on some server. GC can use this information to
make placement and/or reshuffling decisions; however, do-
ing so will make it unscalable. Thus our approach is to simply
provide some hints to the local controllers (LC) for choosing
the outgoing link at each switch. The intent is to keep the GC
both lightweight and non-critical – The LCs can continue
to function uninterrupted but with degraded performance
even if the GC fails and is restarted. Another advantage of
this mechanism is that LC’s and GC will not “fight” since
LC is simply following the recommendation of GC, which is
invoked infrequently. Because of the lightweight nature, GC
can easily handle a rather large network (hundreds of racks).
It is possible to define a federation scheme for even larger
networks, but we do not consider that in this paper.

Properly directing the incoming request to the appropriate
server and choice of destination server for the flow is crucial
for ensuring that the hosts are not overloaded and the host
level workload can be consolidated. From the perspective
of DCN, an even more important reason to include request
redirection is to enable consolidation of network traffic and
avoidance of congestion. At the time of traffic forwarding
as well, the network switches need to ensure that aggresive
flow consolidation on specific links should never lead to
network congestion. We accomplish this by having the GC
provide hints to the RAC and LCs for sufficient adaptation
and adjustments in a lightweight and non-critical manner.
It is important to note here that the energy management

can be handled – simultaneously, if needed – at multiple time
granularities. For example, built in hardware mechanisms of-
ten operate transparently at fine time scales (e.g., C1-C6 CPU
states), whereas sophisticated traffic consolidation schemes
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based on solving optimization problems and reconfiguration
can operate at long time granularities (10’s more minutes or
more). Most techniques explored in the literature fall in the
latter category [15]. In contrast, our primary interest is in
medium grain mechanisms that can be implemented in soft-
ware but must be relatively lightweight and non-disruptive.

Given this, the goal of our mechanisms is primarily to
incrementally handle the incoming flows at the switches,
rather than dynamic reshuffling of the ongoing flows. By dy-
namic reshuffling we mean moving partial or complete path
of an ongoing flow to a new and relatively more utilized
path in order to improve network consolidation (without
moving the source and destination of the flow). Our existing
implemetation is able to reshuffle an ongoing flow. However,
we found the mechanism to be very disruptive and often
moving an ongoing flow results in packet drops, out of order
packet arrivals, and even higher energy consumption. Hence
we have not dicussed the shuffling mechanism in this paper.
Thus, in this paper we largely obviate the need for dynamic
actions via intelligent flow placement and routing actions.
By extensive simulations, we show that our scheme can dras-
tically reduce the overall network power consumption (by upto
∼45% compared to the DCN without any power saving scheme)
especially in case of low traffic hours, without degrading the
overall network performance.

3 RELATEDWORKS
Mostowfi [17] studied EEE LPI operations that put the device
into two states - deep sleep and fast wake. Thaenchaikun et al
[27] proposed energy savingmodel using a control plane that
utilizes an energy aware routing protocol. They showed that,
a combined strategy for routing protocol and energy aware
path augmenting solution can provide good energy savings.
Gupta et al. [10] proposed idle power control techniques
that slow down clock rates in the network links, put sub-
components in switches in sleepmode, and then reconfigures
the network topology. Nedevschi et al. [20] proposed a buffer
and burst scheme that shapes traffic to alternate active and
idle periods, thereby providing increased opportunities to
sleep. The authors also proposed a scheme where rate of
operation of network links is dynamically adapted to the
arrival rate of packets. Abts, Dennis and Marty [2] discussed
link adaptation to dynamically reduce the link speed for less
energy consumption using a central controller. They do so
using adaptive link rate (ALR), which is a predecessor to LPI
mechanism for EEE that attempts to switch PHY(s) at run
time (as opposed to simply the initialization time). It turns
out that even with Rapid PHY Selection (RPS) it takes time
to change the speed of the link and there is a huge overhead
of changing the link speed.

Besides LPI, there are many works on the minimization of
the number of active links and switches by aggregating traffic
over a small set of links [3][30]. These works have tried to
implement different intelligent mechanisms to achieve the
goal of traffic consolidation. All the solutions consist of a
centralized optimizer, which tracks the traffic statistics and
redirects the traffic according to the optimization solution.
For example, Wang [30] discusses about the correlation of
peak workloads among different flows while consolidating.
In our work, centralized optimizer uses topology statistics
for both the traffic merging and request aggregation in a
coordinated manner to avoid the conflicts in agenda.
To save power at the endpoints, VM consolidation has

also been considered as an efficient method in literature.
Most of them [29],[14] have considered mainly VM place-
ment and migration as optimization problems to reduce the
server energy consumption without any non-local network
side considerations. Thus, the server energy savings may be
accompanied with increased packet drop and jitter. A coordi-
nation between VM consolidator and network is essential to
address this problem, as we have explored in this paper. In
our work, we perform the endpoint consolidation by aggre-
gating the external request to the target servers. There are
several previous works on server-network coordination like
[31][11][16][13]. The primary concern of the [16] and [13] is
to place VMs close to each others, those having more mutual
communication. That reduces the path length in other word
the delay and the bandwidth requirement at the higher layer
of the data center. [31] has extended the work of [30], by
considering VM utilization and correlation analysis for both
the VMs and flows - in a coordinated way. In [11], the prob-
lem of VM placement and flow routing has been represented
as a unified optimization problem and then solved.

In [8], the authors present an energy aware load balancer
that distributes the tasks on VMs based on their speed and
energy efficiency. In their model the migration decisions are
based on the vCPU units demanded by an application and
the available capacity of the host and of the other servers
in the cluster. Authors in [21] schedule the tasks on VMs
that are normalized based on system and application level
resource management. Their scheduling and migration of
VMs is based on the vCPU units demanded by an application
and the available capacity of the host and of the other servers
in the cluster.
Since VM migration can be expensive both in terms of

latency and network traffic [29][28], we do not depend on
VM migration in our work. Instead, our main goal is to pro-
vide hints to local controller and the request assignment
controller so that they work in sync. Besides, our work is
based on minimal assumptions: as per our assumption, there
is no affinity among the VMs known to us in advance while
placing the VMs, so that we can exploit that VM placement
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while redirecting the requests. In reality, these metrics would
be very uncertain, so VM consolidation/migration and flow
routing based on that statistics might not bring expected
results.

4 ETHERNET POWER MANAGEMENT
4.1 Overview
Nearly all of the network links are currently based on the
serial links that use differential signaling, because such a
technology can easily handle noise and does not suffer from
cross-talk and clock skew issues. The links are then built
using one or more such serial interfaces called “lanes”. This
has led to the notion of repurposable Phy layer, i.e., the same
basic Phymodule that can support very different higher layer
technologies including PCI-Express, Ethernet, Infiniband,
Fiber Channel, etc. At a very low level, all the links possess
three operating states:

L0: This is the normal operational statewith highest power
consumption, say, PL0. PL0 does not have much dependence
on the utilization since "filler" Idle messages are constantly
exchanged whenever the link is idle even for very short
periods. In other words, the link is always 100% busy.

L0s: This is a sleep state with entry and exit penalty typi-
cally in 10’s to 100’s ns range. In L0s, the power level PL0s
is around 40-50% of PL0 depending on the design [6]. There
is usually a trade-off between transition latency and sleep
power. L0s control applies independently to both sides of a
bidirectional link. The link is kept “trained” during L0s and
thus a part of the interface must stay awake.

L1: This is a much higher latency non-operational state
with exit latencies in 10’s of µs range, but generally with
a very low power consumption (e.g., 10% of PL0) [6]. This
state requires a handshake between transmit and receive
sides and link retraining upon exit from low power mode. If
either side refuses to go into L1, L1 will not be entered. The
training symbols are not exchanged (like L0s) during L1 and
thus link retraining is required on wake up, which makes
the exit latency quite high.
The L0s and L1 states are defined at PHY level but may

not be exposed at higher level. In case of Ethernet, IEEE has
defined an enhanced version of L1 called Low Power Idle
(LPI) in the 802.3az-2010 [6] standard. LPI does not continu-
ously transmit idle signal and instead sends periodic refresh
to maintain the synchronization. Wake up from LPI involves
a significant exit latency, since the transmitter needs to wake
up the receiver before transmitting anything. There are also
new emerging energy management standards for 40 & 100
Gb/s Ethernet links for example, 802.3bj [18] (deep sleep
mode) and 802.3bm (shallow sleep with fast wakeup). The
deep sleep mode is essentially same as LPI described here,

Figure 1: TRS packet transmit model over-laid with
inter-device communication

but the shallow sleep allows faster wakeup. In our experi-
ments (not reported here), the shallow mode did not offer
any advantage, and thus is not considered further.

4.2 Simulation of Power Management
For this study, we enhanced the popular ns3 network simula-
tor [24] with two energy management features: Transmitter
Only Sleep (TOS) model and (ii) Transmitter Receiver Sleep
(TRS), which roughly correspond to L0s and L1 states.

The TOS model is hardware driven and allows the trans-
mitter to sleep independently when the gap between the
traffic is small. The basic approach is to transition to L0s if
the idle period exceeds some specified amount called “run-
way” [12]. The exit happens on arrival of the next packet.
For simplicity, a fixed runway duration is used, although uti-
lization dependent runway could be easily implemented [12].
The TRS model is software driven, birectional and it is an
implemetation of LPI. In TRS, the transmitter sends sleep
packet to the neighboring receiver before going to sleep.
Both the transmiter and receiver have to come to an agree-
ment before the transmitter can move to sleep mode. So it
has extra overhead. As the transmitter wakes up, it has to
send wake up packet to neighboring receiver before sending
any traffic intended for it, as shown in Fig. 1. So, it has a
higher exit latency. Thus TRS uses larger runway to ensure
the transmitter and receiver can only move into the sleep
mode when the gap between traffic is large.

5 NETWORK MONITORING & CONTROL
As stated earlier, network control in our model is effected
by three entities: Global Controller (GC), Local Controller
(LC) and the topology aware Request Assignment Controller
(RAC). The functionality of GC is actually separated into
two entities, namely, Global Traffic Monitor (GTM) and the
Global Traffic Consolidator (GTC). The former does the mon-
itoring and hinting, whereas the latter does consolidation of
ongoing flows by reshuffling, as explained before. Since we
have not used the GTC in this paper, so henceforth we are
going to use the term GC and GTM interchangeably.
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Figure 2: Interaction between various controllers

When multiple controllers are involved, it is crucial to
build a consistent strategy that needs to be followed by the
controllers to avoid any contradicting actions [23]. In terms
of control, GTM merely provides hints to LCs and RAC for
traffic consolidation and external request placements respec-
tively. It is reasonably active in collecting up to date informa-
tion, so that it can provide timely hints to RAC and LCs. The
main challenge for the GTM is to build consistent strategies
for the LCs and RAC in order tomaximize sleep opportunities
and to avoid network congestion.

Each LC periodically collects low-level network statistics
(For example, link utilization, number of active flows etc.)
and sends it to GTM. GTM builds a global view of the net-
work based on those accumulated intelligence. Depending
on the global state of the network, the GTM sends back very
little hints that can help LCs to make routing decisions. By
adopting this simple information exchange mechanism, it
is possible to keep the GTM scalable even with reasonably
large networks. However, a directed study of scalability is
beyond the scope of this paper.
The LCs are responsible for routing of a new incoming

flow and can only do local consolidation of the flows. For
example, in the fat-tree network shown in Fig. 3, an edge
switch has two links towards the aggregation switch. From
a power management perspective, it is better to concentrate
traffic on one of them (if possible), so that the other link can
have longer idle durations and hence better chance to save
power by going into the sleep mode. It is clear that if each LC
greedily focuses traffic on one of the links, this may result in
congestion or suboptimal traffic distribution at higher levels.
The purpose of GTM is to provide hints to LCs to avoid this
situation.

Besides providing hints to the LC, at the same time GTM
provides these topology aware hints to the RAC. By doing so,
the LCs and RAC can work collaboratively. The hints help
the RAC to place an external requests in a way that LCs get
the opportunities to consolidate the traffic without much
degradation in the quality of services. The overall architec-
ture has been shown in Fig. 2. In the following section, we

Figure 3: An illustration of fat-tree network. Theflows
are mostly concentrated at the leftmost links for bet-
ter energy savings.
discuss the advantages of the coordination between these
various controllers.

5.1 Local Controller
As mentioned before, the LCs work at the switching node
level. They operate based on the probability factor assigned
to the outgoing links by the GTM, and use a customized rout-
ing table which records all currently ongoing flows. When a
packet comes to a switch, the LC at that switch tries to match
the flow id and the destination of the packet with the existing
entries. If it finds a match for that flow id and destination, it
simply forwards the packet on the path associated with that
entry. If not, the packet is forwarded to a path selected by
the LC, based on the probability factor assigned by the GTM.

In case the LC at a switch is not able to place a flow in its
first attempt (due to congestion at some links), we record it as
a “flow blocking" event. We use flow blocking as an indicator
to balance our twin objectives of flow consolidation and
congestion avoidance through load balancing. Notice that in
most cases, it is appropriate to retry the flow placement using
a different path, and unless the paths are overly subscribed
(rare in data centers), the attempt would succeed. However,
we do not address this aspect here for simplicity.

5.2 Global Controller
As stated earlier GTM gives hints to LCs to consolidate the
traffic over a small number of links. GTM does this by as-
signing a probability factor, which the LCs refer to while
forwarding the flows. Notice that in a k-ary fat tree each
edge and aggregate switch has k

2 candidate links for for-
warding the traffic over other Pods. The candidate links are
given ranks or priorities that are consistent throughout the
network. Without any loss of generality, we assume that
the candidate links can be ranked from left-to-right, i.e. the
flows are mostly consolidated to the leftmost links of the
switches. For example in Fig. 3, the LCs assign the flows at
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the leftmost links which ensures better flow consolidation
and thus energy savings. The probability factor determines
what fraction of the incoming traffic is forwarded to each
one of the k

2 candidate links.
We now explain calculation of the probability factors for

the candidate links for k = 4, which can be generalized for
any other k . There are two candidate links at the i-th switch,
which are denoted from left-to-right as {li1, li2} and their
probability factors are {P1, P2} respectively. The key idea is to
ensure that the flows are mostly consolidated at the leftmost
links at the time of low-traffic hours, whereas are gradually
spread across the network at the high-traffic hours to avoid
unnecessary flow blocking. We define the overall network
utilization factor as the ratio of cumulative bandwidth of all
the inter-rack flows, and the total capacity of the edge-level
links. This utilization factor is used as a knob to tune the
values of P1 and P2 to consolidate or spread the traffic over
the network. The overall scheme can be described by 4 states,
as described below.

State1 (S1): The system stays in this state at the lull hours.
This happens when there is no flow blocking in the last
N windows (each window consists of n number of flows)
and the utilization is less than a threshold τ1. In this case,
P1 is incremented by ∆i (whereas P2 is decreased by the
same amount) and N becomes 1. At this state P1 is quickly
incremented, so that the flows are more consolidated at the
leftmost links.

State2 (S2): The network switches from S1 to S2 if the
utilization grows from τ1 to τ2 (τ2 > τ1), without experiencing
any flow blocking in the last N windows. In this case, P1 is
incremented by ∆i and N is incremented by a factor of α
(α > 1). Thus, in this state the probability of forwarding the
flows to the leftmost links increases, but at a slower rate.

State3 (S3): The system transitions from S2 to S3, when
the utilization grows beyond τ2. In this state the probabil-
ity factors remain unchanged to avoid overburdening the
leftmost links further.

State4 (S4): The system goes to S4 whenever it experi-
ences any flow blocking. In this case, P1 is decremented by
∆d , whereas N is decremented by a factor of β (β < 1). Thus
if there are more flow blocking in the successive windows, P1
is decremented quickly to shift more flows to the rightmost
links. The entire state diagram is depicted in Fig. 4, where
Nmax is assumed to be the maximum value of N beyond
which N is not increased.

We adjust the τ1 value by adopting a simple learning ap-
proach. If there is no flow blocking for Nmax windows with
an utilization level upto UNB , then the value of τ1 is set to
min

{
τmax
1 ,UNB (1 − k∆d )

}
, where k = 0, 1, 2, .. is a prede-

fined constant, τmax
1 is the maximum allowed value for τ1

and is less than τ2. In this fashion the value of τ1 is set slightly

Figure 4: Proposed state diagram for assigning P1 and
P2 to the links.U denotes the utilization factor.

lower than the maximum utilization level with no flow block-
ing. The objective of this is to keep τ1 low enough to avoid
flow blocking, and at the same time keep it sufficiently high
for effective consolidation.
For simplicity we assume identical probability factors for

all the LCs throughout the paper. Even then, by using this
simple adaptation we ensure that the LCs forward most of
the flows through the left-most links at low network load
and gradually use the right-most links as the load grows
over time. This simple adaptation strategy can be further
extended to include more complicated and heterogeneous
probability factors per LC.

In addition to that the GTM also provides hints to the RAC
to assign the user requests for better energy efficiency as
mentioned in section 5.3.

5.3 Request Assignment Controller
Each host (server rack) has limited resources in terms of
number of user requests one application can serve simulta-
neously, in addition to the limit on how much traffic its net-
work interface can carry. The Request Assignment Controller
(RAC) assigns the user requests among appropriate server
racks, depending on the policies adopted by the network
manager. Some of the polices can be taken independently by
the RAC, whereas other need network information provided
by the GTM. RAC can be considered as a enhanced version
of the traditional Data Center Load Balancer, with similar
scalability but different optimization goal.

Policy1 (P1): User requests are assigned to the highly
loaded rack of the highly loaded Pod as far as their load is
within certain limit.
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Policy2 (P2): The user requests are assigned to the least
loaded server-rack of the least loaded Pod. This policy is
generally adopted for balancing the user requests across the
hosts and the network.

Policy3/4 (P3, P4): In these policies the RAC consults
with the GTM to avoid the racks where downlinks experi-
ence high network load. In these strategies the policies are
identical to P1, P2 except that in these policies the decisions
are taken after referring to the GTM.

6 PERFORMANCE EVALUATIONS
6.1 Experimental Setup
In order to comprehensively evaluate the energy manage-
ment for data center networks, we considered several de-
tailed network simulation packages and ultimately decided
to use the popular ns3 package, as it turned out to be much
more comprehensive than others. Unfortunately, the ns3 li-
braries does not provide any power management capabilities
(with the exception of very superficial and artificial power
calculations). Thus, a considerable effort was spent in im-
plementing the basic energy management capabilities at the
level network transmit and receive “device” functionality.
Many other enhancements to ns3 were required in order to
perform the local consolidation of packets and the controller
functionalities. In the following, we briefly discuss several
aspects of the simulation model developed in the ns3 context.
The details about the implementations in ns3 is mentioned
here in this paper [26].
6.1.1 Traffic Model. A data center network will be ex-

pected to have many traffic flows with different characteris-
tics, and a comprehensive exercising of various controllers
requires a flexible synthetic traffic generation capability. Al-
though we carried out the experiments based on the char-
acteristics of the packet traces collected from the Internet
routers [1] and used them in our packet generation process.

The ability to generate traffic flows with varying levels of
burstiness is key to comprehensive evaluation. To support
this in a simple way, we implemented a two state Markov
Modulated Renewal Process (MMRP) [22] for a flow. In this
model, the two states have different renewal processes for
flow generation based on the given burstiness and average
rate parameters. The residence time distribution in each state
is exponential and is calibrated using the average residence
time in each state. For example, a long average residence time
would result in flows being generated at a rather rapid rate for
quite some time (which may congest the network) followed
by another long period where the flow rate is low and thus
the network utilization may go down significantly (after the
backlog built during the other MMRP state is cleared).

The mean flow rate in each state is determined by the de-
sired long-term link utilization. For most of our experiments,

we assume the arrival process in each state to be Poisson;
however, the experiments calibrated using real traces use a
hyperexponential interarrival time process with a specific
coefficient of variation.

Flow duration in the network follows Pareto distribution
with shape=3.5 andmean as 3.6ms, ranging from 2.2ms to 375
ms. The bandwidth of each flow follows uniform distribution
with mean 1 Gbps and a range from 500 Mbps to 1.5 Gbps.
By varying all these parameters accordingly we can create
traffic that maps to different applications that usually run on
a real data center network.
6.1.2 Network Configuration. We choose the most com-

monly used data center network topology, namely fat tree
for our experiment shown in Fig 3 with k=4. However, the
mechanisms that we have developed are not dependent on
any specific topology and can be used for any structured
data center network. In fat tree architecture, the network
bandwidth requirements increase significantly as we go up
the hierarchy; therefore, the best infrastructure that one can
have is link speed ratios of 1:2:4 at the 3 levels i.e. in the
same ratio as the network infrastructure expands. However,
unless otherwise mentioned, in our experiment we have
used the link bandwidth in a ratio of 1:2:2 i.e. 10GB at edge
routers and 20GB at the aggregate and core respectively. The
motive here is to assess the performance of our algorithm
under this stressed condition. All these links are synchro-
nous links i.e. sends FISU(s) when they have no real traffic
to send and consume nearly equal power as active links. The
device or interfaces behave as TOS or TRS models, with the
runway durations and state transitions as explained above.
Furthermore, we collected metrics about device utilization
factor, state transition, device idle time, sleep time and active
transmit time. We studied these device metrics along side
the traffic flow metrics and energy metrics. We summarize
the results in the next section.

Table 1: Simulation Environment

Parameter Values Parameter Values

Active Power 14.85 W/port Idle Power 14.85 W/port

Shallow Sleep Power 5.94 W/port ∆i 0.03

Deep Sleep Power 1.485 W/port ∆d 0.05

Shallow Sleep wake-up latency 10 ns Nmax 16

Deep sleep wake-up latency 15 µs τ2 50% utilization

6.1.3 Energy Model. Energy models were introduced to
capture the device power and energy utilization. These mod-
els reflect device behavior as they start moving packets
during active transmission and manage to steal sleep inter-
vals during inter-packet time or idle time (based on runway
times). We captured the device activity at three states: trans-
mit time, idle time (while it is in runway duration) and sleep
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time (expiry of runway and till next packet transmission).
These timings along with respective power consumption
give us a good insight on the device energy consumption.
The device activity time was used to compute the device-
utilization factor. We summarize these metrics along side the
traffic flowmetrics to compare the power saved and observed
effects on traffic flows such as delay, packets dropped etc.
We discuss the observed metrics and summarize the results.

6.2 Experimental Results
For our performance evaluations, we assume α and β to be
2 and 1/2 respectively. While placing the user requests, we
ensure the maximum Pod level utilization to be 70%. The
performance is measured in terms of the average power
consumption, and end-to-end delay. Relevant parameters
used in the simulations are listed in Table 1.

We tested the network under four different network utiliza-
tions of 5%, 10% and 25% respectively. We did not go beyond
25% utilization because at higher utilizations, it would be
very difficult for a device to find opportunity to sleep. Also,
any sleep at that high utilization can create performance is-
sues in a data center environment. The use of maximum 25%
utilization is also consistent with the typical usage patterns
seen in data centers, where the average utilization is usu-
ally in teens, and it would be unusual to see sustained high
utilization levels. Unless explicitly mentioned, the values of
probability factors (P1, P2) kept below a maximum threshold
of Pmax to avoid network congestion through some links.
One other point to note is that our study only considers

the device or port level energy; we have not considered the
backplane of a switch. We have actually implemented and
tested backplane power management [26] where the back-
plane is opportunistically put in low power mode if all switch
ports are inactive. However, for simplicity of explanation we
do not include this aspect in the results reported here.

6.2.1 Experiments with Real Traces . All of the experi-
ments are done using synthetically generated traffic with
parameters derived from real traces from [1]. A detailed anal-
ysis of these traces revealed that using them directly will
not be meaningful for a variety of reasons including many
different types of packets and many very short flows. Instead
we extracted a number of relatively long flows from these
traces and studied their statistical properties. We then used
these statistical properties to generate the traffic. Such an
approach allows us to generate long traces as needed for
the experiments. Incidentally, the traces did not show any
significant autocorrelation, which made the traffic genera-
tion easy. Thus, for all our experiments, we have studied
the packet interarrival time from the traces and used the
statistical properties i.e. coefficient of variation (in the range
5-6) to generate the packets following a Gamma distribution.

(a)

(b)

Figure 5: Comparison of (a) power consumption, and
(b) average delay for different policies.

For our simulation we assume that each user request gen-
erates an inter/intra -pod flow in between a pair of host-
racks, which are chosen depending on the polices P1-P4 as
described in section 5.3.

6.2.2 Comparison of different policies. Figs. 5(a) and 5(b)
show the effects of different policies on themetrics at 10% and
25% utilizations. Policy P1 ensures better flow consolidation,
which results in more power savings. From Fig. 5 we can
observe that P1 consumes ∼8% less power than P2 in case
of TOS and ∼18% less power in case of TRS. Also we do
not observe any flow blocking here with any of the policies.
However the extra power saving in case of P1 and P3 comes
at a cost of higher delay since these policies try to place a
new flow on highly utilized racks.

We can also observe that with our proposed power saving
schemes, the overall power consumption is reduced up to
∼45% under low traffic loads and ∼15% even in case of high
network load, compared to the baseline with no power saving
scheme. Thus the scheme is extremely useful especially for
network with low traffic load.

6.2.3 Comparison of TRS and TOS. Figs. 6(a) and 6(b)
show the performance of P3 at utilization levels 5%, 10% and
25%. From this figure we can observe that with flow consol-
idation, TRS always outperforms the TOS at all utilization
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(a) (b)

Figure 6: Comparison of (a) power consumption, and
(b) average delay for P3 under different utilization lev-
els.

(a) (b)

Figure 7: Comparison of (a) power consumption, and
(b) average delay for bursty traffic.

levels. In particular TRS consumes ∼11-20% less power than
TOS. Notice that the improvement of TRS is more mainly in
case of low utilization level. This is because in low utiliza-
tion levels, the network wide consolidation provides more
chances to put the devices in deep-sleep and it is less likely
that soon they will receive a packet and wake up. However,
TRS has a higher wake up penalty in the range of ∼15 µsec,
as compared TOS which is ∼10 nsec . With higher utiliza-
tion levels, the improvements of TRS starts reducing as the
devices try to sleep opportunistically. In such a scenario,
if a device moves to the deep sleep state, it may be forced
to exit shortly and incur significant penalty. Thus TRS is
more effective at low utilization scenarios, as the flow consol-
idation creates adequate opportunity for the devices to sleep
and thereby counters the inherent overhead of TRS. It is not
surprising that the extra power savings especially at low uti-
lization comes at the cost of increased delay. As we can see
from the Fig. 6(b), the power-performance trade-off is seen
consistently – as the average power consumption decreases,
the average delay increases. This is mainly because of its
extra wake-up overhead. It is worth noting, however, that
the power saving achieved by consolidation is still more than
the percentage of delay increased due to this consolidation.

6.2.4 Effect of Bursty Traffic . Wenext evaluate the perfor-
mance of our scheme under various levels of traffic burstiness.
We assume 25% network utilization for this set of simulations.
To generate bursts of traffic we have varied the residence
time and the flow injection rate of state1 and state2 of the
MMRP model. We have selected the rates as 0.5 and 1.5 for

state1 and state2, respectively, and varied the average res-
idence time from 10 to 60 ms. Under 25% utilization, the
expected inter arrival time of the flow is 0.09 milliseconds
and the expected life of a flow is 3.6 ms. In state1 a flow is
generated with probability 0.5, whereas in state2 one flow is
generated always and then the second one with probability
0.5. The purpose of using different burst durations is to assess
the adaptability of our system to changing traffic conditions.
In state1 we are likely to have fewer flows, which decreases
the utilization and opens up the opportunity for traffic con-
solidation and power saving. In contrast, the traffic rate in
state2 triples as compared to state1, which would trigger the
switch to slowly move towards a more balanced load.

Figs. 7(a) and 7(b) shows the power consumption and end-
to-end delay as a function of average burst duration. From
this figure we can observe that the performance factors do
not change significantly with different durations. This is
because of the adaptive nature of our proposed scheme to
maintain a balance between flow consolidation and load
balancing depending on the network traffic. We can also
observe that TRS saves more power than TOS irrespective
of the state durations. However, with bursty traffic the net-
work experiences flow blocking (less than 1%) because P3
places the requests to the highly loaded racks. In general
P3 reduces the flow blocking compared to the other policies
without hurting the energy consumption characteristics at
high utilization levels or in a network handling bursty traffic .
This shows the effect of using network hints provided by the
GTM, instead of independently assigning the user requests
to the racks.

6.2.5 Comparison with ECMP. Figs. 8(a) and 8(b) show
the comparison of our proposed scheme with ECMP. From
this figure we can observe that with Pmax = 0.8, the proposed
consolidation scheme reduces the power consumption up
to ∼5% and average delay up to ∼4-5%. By making the Pmax
equal to 1, the power consumption and delay can be improved
up to ∼14% and ∼10% respectively. The improvement is more
visible in case of TRS because of its ability to go into the deep
sleep mode. However, this power savings come at the cost
of higher delay as seen from Fig. 8(b). We can also observe
that in case of TRS, the average delay decreases with the
increase in runway time because it reduces state transitions
for shorter gaps in traffic.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we have studied the data center energymanage-
ment that involves coordination among 3 types of controllers:
local controller at each switch, a global network controller,
and an energy aware user request assignment controller. We
studied simple mechanisms to coordinate the actions of these
controllers and showed that such coordination can result in
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(a)

(b)
Figure 8: Comparison of (a) power consumption, and
(b) average delay with ECMP and the proposed consol-
idation scheme. x and y in TOS(x ,y) and TRS(x ,y) de-
note Pmax and (1 − Pmax) respectively.

significant energy savings without needing VM migrations
or shuffling of established flows. In particular, while our
global controller consolidates established flows if necessary,
we found that it almost never gets invoked.

In the future we plan to study other types of networks,
such HPC DC networks which can consume a significant
portion of the overall energy consumption [19]. We will also
consider more sophisticated hintingmechanisms and explore
their use in more intelligent consolidation.
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