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Collaborative Machine Learning: Schemes,
Robustness, and Privacy

Junbo Wang

Abstract— Distributed machine learning (ML) was originally
introduced to solve a complex ML problem in a parallel way
for more efficient usage of computation resources. In recent
years, such learning has been extended to satisfy other objectives,
namely, performing learning irn sifu on the training data at
multiple locations and keeping the training datasets private while
still allowing sharing of the model. However, these objectives have
led to considerable research on the vulnerabilities of distributed
learning both in terms of privacy concerns of the training data
and the robustness of the learned overall model due to bad
or maliciously crafted training data. This article provides a
comprehensive survey of various privacy, security, and robustness
issues in distributed ML.

Index Terms— Collaborative learning, distributed learning,
federated learning, privacy, robustness.

NOMENCLATURE
RA Root agent.
ML Machine learning.
WA Worker agent.
DNN Deep neural network.
SVM  Support vector machine.
CNN  Convolutional neural network.
NN Neural network.
GAN  Generative adversarial network.

I. INTRODUCTION
HE ML has been proven successful in numerous applica-
tions, including object recognition, autonomous driving,
stock prediction, and so on. Collaborative ML provides a
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collaborative training framework, which expands the training
process in multiple computing nodes to increase computing
resources, avoid unnecessary transfer of large training datasets,
and conduct training on datasets without having to reveal them.
Collaborative ML algorithms can be based on a variety of
learning schemes along with many ways of aggregating them.

While collaborative ML offers many advantages over cen-
tralized learning, it is also subject to various forms of attacks.
In particular, the worker nodes may be malicious or untrust-
worthy, or their communications with the root node may be
compromised by man-in-the-middle or other types of com-
munication attacks. Also, the privacy of the data belonging
to the worker node could be an issue [1]. Although these
issues have been discussed in the literature under various
assumptions [2]-[5], there is no integrated methodology to
consider various forms of robustness challenges.

The purpose of this article is to address this gap.
We describe several popular collaborative ML algorithms that
use labeled data for training (e.g., collaborative clustering,
collaborative SVM, collaborative decision tree (DT), and col-
laborative NN) and the suitable aggregation methods for them.
In addition, unsupervised learning, which uses unlabeled data,
can also be done in a distributed way but requires a some-
what different treatment. The discussion on different learning
schemes provides a basis to discuss the robustness issue, where
we provide a taxonomy of various types of attacks, including
data poisoning attacks, model poisoning attacks, and black-,
gray-, and white-box attacks. Then, we discuss and compare
possible privacy leakage and the corresponding protection
methods.

To the best of our knowledge, it is the first survey to discuss
robustness and privacy leakage by involving various collab-
orative ML schemes. There are several surveys on collabo-
rative learning per se [1], [6]-[10]. Peteiro-Barral et al. [6]
summarize the approaches for combining predictions of a
set of classifiers, including decision rules, stacked general-
ization, and so on. Devi [7] summarizes the methods related
to collaborative classifier learning, collaborative association
rule mining, and collaborative clustering. A recent work
by Gu et al. [8] presented a comparison of distributed ML
on mobile devices. Ben-Nun ef al. [9] focused on distrib-
uted DNN, and Verbraeken et al. [10] explored communi-
cation structures and optimization for distributed learning.
Compared with the above surveys, our work focuses on the
robustness and privacy issues in collaborative ML. Feder-
ated learning has attracted several recent surveys [11]-[14].
Li et al. [14] describe vertical and horizontal federated learn-
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Fig. 1. Two types of parallelism for collaborative ML. (a) Model parallelism.
(b) Data parallelism.

ings. Peter ef al. [11] address many aspects of federated
learning including efficiency, effectiveness, privacy, and fair-
ness, and highlight open problems for each part of the research.
They present a brief introduction to numerous techniques,
but the coverage of each is quite limited, especially for
privacy and robustness issues. Wang et al. [12] focus on the
optimization problem in federated learning considering system
constraints. The other works, such as [13] and [14], focus on
the architecture and algorithms.

The structure of the rest of this article is given as fol-
lows. Section III gives a brief introduction to collaborative
ML. Section III summarizes different types of collaborative
ML. Sections IV and V then summarize the research on
robustness and privacy-related issues, respectively. Finally,
concludes this article and discusses future challenges. Nomen-
clature includes the key abbreviations used in this article.
We have also included supplementary material on the details
of collaborative ML and its applications that the reader may
wish to consult. However, we believe that the overview of
basic concepts in Section III should suffice to read this article.

II. COLLABORATIVE MACHINE LEARNING

A. Basic Ideas

A generic component in all these frameworks is that of an
RA seeking the help of a number of WAs. A WA may work
with an SM or the entire model. The latter case corresponds
to the federated learning situation, where the purpose of the
distribution is to train the model on different datasets collab-
oratively without any WA having to reveal its dataset. More
generally, the RA may partition the model into multiple SMs
to be trained or run by WAs by exploiting model parallelism
or data parallelism, as shown in Fig. 1. The RA integrates the
results of these SMs using a higher level model, which could
range from a simple aggregation of SM results to being inputs
to another ML model run by RA. For instance, different SMs
may focus on different features or learning aspects, which are
then integrated by the RL. A concrete example of this is where
each SM recognizes a separate language in a multilingual
document. We assume that the integrative model is only known
to the RA and itself free from any vulnerabilities. However,
we do allow the model training to be iterative in that the RA
may provide feedback to the WA’s based on the last iteration
so that they improve the model or the training. For example,
in federated learning, the RA updates the model and provides
it to all WAs for further training.

The research on collaborative ML started with distrib-
uted/parallel learning, which was investigated to simply make
the learning faster by using either model parallelism or data
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Fig. 2. Three types of model integration: (a) incremental, (b) centralized,

and (c) fully distributed.

parallelism, as illustrated in Fig. 1. Model parallelism-based
learning separates the whole learning model into several
subparts and performs model training separately with the
same dataset, while data parallelism-based learning performs
model training with different distributed datasets and, finally,
aggregates multiple local models in a root node. Distributed
ML covers an almost full range of unsupervised learning and
supervised learning.

There are several types of collaborative ML frameworks
illustrated in Fig. 2. The first one is Fig. 2(a) incremental
model integration (IMI), where submodels (SMs) are inte-
grated hierarchically. Take clustering as an example, local data
in the leaf node are aggregated first, and the aggregated data
are sent to its parent node located in different places for further
data aggregation and, finally, achieve a global model in the
RA. An example can be found in our previous research [15].
The second is centralized model integration (CMI), as shown
in Fig. 2(b), which represents the one-step integration of all
SMs as in federated learning. In general, the collaborative
training framework can be represented as fully distributed
model integration (FDMI), where the integration follows some
general acyclic graph, meaning that certain SMs may be
integrated along multiple paths. The underlying assumption
is that each node is an independent party and has its own
computing and storage resources to help with the training
and/or inferencing.

The main differences between parallel learning, distributed
learning, and federated learning can be summarized as follows.

1) In parallel learning, the whole dataset is split into
several small subdatasets, and the SMs trained with
subdatasets are mostly aggregated together mainly fol-
lowing master—slave model [see Fig. 2(b)].

2) Distributed leaning targets the scenario where the data
are originally collected from distributed nodes, and the
aggregation model can be master—slave or fully distrib-
uted as a mesh network [see Fig. 2(a)—(c)].

3) Federated learning does not assume that the data dis-
tribution is i.i.d. (unlike the other two models). It is
also motivated by security and privacy rather than
parallelism.

III. TYPES OF COLLABORATIVE ML MODELS

A. Collaborative Linear Regression Models

Linear regression (LR) and the related logistic regression are
fundamental methods with a linear estimator. Suppose that we
have a training dataset with d features x = (x1; x2;...; X4),
and x; is the value of the vector x in the d dimension.
A linear model tries to learn the following linear hypothesis
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from the data:

fx)y=wlx+b (1)

while minimizing the square loss to find suitable setting of
(w*, b*) as follows:
(w*, b*) = min D> (f(x;) — y)? )
i=l1
where m represents the number of samples and y; is the label
for item i. Since this function is convex, the closed-form
solution can be computed as

3)

Current multiparty collaborative LR [16], [17] mainly col-
lects (X7 X)~! from the collaborating nodes and then aggre-
gates them in a root node. The aggregation can also be done in
a distributed manner when adopting gradient descent algorithm
in ML [18].

w' = (X"X)"'x7y.

B. Collaborative Support Vector Machine

In this section, first, we briefly review the foundation of
SVM and then discuss two types of collaborative schemes,
each with a different learning scheme.

1) Foundation of Support Vector Machine: The SVM
performs a binary classification by finding a hyperplane to
maximize the separation of a set of samples into two groups.
Given a set of training sample data X = {x;, y;)|x; € R%},
where x; is a feature vector for training the learning model
and y; is the label, the problem can be formalized as follows:

. 1 2 “
min f (w,b) = S|w| +C;3i

S.t. y; (wai +b) >1—¢

g >0

“)

where b is the bias, w is a weight vector, and C is a regular-
ization hyperparameter that determines the tradeoff between
margin maximization and regularization, i.e., training error
minimization. The above problem is intractable, and generally,
it is reformed as a quadratic programming (QP) problem as
follows:

1

min f(a) = —a’ Qa —a’l
o 2
st.0<a; <C

ya=0 5)

where Q;; = y;y;jx;x;, and e is a vector of the Lagrangian
multiplier. The weight vector w has relation with & that w =
>'_, aix;. Then, the problem can be solved by solvers for QP
problem or sequential minimal optimization (SMO), which is
more efficient with small size of « for each iteration.

There are two kinds of designs to extend centralized SVM
to a distributed manner: Type 1: parallel design of centralized
SVM and Type 2: collaborative SVM for distributed data.
Type 1 solutions decompose the whole dataset into several
subsets and then process data in a parallel way to speed up the
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learning procedure. Typical works include cascade SVM [19],
divide-and-conquer SVM (DC-SVM) [20], and parallelizing
SVM (PSVM) on distributed computers [21].

Type 2 schemes consider a scenario where there are a
lot of computation nodes distributed in a specific area. They
have abilities to both collect data and train on local data to
generate immediate data (e.g., local support vectors). Several
approaches are relevant in this case. Flouri et al. [22] imple-
ment collaborative SVM to fit a distributed sensor network
system. They propose a distributed fixed-partition algorithm
(DFP-SVM) where the separating hyperplane is obtained
through a sequence of incremental steps where each incremen-
tal step takes place in a given cluster of sensor nodes. More
specifically, in each cluster of sensor nodes, the sensing data
are processed as the corresponding estimated hyperplane (i.e.,
support vectors and offset), and then, the data are transferred
to the next cluster. In the end node, the estimated hyperplane
is aggregated incrementally. Thus, the sensing data in the
previous clusters can be compressed so that the transmission
data size between the sensor nodes can be reduced.

C. Collaborative Decision Tree

DT is another popular supervised learning method, which
consists of nodes, branches, and leaves. The DT is learned
from the training data gradually and can classify a test data
layer by layer from the root node to a leaf node. The leaf node
decides the classification/regression result of the testing data,
and the route from the root node to the leaf node represents the
judgment process-based features of the data. In a distributed
scenario, PLANET [23] uses MapReduce to distribute and
scale tree induction to a very large dataset. For a simplified
description, each distributed node computes sufficient statistics
based on the local data, and then, a root node aggregates
them from all the distributed workers in the reduce procedure.
Most works [23]-[25] adopt horizontal partitioning, i.e., they
partition the data. In contrast, YGGDRASILI [26] adopts
vertical partitioning based on the features, i.e., each worker
stores feature values for an even number of features, as well
as the labels for the instances for training.

With the development of federated learning, DT also
is redesigned for the federated platform [27]-[29].
Liu et al. [27] propose federated forest algorithms working
for client and server, and the tree structure is stored on the
master node and every client. For each round of federated
learning, each client selects the best features based on the local
data, whereas the master node selects all the responses from
the clients and does aggregation. Then, the master node selects
the best features and notifies all the clients. Liu ef al. [28]
propose FEDXGB for extreme gradient boosting (XGBoost)
working in the federated learning framework. FEDXGB
follows the basic scheme of federated learning, consisting of
a set of workers and a root node. The workers send gradients
to the root node with homomorphic encryption, and the root
node interactively generates classification and regression
tree (CART) by finding the optimal split feature. Li et al. [29]
also implement gradient boosting DTs (GBDTs) in federated
learning framework.
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D. Federated Learning

The collaborative framework provided by federated learning
is suitable for many types of learning algorithms, such as
linear models, DT, and so on, although NN is most typical
applications. The framework involves running the same model
on multiple worker nodes and averaging the weights from them
as follows:

‘ . 1 < A
G+1) _ () - (@)
w =w n " E g(wj ) (6)

j=1

where w® is the parameters used in the ith round, n is the
number of workers in the ith round, and w?) represents the
parameter updated by the jth worker in the ith round. After
aggregation, the server distributes w'*" to all workers for
the next round of training. With the continuous training and
aggregation process, the procedure will stop when certain
global accuracy is achieved. To further reduce the commu-
nication burden between a client and the aggregation server,
structured updates and sketched updates are proposed in [36]
to reduce the number of variables and compress them before
sending them out. Structured update modifies gradients in a
restricted space such as using a low-rank update matrix or
restrict the update by a random sparse matrix. Sketched update
first computes the full gradient matrix during local training and
then compresses it before sending it to the root node. Federated
stochastic variance reduced gradient (FSVRG) was proposed
in [37] to be adaptive to different local data sizes and different
patterns of generated local data. The basic idea of SVRG is to
update the weights based on the variance of gradients during
the iteration, while FSVRG implements SVRG in the federated
learning scheme.

Recent works have shown that federated learning can con-
verge after several iterations [50], [51] although the iterations
among local and global learning nodes consume much more
time [52]. Federated learning can be used in many different
scenarios, such as credit rating and smart medical health [14].
WeBank and TensorFlow have proposed their own develop-
ment framework called FATE and TensorFlow federated, and
many researchers are interested in its application in more
scenarios, such as resource-restrained IOT devices [52]-[55]
and non-i.i.d. data [50], [56]-[58]. Although federated learning
is designed for privacy-preserving, information leakage is still
possible by gradient exposure during the learning procedure,
which we address in Section V.

E. Collaborative Clustering

The most popular unsupervised learning is clustering. Col-
laborative clustering works as follows: each worker node
generates a local cluster from the available data possibly based
on different policies. The local clusters are then aggregated in
a root node.

There are several policies to represent local clusters by
using: 1) the core points inside of a cluster; 2) the specific
core points; and 3) the boundary points in the clusters. The
most basic method is to represent a cluster by the points inside
of each cluster [44], [45], [59], [60], which can be seen as
core points in a region. For example, in a density-based scan
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(DBSCAN), core points are selected to represent a cluster if
it is in a given radius (EPs), at least a minimum number of
points (MinPts) in the cluster.

DBSCAN has been extended to work in a distributed/
parallel way. In density-based distributed clustering (DBDC)
[42], the global cluster is reconstructed based on the aggre-
gated information from the worker nodes. PartDBSCAN [44]
uses a master—slave model and adopts a dR-tree to balance
the partitioning of data among the slave nodes that do the
clustering and return them to the root node for the merger.
Such an approach can also be applied to other types of
clustering, e.g., grid-based clustering in [15].

Specific core points are the points selected from the core
points to further reduce data transmission in collaborative
clustering. In DBDC [42], Scor¢ is proposed as the complete
set of specific core points satisfying the following two condi-
tions: 1) any pair of points in Scorc is not located within the
EPs-neighborhood of each other and 2) for each core point
¢, there is at least one specific-core point s that ¢ is within
EPs-neighborhood of s. The set of points that represent the
minimal set of core points from a single cluster is used for
data reduction in [61] and [62]. In their studies, eight points
can represent the core points of a grid cell for an arbitrary
density. Specific core points reduce the data size; however, the
accuracy of clustering results can be decreased if the selections
are not suitable.

Another approach to represent local clusters is to use
boundary points as representative points, as studied in [46] and
[47]. The local dataset is clustered, and contours are found for
each local dataset once the local clusters are determined. Then,
worker nodes exchange their contours with their neighboring
nodes and see whether there are overlapping contours. Finally,
global clusters are created based on the merging of overlapping
contours. The selection policy based on boundary points can
be seen as a compromise solution between core points and
specific core points, and the data size is directly proportional
to the size of the cluster.

Table I compares various models in terms of collaborative
model classification shown in Fig. 2, information transmission,
and other attributes. Only one of these uses model (c); all oth-
ers use (a) or (b). The information transmission between RA
and WAs includes model parameters or raw data. The model
parameters depend on the ML algorithms, e.g., Matrix X for
the linear model, subvectors for SVM, splitting information for
DT, gradients/weights for NN, and core points for the cluster.

E. Other Types of Collaborative ML

1) Event-Triggered Learning: Event triggering refers to
information or messages that can trigger actions or responses
of agents in a distributed system. Events may be related to
time or steps and are used to control communications between
distributed agents. Several event-triggered mechanisms have
been used to improve the convergence by controlling the
update frequency. For instance, George et al. [63] use it to
solve nonconvex optimization problems typically encountered
in distributed deep learning, such as image classification. They
propose a Distributed Event-Triggered Stochastic GRAdient
Descent (DETSGRAD) algorithm where the WAs update the
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TABLE I
RESEARCH ON COLLABORATIVE LEARNING

) . Information Robustness, Privacy, Learning Quality, Complexity or
Types of ML |Collaborative Learning Model L.
Transmission other Remarks
Linear Privacy-preserving Linear Regression [17]| (b) |[Matrix X Secure and better in larger dimension; ACC: 0% —5.2%
Model different with optimal
Secure Logistic Regression [18] (b)  |Encrypted raw data |Homomorphic encryption; ACC: 0% —2.4% different with
optimal
Cascade SVM [19] (a) subvectors Binary tree-based structure, ACC:99%
DC-SVM [20] (b)  |subvectors Divide and Conquer, ACC:96%, Complexity: O(n?/k)
SVM PSVM [21] (b)  |Parallel ICF Linear complexity with n, ACC:95.9%, Complexity: O(kn)
QRSVM [30] [31] (b) |Matrix R after QR de- |Linear complexity with n, Complexity O(kn)
composition
Fully distributed SVM [32] () Extreme points of lo-|Fully distributed structure
cal convex hulls
Privacy-DDT [33] (b) |Encrypted Gini Index |Homomorphic encryption, ACC close to optimal
DDTv2 [24] (b) |Local trees Hadoop and Spark, ACC:97.16%
Distributed PLANET [23] (b) Separated data Map-reduce framework
YGGDRASIL [26] (b) Split information Faster than [23] by an order of magnitude
DR2-Tree [25] (b) |Raw data Spark, ACC: 0% —0.27% different with optimal
InPrivate Digging [34] (a) |Tree model Differential privacy, ACC: 0.08% —0.1% different with
Decision Tree optimal
FEDXGB [28] (b) |Gradients Homomorphic Encryption, 1% ACC loss, 33%
Federated communication reduce
Federated Forest [27] (b) |Split message homomorphic encryption, ACC 0.01% —0.08% different
with optimal
SimFL [29] (a) Tree model Locality-Sensitive Hashing, ACC 0% —2.1% different with
optimal
FedAvg [35] Model parameters Federated averaging, ACC:99.44% after 300 rounds
F-Updates [36] Model parameters Reduce communication cost by two orders of magnitude by
structure/sketched updates
F-SVRG [37] Model parameters Assume the setting of large size of client, converge in 30
rounds with error 0.26%
FedMeta [38] Meta-learner Increase converge time by 2.82-4.33x and ACC around
Federated 4
Learning 3.23% —14.84% comparing to FedAvg
FedMA [39] (b) Model parameters Matching and averaging hidden elements for NN, ACC
0.87% in 100 rounds on VGG-9.
Agnostic Federated Learning (AFL) [40] Model parameters The model will not be biased towards different clients, ACC
increase 0.32% to traditional FL
Agnostic meta-learning [41] Model parameters Personalized FEDAVG
DBDC [42] [43] (b) |Core points Represent cluster by core points, ACC: almost the same to
centralized cluster, Complexity: O(n?)
PartDBSCAN [44] (b) |Core points R-Tree based structure, ACC: almost the same to centralized
. Density cluster, Complexity: O(|S|logn)
Clustering - -
MrDBSCAN [45] (b) |Core points Map-Reduce based scheme, Complexity: O(|S|logn)
Grid-Based [15] (a) |Grids Hybrid approach, ACC: close to centralized cluster
Boundary based (b) |Boundary points and| Aggregation based on boundary points, ACC: close to
[46] [47] density centralized cluster
. PK-Means [48] (b)  |Centroid list Message-passing based cluster, ACC: close to centralized
Partition
cluster
PPK-Means [49] (b)  |Parameters Privacy model, ACC: close to centralized cluster

model parameters aperiodically with their one-hop neighbors. Fan er al. [64] propose an iterative event-triggered algorithm
The mechanism also provides sufficient conditions on the to avoid continuous measurement of the neighbor’s states,
algorithm step sizes that guarantee the asymptotic mean-square  which can decrease the communication frequency for the
convergence with complexity O(1/((k + 1)*)), where k distributed rendezvous issue of multiagent systems. The main
denotes the time instant and J, denotes the hyperparameter. idea of this approach is to determine the measurement error

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on October 15,2025 at 14:49:52 UTC from IEEE Xplore. Restrictions apply.



9630

i
~7 sm

Capabilities SM Structure

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 12, DECEMBER 2023

?I"..T'I Train‘l_r;_gH'

SM test data
data

—. "/ — — ———— —
Private Visible Private Visible RA can Private Visible Private Visible
to WA RA, WA toWwa WA->RA modify to'Wa WA= RA to RA RA=>WA

Fig. 3. Tllustration of SM parameters.

of each agent by a convex combination of its neighbors’
states instead of measuring the agents’ own states, because
Fan et al. [64] find that each agent will be triggered regularly,
and the group will asymptotically achieve rendezvous by
classifying the triggering executions.

2) Semisupervised Learning (SSL): It emphasizes how to
achieve learning with the presence of both labeled and unla-
beled data. SSL exploits the fusion of labeled and unlabeled
data to change the learning paradigms and designs related
algorithms that can take advantage of such a fusion [65].

Several works have been done to enable SSL work in a dis-
tributed/parallel way. For example, Chang et al. [66] study the
error analysis issue for distributed SSL algorithm, kernel ridge
regression (DSKRR), by using a novel error decomposition
scheme that partitions the generalization error of DSKRR into
three parts: approximation error, sample error, and distributed
error. Bilmes ef al. [67] discuss the scalability to very large
problems sizes (>100 million nodes) of graph-based SSL
algorithms on diverse parallel machines, either shared-memory
symmetric multiprocessors (SMPs) or distributed computers.

3) Multitask and Multiagent Learning: Here, multiple tasks
share the trained model and are divided into parameter-based
sharing and constraint-based sharing, which allows multi-
ple related tasks to be trained simultaneously. For instance,
Smith et al. [68] demonstrate that multitask learning [69]
is naturally suitable for the statistical challenges (non-i.i.d.
issues). They propose a novel systems-aware optimization
method for practical systems issues (client heterogeneity),
named “MOCHA,” which considers issues of high commu-
nication cost, stragglers, and fault tolerance. MOCHA is a
biconvex alternating approach that can be guaranteed [70] to
converge to a stationary solution to the MTL problems.

In a multiagent system [71], agents solve tasks collabo-
ratively yet offer more flexibility since they can learn and
make autonomous decisions. The agents learn new contexts
and actions by leveraging their interactions with neighboring
agents or with the environment and address their allocated task
by using their knowledge to decide and perform an action on
the environment.

IV. ROBUSTNESS OF COLLABORATIVE ML

Robustness of collaborative ML has been discussed widely
in recent literature, mostly in the context of federated

learning [2]-[5]. To make the discussion in a more con-
centrated way, we mainly focus on the robustness from a
security aspect. In general, an ML SM has four important
attributes that may or may not be shared (in addition to the
basic API for using the SM, which we assume is always
shared). These are shown in Fig. 3 and explained in the
following.

1) Submodel Capabilities: It specifies what nuances of the
real world (e.g., variations, imperfections, or irregu-
larities in the objects, features, or ambient conditions)
that the model can discriminate. These could be either
private to the WA (possibly because WA owns the
model) or shared between WA and RA. In the latter
case, these could be either provided by the RA to WA
as requirements for a private model built by WA or
voluntarily shared by WA with RA.

2) Submodel Structure: It specifies low-level details of the
SM. For example, in the case of a DT, the structure
consists of the entire tree, and in the case of a CNN,
all the layers and weights are part of the structure. The
structure could either be private to the WA, made visible
to RA by WA, or modifiable by RA. In the second case,
WA simply builds, trains the model, and then submits
it to RA for validation. In the third case, the RA can
modify the received SM further and sends it back to
WAs for further training. The finalized model may be
retained by WAs for the purposes of running it on WA’s
computing infrastructure.

3) Submodel Training Data: The ability of a WA to train
the model for RA without revealing the training data
forms the fundamental motivation for the federated ML.
However, since the training of a DNN is often an
extremely compute and data-intensive task, training by
WA can be valuable even if there is no prohibition on
sharing the training data.

4) Submodel Test Data: In all cases of distributed ML,
we assume that the RA will not accept an SM (or
results thereof) unless it can pass a specified set of tests
on a challenge dataset provided by the RA. If the SM
structure is shared by WA (i.e., a trained SM delivered
by WA to RA), the test data will likely be kept private
by the RA. However, it is also possible that the RA
provides this data to WA and expects the test results
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back. (According to our assumption, the WA provides
the test results truthfully in this case.)

The new robustness issue in this model is that a few of the
WAs may be malicious or untrustworthy, or their communica-
tions with the RA may be compromised by man-in-the-middle
or other types of communication attacks. While the com-
munication vulnerabilities can be addressed using standard
techniques (e.g., message encryption and authentication of
WA), the insider attacks by malicious/compromised WAs can
be much more difficult to tackle.

A. Submodel Information Exchange Modes

The collaborative model admits different scenarios in terms
of information exchange between the RA and WAs, and
the corresponding vulnerabilities. The vulnerability depends
on several aspects, including: 1) the extent of data/model
sharing among RA and WAs and the attacks enabled by this
sharing; 2) the attacker capabilities (i.e., level of maliciousness
assumed for WAs); 3) the possibility of collusion among WAs;
and 4) validation or compromise detection capabilities of the
RA. This leads to a large number of potential scenarios, each
of which is further distinguished by the nature and parameters
of the ML models used by the WAs. Due to the large state
space, in the following, we only sketch a possible taxonomy
of situations and the types of attacks that it may admit. A part
of the taxonomy is shown in Fig. 3. Here, we assume that,
if WA and RA explicitly stated to share some information or
specification, sharing is considered a “contract” and remains
uncompromised.

Fig. 3 points to many specific scenarios and the correspond-
ing vulnerabilities. Consider, for example, the case where all
four items are shared between RA and WA. This corresponds
to the situation where the RA provides the requirements to
the WA, according to which the WA builds, trains, tests,
and then delivers the final SM to the RA that satisfies all
the validation tests. In this case, one potential vulnerability
pertains to the specification of capabilities by RA. A bad WA
can take advantage of this knowledge and train the SM on
some additional data that only affect the aspects of the model
not covered by the “contract” (or specification of capabilities
by RA). The knowledge of validation tests also helps in that
it can ensure that all tests still pass. Note that less sharing by
RA makes the job difficult for both good and bad WAs. For
example, if the RA does not share the SM capabilities or the
test data with WA, a bad WA does not know how to train the
model on bad data without the compromise being revealed.
By the same token, a good WA will also have difficulty in
meeting the expectations of the RA. In contrast, less sharing
by WA (with RA) provides greater opportunities for bad WA
to perturb the model or the results. For example, if a WA
does not share its training data with RA, a bad WA is free
to train the model on anything so long as the model provides
reasonable results on the validation tests.

Collusion among bad WAs can further amplify the per-
turbation of the model. In particular, colluding WA’s can
stagger their spurious output submission in a way to minimize
detection. For example, in the case of the same SM trained by
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different WAs, a set of bad WA’s could supply trained weights
to the RA in succession in a way that no improvement takes
place over successive training iterations. With identical SMs,
it might be possible for the RA to detect such collusion using
Byzantine fault principles, i.e., when no more than ¢ out of a
total of 3t + 1 WAs are bad.

B. SubModel Information Exchange Versus Attack Modes

Fig. 3 allows for 16 different scenarios of sharing, each of
which can be exploited by a bad WA to carry out various forms
of perturbation either during training time or run-time. Most
of the attack modes are known in the literature under different
names, as discussed in the following. Pitropakis et al. [72]
present a taxonomy of these modes and comprehensively
discuss the papers focusing on these modes. These basic
modes can be related to the 16 different possibilities in Fig. 3
in terms of the level of visibility (black-, grey-, and white-box
attacks).

Given the indirect relationship between training data and the
model parameters (e.g., weights in CNN) and the need for a
large amount of data for training, the model can be perturbed
by strategically providing bad data at training time. These
could take several forms. A data poisoning attack changes the
labels on some of the valid data items to force misclassification
in certain cases. An evasion attack takes advantage of the fact
that the model may have weak points that can be exploited,
i.e., the inability to correctly recognize certain features, which
are then added deliberately to the inputs at inference time.
If the attacker can, it may enhance or create this weakness
deliberately by withholding certain training data. Note that a
simple form of evasion might only increase the classification
uncertainty, which can be achieved by withholding some
training data or adding what amounts to noise to the data.
Backdoor attacks intelligently add extraneous data that make
the model generate anomalous output under certain scenar-
ios. These scenarios are then triggered at inference time by
tampering with the input. The backdoor attack is particularly
insidious when the data obtained during inference time come
directly from items in the physical world that can be easily
tampered with. For example, if a special physical pattern (e.g.,
a bar code) on the rear of a car is the backdoor, all that the
adversary has to do is to paste that pattern on the rear of some
cars (including the car(s) belonging to the adversary). This
could make the car just behind it misbehave (e.g., driving too
close or crashing into it). The same applies to manipulating
physical traffic signs, such as forcing a low-speed limit sign
to something that indicates a much higher speed limit.

Model poisoning attack concerns changing the output of
the model (either using poisoned data or in some other
way) to force misclassification. Model poisoning happens if
the training involves iteration; i.e., the RA collects models
or model outputs from multiple WA’s and uses them to
provide feedback to the WAs. For example, if the feedback
that depends on the output of one bad WA goes to all the
WAs for the next iteration, the entire model gets corrupted
or poisoned. Bhagoji ef al. [2] discuss several such attack
strategies, including targeted model poisoning using boosting
of the malicious agent’s update to overcome the effects of other
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agents. They also show that Byzantine-resilient aggregation
strategies are not robust to these attacks.

Yet, another type of attack is model stealing attack, where
a WA is able to deduce the SM belonging to another WA
even though there is no direct revelation of other WA’s SMs.
The source of this attack is the feedback by RA that includes
feedback based on other SMs.

With respect to Fig. 3, it is obvious that various attacks
are enabled by two aspects of the system: 1) sharing of
information by RA with bad WAs and 2) ability of a bad WA
to do things beyond the contract (e.g., training with extraneous
data).

C. Data Poisoning Attacks

Poisoning attacks were first proposed for faking the bio-
metric recognition system. Biggio et al. [73], [74] have dis-
cussed how such attacks can gradually poison the template
gallery to successfully mislead a template self-update-based
face-verification system. In template self-update-based face-
verification system, a template corresponding to each client
is stored by averaging a set of n enrolled images, which is
referred to as centroid. If the feature vectors corresponding
to client ¢ are {x.1, X2, ..., Xen}, then their centroid is x. =
(34— xck)/n). When a user submits a sample x, a matching
score s(x, x.) is computed as

s, xe) = 1/(1 + [lx — x[]) @)

where || - || is denotes the Euclidean distance. If the matching
score is greater than a certain threshold 7., the sample is
accepted as genuine; otherwise, it is rejected. To update the
centroid over time, the authors have discussed two policies.
The first is the infinite window policy, where the centroid x,
is updated without discarding any of the past samples, and the
second policy is finite window where the samples in the last
n iterations are only considered for centroid calculation.
Template self-update is implemented to deal with temporal
changes in biometric patterns, such as aging. The self-update
is accepted if s(x,x.) > 6., where w, is the update thresh-
old and is generally greater than the matching threshold #,.
By exploiting this self-update feature, the poisoning attack
injects specifically targeted samples that are accepted by the
system as normal and push the centroid x, in the direction
of the attack point x,. Biggio et al. [73] have studied that,
in the infinite window scenario, the number of attack samples
must grow exponentially with ||x, — x.||, whereas, in the
case of the finite window, the number of samples must grow
linearly. Thus, the latter is more vulnerable to poisoning
attacks compared to the former scenario. Poisoning attacks
are also studied for anomaly detection in [75] and [76].
Szegedy et al. [77] have shown that, by applying an imper-
ceptible nonrandom perturbation to a test image (which
are termed adversarial examples), it is possible to fool
a DNN to arbitrarily change the network’s prediction.
Goodfellow et al. [78] have argued that the primary cause
for such vulnerability to adversarial perturbation is their lin-
ear nature. Similar poisoning attacks on SVMs are studied
in [79] and [80]. Chen et al. [81] have shown that, by injecting
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around 50 dirty-label samples, a backdoor adversary can
achieve an attack success rate of above 90%.

Yang et al. [82] have discussed data poisoning attacks on
NNs using direct gradient methods. They have also proposed
a generative method to speed up the generation of poisoning
data by using the inspiration from GAN and have shown that
the generative method speeds up the poisoned data generation
by 239.38 times compared to the direct gradient method.
Muiioz-Gonzélez et al. [83] have proposed a back-gradient
optimization to launch poisoning attacks on NNs and deep
learning architectures, which is more computationally efficient
than gradient-based poisoning attacks. Zhang et al. [3] have
studied poisoning attacks on federated learning systems based
on GAN, where an attacker can stealthily train a GAN to
mimic the prototypical samples of the other workers. The GAN
can then be controlled for generating the poisoning updates.

D. Model Poisoning Attacks

Several types of model poisoning attacks are possible in
collaborative ML. In the outsourced training attack, the RA
wants to train the parameters of a DNN Fg (where ® repre-
sents the function’s parameters), using a training dataset Diin.
The WA trains the model and returns the trained parameters
®'. The RA checks the accuracy of the trained model Fg on
a (labeled) validation dataset Dy,;g and will only accept the
model if the accuracy of the model is more than a certain
threshold a*, i.e.,

A(Fe, Dyaiia) = a™. (8)

In this case, the WA can return a maliciously backdoored
model such that: 1) the returned model does not reduce the
classification accuracy of the validation set and 2) for certain
inputs containing the backdoor trigger, the prediction of the
outputs is different from the prediction of the honestly trained
model. The backdoor trigger could be either explicit thereby
requiring perturbation of real data to exploit the backdoor (e.g.,
by infecting some queries), or it could be implicit: the model
produces bad output on certain types of data that the attacker
believes would not be a part of test data. Even if the model
fails verification, but the RA is willing to let the WA “fix”
the problem, it provides a mechanism for the malicious WA
to check what kind of backdoor to not use.

Shen et al. [4] have studied similar poisoning attacks in
collaborative learning settings where different users submit
the masked features to a central classifier to learn the global
model. They have shown that, in such a setting, just by poison-
ing 10% of the training data, the attacker can achieve misclas-
sification with a success rate of 99%. Bagdasaryan et al. [84]
have developed a model poisoning attack where the malicious
worker can use model replacement to introduce backdoor
functionality. The authors have shown that such a model
replacement attack greatly outperforms the conventional data
poisoning attack.

Cao et al. [5] show that the success rate of model poisoning
increases linearly with the number of poisoned samples and
the number of attackers. This article also proposes a filtering
defense based on the distance between model updates by hon-
est and malicious agents. Hayes ef al. [85] discuss a variant
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of model poisoning attack, called data contamination attack,
which uses data specifically to learn undesired correlations.
For example, a model to determine if a credit card application
should be accepted could maliciously discriminate against
applicants of certain characteristics. This article shows that
adversarial training can mitigate such attacks. Another variant
is a form of the Sybil attack discussed in [86] where the
malicious agent mimics the actions of a legitimate agent but
alters the training data to force misclassification.

E. Black-, Grey-, and White-Box Attacks

Adversarial ML is often broadly categorized into black-,
gray-, and white-box attacks [87], based on whether the
attacker, respectively, has zero, partial, and full knowledge
about the ground truth and the learning mechanism. The
zero-knowledge situation is known as Blackbox, the knowl-
edge of both the learning mechanism and the ground truth
is known as Whitebox, and the knowledge of one of these is
known as Greybox. A Greybox characterization is not very
useful unless the extent of knowledge is quantified, as is done
in our model in Fig. 3. Note that anything that a WA can keep
private could potentially be altered by it, possibly maliciously.
Even in the case of visibility, it is possible that what is shared
is not what is used, but we generally assume that there are
no contractual violations (e.g., if RA and WA agree to use
certain data for training, it is indeed used) since, otherwise,
a classification is not very meaningful.

Carlini et al. [88] have studied black- and white-box threat
models on MNIST and CIFAR-10 datasets in the context of
image classification. They have studied the existing detection
techniques for these two threat models and have shown how
to choose a good attacker loss function for each defense.
Chivukula et al. [89] have discussed the interaction between
an adversary and a deep learning model as a two-player
sequential noncooperative Stackelberg game with the assump-
tion that the adversary does not know anything about the
network structure. In this game, the learner learns the weights
of a CNN for correct classification, and the adversary creates
new instances of data using genetic operations for misleading
the classification. The game is solved by the Nash equi-
librium, which leads to solutions that are robust to sub-
sequent adversarial data manipulations. Papernot et al. [90]
have introduced black-box attacks against DNN classifiers
where the only capacity of the attacker is to observe labels
assigned by the DNN for the chosen inputs and has shown
that the DNN misclassifies 84.24% of the adversarial inputs.
Papernot et al. [91] have developed generalized black-box
attacks by exploiting adversarial sample transferability on
broad classes of ML classifiers, including NNs, logistic
regression, SVMs, DTs, nearest neighbors, and ensembles.
Dong et al. [92] have proposed a broad class of momentum
iterative gradient-based methods to boost the success rates of
the generated adversarial examples and have shown that their
iterative methods exhibit higher success rates in both white-
and black-box attacks.

Eykholt et al. [93] have discussed a general attack algo-
rithm named Robust Physical Perturbations (RP,) to generate
adversarial perturbations under white-box settings and have
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shown that RP, achieves high target misclassification. The
authors have shown that their attacks cause a standard road
sign classifier to interpret a slightly modified stop sign as a
Speed Limit 45 sign.

Papernot et al. [94] have used the concept of “defensive
distillation” as a defensive mechanism against adversarial
samples by reducing the amplitude of NN gradients that are
generally exploited by the adversaries to craft adversarial sam-
ples. The authors have empirically studied that such defensive
distillation reduces the attack success rate from 95% to less
than 0.5% on the MNIST dataset. However, Carlini et al. [95]
have created a set of white-box attacks that successfully
find adversarial examples for 100% of images on defensively
distilled networks. Papernot er al. [96] have discussed a class
of algorithms for adversarial sample creation against any
feedforward DNN with the assumption that the adversary
has knowledge of the network architecture and its parameter
values. They have shown that, by modifying only 4.02% of
the input features per sample, their algorithms can misclassify
specific targets with a 97% adversarial success rate. Other
white-box attacks are also studied in [97]-[100]. Adversarial
robustness of NNs against both black- and white-box attacks
are discussed in [101]. A summary of representative attackers
is discussed in Table II.

F. Byzantine Robustness

Federated learning enables SM structure sharing, as shown
in Fig. 3, where each worker j trains an SM at local (wﬁ’)) in
the ith round, and the SMs are aggregated at the RA as
in (6). During the learning process, the Byzantine workers
may send arbitrary or incorrect messages to the RA, which
leads to incorrect or nonconvergence of model training. Several
Byzantine-robust aggregation methods have been proposed to
address this problem, as summarized in the following.

1) Median-Based Aggregation: Median-based aggregation
has been investigated in the recent works trying to solve
Byzantine attacks [102], [103]. The basic method is given as
follows: 1) calculate gradients in each client site; 2) perform
gradient aggregation based on different median functions; and
3) update model parameters in the aggregation stage. Take
geometric median as an example; let {x,...,x,} C RY be a
set, where x,, is a vector. Geometric median of {x,...,x,}
denoted by med{xy, ..., x,}. It can be calculated as follows:

n
med{xl,...,xm}=argmin2||x—x,~||2. )
xeR?
Then, in the second stage, gradient aggregation is performed
by jointly considering the above geometric median function,

as shown in the following equation:

|Bi| [Bu |

1 ; 1 i
Ak(wt):med ngl(”(wtfl)"“’ B |zgl‘(1)(wt*1)
j=1 =1

(10)

where |B,,| represents data size in the client m and g,(j ) (w;—1)
denotes the gradients calculated in the iteration ¢ with sam-
ple j. Finally, the aggregation results can be updated through
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TABLE II

SUMMARY OF REPRESENTATIVE ATTACKS

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 12, DECEMBER 2023

Attack Types Details

Representative Works

Attacker’s knowledge

Use cases

Reference [73]

Perfect knowledge

Template self-update/face
verification

Reference [74]

Limited knowledge

Face verification

Reference [75]

Zero knowledge

Classification

Reference [76]

Full/limited control over

training data

Anomaly detection

Reference [77]

Limited knowledge

Image classification

Reference [79]

Perfect knowledge

Image classification

Adversarial label flips attack [80]

Perfect knowledge

Binary classification

Attacker changes the labels on

Data Poisoning A .
some of the valid data items to

Backdoor attacks [81]

Zero knowledge

Image classification

attacks . . .
force misclassification

Generative Poisoning Attack [82]

Perfect knowledge

Image classification

Back-gradient optimization [83]

Perfect/limited knowledge

Spam filtering, malware
detection, handwritten

digit recognition

Generative Adversarial Nets [3]

Perfect/limited knowledge

Image classification

Reference [88]

Perfect/zero knowledge

Image classification

Reference [4]

Limited knowledge

Image/traffic sign classifi-

cation

Model Poisoning Attacker changes the model Reference [84]

Limited knowledge

Image classification

attacks output to force misclassification |Reference [85] Limited knowledge Multi-party environment
Reference [86] Limited knowledge Image classification
Reference [88] Zero/limited knowledge |Image classification
Reference [89] Zero knowledge Image classification

Black box Attacker has zero knowledge Reference [90] Zero knowledge Image classification

attacks about the ground truth Reference [91] No knowledge Image classification

sand the learning mechanism Momentum iterative gradient-based |No knowledge Image classification
methods [92]
Reference [88] Perfect knowledge Image classification
Robust Physical Perturbations [93] Perfect knowledge Road sign/image classifi-
cation
White box Attacker has fu.ll knowledge Reference [95] Perfect knowledge Image classification
attacks about the learning mechanism Reference [96] Perfect knowledge Image classification

and the ground truth Reference [98]

Limited/Perfect
knowledge

Malware detection

Reference [99]

Perfect knowledge

Image classification

Reference [100]

Perfect knowledge

Image classification

the following equation:

w, = w;—; — 7 X Ap(wy).

Y

The work in [102] shows that the proposed geometric-
median-based aggregation can tolerate ¢ Byzantine failures
such that 2(1 4+ &)g < m, (¢ > 0), where m represents the
number of working machines.

2) Krum Aggregation: Considering gradients from each
client as a vector, the vectors from general clients should
basically follow a similar direction, while the vectors from
Byzantine clients may be far away from them. The basic idea
of Krum [104] is to preclude the vectors that are too far
away from normal users. They defined a Krum aggregation
function Krum(Vy, ..., V,), which can return the client i, by
minimizing the score s(i) in the following equation:

si)y= > |vi— v’

i—>j

(12)

where i — j means that V; belongs to the n — f — 2 closest
vectors to V;, n represents the number of clients, and f is a
random number between O and n. Then, network parameters
are updated through the following equation:

w; = w,— —n X Krum(Vy, ..., V,) (13)
where at least n — f vectors among n clients are correct and
the other ones may be Byzantine, which can be filtered in the
learning process.

3) Robust Stochastic Aggregation (RSA): The primary dis-
advantage of the previous schemes comes from the i.i.d.
assumption, which is not the case in federated learning over
heterogeneous computing units. In addition, some of these
algorithms like Krum rely on sophisticated gradient selection
subroutines, which incur a high computational cost. RSA [105]
overcomes these limitations. It updates the parameters
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(e.g., in an NN) through the following equation:

wk = argmin > _(E[F(w;, &) + Allw; — woll,]) + fo(wo)

w=[wi;wol ;o p

(14)

where w; represents the weights from the client i and w
denotes the weights calculated in the master. F(w;, &) is the
loss function of worker i with respect to a random variable
& assuming that the data across the workers are i.i.d. The
Allw; —wol|, term works as the £ ,-form penalty to force every
x; to be close to the master’s variable x.

V. PRIVACY ISSUES IN COLLABORATIVE ML

In addition to the possible attacks on collaborative ML,
there are also vulnerabilities with respect to privacy. Recall
that the key motivation for federated learning is to maintain
the privacy of local data; however, even in this case, the
data privacy could be compromised. There are three main
types of attack in federated learning, which are membership
inference, unintended feature inference, and representative
sample reconstruction. In this section, we first introduce these
three privacy attacks and discuss current solutions trying to
solve them.

A. Membership Inference

The goal of membership inference is to infer if a certain
dataset was used in the training. Take a document survey as
an example; the adversary who plans a membership inference
attack wishes to confirm whether an individual participated in
the survey [106].

Shorti et al. [107] proposed a framework for membership
inference in a centralized learning scenario, and it worked
extremely well even in the public ML service, such as Google
and Amazon. The basic consideration is that the value in
each dimension from the softmax function can represent the
probability that the input belongs to that category. The train-
ing continuously increases the model confidence by reducing
the gap between the hypothesized function and the obtained
results, which makes the probability of privacy leakage higher
and higher. The authors found that the samples in the training
set have much higher model confidence than others, which did
not join the training procedure, and this can be exploited for
membership inference. They use three methods to construct
the victim-users’ fake dataset, and the membership inference
attack shows excellent performance with different datasets
and network structures. Yu et al. [108] propose an effec-
tive and efficient black-box attack methodology that extracts
large-scale DNN models from cloud-based platforms with
near-perfect performance. Their work dramatically reduces
the number of queries required to steal the target model
by incorporating several novel algorithms, including active
learning, transfer learning, and adversarial attacks, as depicted
in Fig. 4. The main idea behind the shadow model is to
use input—output pairs obtained by querying the black-box
APIs with malicious samples to produce an attack model that
could successfully infer membership with smaller querying
times. The results show that the alternate model by using
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Fig. 4. Tllustration of the shadow model.

VGG19 DeeplD as the transfer architecture with the proposed
algorithm can reach 74.25% accuracy with 2.15k queries
than Tramer attacks [109] results (15.97%) under the same
conditions. Nasr et al. [110] assume that the active attacker
can exploit the stochastic gradient descent (SGD) algorithm
to run the active attack since the SGD algorithm forcefully
decreases the gradient of the training loss and generalizes to
the testing loss as well. Their white-box membership inference
attack can reach a considerably higher accuracy of 74.3%
compared with the 50% of the baseline for the random guess.

However, the reason for the successful attack is still not
so clear. Many researchers think that it happens because the
NN is overfit. In fact, with the early stop and regularization,
the attack in the previous work [107] performs worse but still
works better than the baseline of random guess. Thus, the
extension of this topic can be divided into two approaches:
one is to figure out the relationship between overfitting and
membership inference attack, and the other is to extend the
membership inference in different scenarios. For the first
approach, Song er al. [111] investigated the overfitting sce-
nario by simulating a malicious ML provider, who provides
ML algorithms for other users as services. They evaluated
memorizing users’ data by an ML algorithm in both white- and
black-box cases. Especially, in the black-box case, the model
was trained by extending the training dataset with additional
synthetic data, and during the experiment, they found that the
model, finally, overfits the synthetic data and could be one
reason for privacy leakage.

Yeom et al. [113] and Leino et al. [114] have also inves-
tigated this problem. Yeom et al. [112] evaluated overfitting
and privacy leakage quantitatively by targeting membership
inference and attribute inference. The results on linear and tree
models demonstrate that an attacker can sometimes perform
better by only tuning the decision threshold at € = oy instead
of taking op into consideration. They found that overfitting
is a sufficient but not a necessary condition for membership
inference since the model still can be attacked in a stable
training algorithm (i.e., one that does not overfit), while
attribute inference is more sensitive to overfitting.

For the second approach, Long et al. [106] analyzed the
association between generalization and membership inference
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and found that the success of membership inference may be
caused by some unique influence due to the participation
of different samples. In 2019, Nasr ez al. [110] proposed a
new framework for membership inference attack based on
federated learning, considering overfitting in the NN. They
pointed out that, in the later stages of federated learning,
there is a phenomenon that the testing samples’ gradients are
always greater than that of the training samples. Therefore,
they extend the work in [107] and show that the accuracy of
the attack can reach 80% by taking the gradients in each layer
of NN into consideration.

B. Unintended Feature Inference

In an unintended feature inference attack, the attacker’s goal
is to deduce features that are irrelevant to the trained prediction
model. For example, a CNN for face recognition can leak some
unintended features, such as wearing a pair of glasses. For a
gender classification model, the attacker may be interested in
some unintended features, such as the race information in the
training set.

Melis et al. [114] proposed this interesting attack in collab-
orative learning and federated learning scenarios. To attack
successfully, an attacker needs to generate a classifier by
training with two kinds of data. One of them has the feature
the attacker wants to infer, while the other does not. In the
federated learning procedure, in each upload episode, the
workers need to download the parameters and then upload
the new parameters after training with their own dataset. The
uploaded parameters for the above two different datasets will
be different. Therefore, attackers can download the parameters
for each round and then obtain two kinds of models: one
that is trained by the data has the feature it wants to infer,
whereas the other one does not. Collecting a certain number
of different gradients and labeling them, the attacker can train
a classifier to distinguish whether the parameters uploaded by
a victim-user have the features or not. Although the attack
has some limitations, it still performs successfully in some
specific scenarios and remains an interesting threat to federated
learning.

C. Representative Sample Reconstruction

In a representative sample reconstruction attack, the adver-
sary’s goal is to attack a certain federated learning worker by
extracting the characteristics in the training sample. It can be
seen as a shadow of the training sample, which looks similar
and consists of the main representative information of the
training sample, called the representative sample.

A representative sample reconstruction attack is generally
performed through two approaches: one by applying GANs
in the federated learning, and the other by completely recon-
structing the trained model. This attack leads to direct privacy
exploitation since the similarity of users’ data can expose a lot
of information. A representative sample consisting of charac-
teristics of workers’ data can be used to perform a poisoning
attack [3], which could also substantially harm the global
accuracy of federated learning. In 2017, Hitaj et al. [115] pro-
posed the first representative sample reconstruction framework
in federated learning.
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Fig. 5. Tllustration of GANs.

Fig. 5 shows the generic way that GANs operate. It involves
two models: one is Discriminator and the other is Generator.
Discriminator is based on the discriminative model, which
is trained based on sample data (real data), while Generator
follows the generative model, which generates observation
data based on some hidden information as input data. In GAN,
Generator generates sample data based on a given noise
vector, and then, Discriminator judges whether the input data
are real or false. Two models are trained iteratively through
backpropagation. The attacker can use the generated sample
data, change its label to the desired (but wrong) class, add it to
the training set of the global model, and, finally, train a model
that can recognize the victim’s dataset as wrong. The attacker
also updates its parameter to the global model for combination.
With successive rounds, the victim-user leaks more and more
information about his dataset during training, and gradually,
the Generator produces samples that are more similar to the
victim-user’s.

This idea is similar to the previous work on the model
inversion for centralized model training [116] since both
of them aim to recover the training data by extracting the
characteristic information. Model inversion can be fooled
by randomly generating some noise, which leads to classi-
fication error, i.e., recognizing a sample data, which does
not match with the human-beings’ perspective [117], [118].
Thus, model inversion can obtain sensitive information but
also probably get meaningless information [115]. To avoid
this problem, the representative sample reconstruction attack
improves it with GANs [119], which not only ascertains the
extraction of characteristics but also makes the information
leaked by the generated data more meaningful (i.e., the data
cannot be distinguished from the victim-user’s training set
easily).

Based on the work proposed by Hitaj et al. [115],
Wang et al. [120] further extended this type of attack that is
called mGAN-AI. Based on the idea that all users train the Dis-
criminator, this GAN adds another procedure as follows. The
algorithm catches the parameters updated by the victim-user to
update the Discriminator as in the previous work. mGAN-AI
further adds an additional step to generate some sample data
through parameters by using L-BFGS algorithm [121] and then
uses the data to train the Discriminator again for a more
accurate recognition model. Finally, it interactively creates
Generator with the help of the Discriminator. Though some
prior knowledge of the user dataset is needed in mGAN-AI, this
attack is much more accurate, and accordingly, the generated
sample data is much more similar to the victim-user’s original
data.
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D. Privacy-Preserving Frameworks

With the above possible privacy breaches, there is a con-
certed attempt to develop new privacy-preserving frameworks
in federated learning. Currently, the solutions are mainly
based on differential privacy [124], [125], secure multiparty
computation [126], [127], and homomorphic encryption [128],
[129]. In this section, we discuss these frameworks in detail.

Differential privacy adds noise to the information for
privacy guarantee from a mathematical perspective [124].
Shorki et al. [130] applied to collaborative learning by letting
each worker add noise to some of the parameters before
uploading. This gives a much more promising privacy guar-
antee for selection upload with noise [107], [114]. However,
this could lead to an extremely slow global convergence in
small-scale federated learning systems [114]. Also, it may not
work well in avoiding representative sample reconstruction
attack [115].

Even with differential privacy, privacy leakage can occur in
federated learning since the RA is able to observe the update
proposed by each worker. One way to address this is by using
homomorphic encryption of the parameters supplied by WAs
to RA [131]. Homomorphic encryption encrypts gradient into
a cipher text, and this cipher text has an operator equivalent
to a certain operator of plain text. This enables computation
on cipher text with the same result as with the plain text. For
example, consider homomorphic encryption with the property

EHC(X] +.XQ) = EI]C(X]) o EI]C(.XQ) (15)

where the function Enc(-) represents an encryption to translate
a plain text into a cipher text, x; and x, are two variables,
and o represent an operator for the cipher text. Homomorphic
encryption can handle the problem of curious but honest RA,
i.e., one that obeys the federated learning protocol honestly but
may be curious about WA’s data. However, such encryption
is often quite expensive and must be designed for specific
operations in mind. Also, since the gradient is not visible
to the server, it is difficult to analyze the appropriateness
of each user’s parameter set. This could allow a poisoning
attack possibly leading to a significant impact on global
accuracy [3]. It also cannot deal with the collusion between
RA and WAs. To address it, we need to introduce a trusted
third party [132] or improve the algorithm with multikey
homomorphic encryption algorithm proposed in [133].

Table III shows a summary of representative works in
privacy attack technology.

VI. DISCUSSION AND CHALLENGING ISSUES
A. Collaborative Learning Schemes

Although many collaborative learning schemes have been
proposed for the full range of ML algorithms from unsuper-
vised learning to supervised learning, the relative advantages
of different types of SM decomposition and integration are
still not investigated well. For example, while clustering, linear
model, and SVM all benefit from IMI, they need to be further
investigated in federated learning. Also, the scalability of
distributed optimization methods in federated learning needs
further study. We find that most of the collaborative learning
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schemes follow the passive and fixed participating model,
which means that the root node mainly separates the learning
tasks and distributes them to other helpers. Active and flexible
participation schemes for collaborative learning largely remain
to be investigated. The new learning scheme may bring
new challenges with respect to model update coordination,
energy consumption, optimization, and so on. For example,
active participation requires new coordination mechanisms
and their convergence analysis, which may be quite
challenging.

To expand federated learning to mobile environments (e.g.,
training an autonomous driving model by aggregating inputs
from many vehicles), we need to extend federated learning
by jointly considering wireless channels, mobility model of
users, and so on. For example, the iteration time slot and
frequency should be optimized jointly based on mobile node
characteristics. Furthermore, many other problems of such
an environment, such as message/data drops, synchronization
errors, and communication errors, need to be considered
to ensure fast convergence and an accurate model. Finally,
privacy-aware parameter compression needs significant addi-
tional work.

B. Robustness

By its very definition, a system is considered robust if it
does not fail easily (i.e., in response to small or isolated
perturbations). In the ML context, this amounts to ensure that
the model does not provide an anomalous answer because of
training on relatively small amounts of bad data with specific
features. This can be addressed by training the model to be
resistant to imperfections in the features, but this only provides
a tradeoff between robustness and accuracy. In particular,
a model trained on a wide range of imperfections to make
it robust is likely to be less discriminative.

In the general case of an overall model consisting of
multiple SMs, each SM needs to be made robust. This
would require, at a minimum, that the RA validates each SM
separately before fusing its outputs. This would still leave
them exposed to the possibility of backdoors or perturbation
of aspects not specifically covered by the validation tests.
Covering such anomalies would require some redundancy,
which can be provided in multiple ways. The simplest, but
most costly, the mechanism is to hand out each SM for training
to multiple WAs, exactly as in federated learning. For more
sophisticated approaches, the decomposition of the model
into SMs needs to be such that each feature is covered by
multiple SMs. This can be challenging since the SM structure
is often decided by the most relevant training data that a party
possesses. Because of the complex relationship between the
inputs and output of a DNN, it becomes difficult to compare
SM outputs to determine vulnerabilities.

The general collaborative ML model shown in Fig. 3 points
to a large number of scenarios, many of which can be very
challenging to address. The most studied special case so far is
federated learning, for which we have already discussed many
types of attacks and some mitigation approaches. Nevertheless,
addressing of attacks while preserving convergence and model
accuracy remains challenging.
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TABLE IIT
SUMMARY OF REPRESENTATIVE SAMPLE RECONSTRUCTION ATTACKS

Attack Types |Representative |Basic Procedure Types |Results |Effects
Works
Reduce
. As depicted in Fig. 4 Passive |[the Accuracy:
Membership Shadow Model
number of |74.25%
Inference [108] [107] K
queries
Attack:
measures a
machine learning / CNN Hich
model and a FCN Attack . & Accuracy:
record, determine NN output Active - attack 74.3%
£] .. . (4
whether this SGD-based [110] Training Gradient of each l, ) Encoder @_ Decoder capacities
Parameters layer X (FCN) (FCN)
record was used FCN
as part of the Input Attack features FCN
.. FCN
model’s training
dataset or not Attack model
Over-fitting Active |[sufficient |Accuracy
s ios [111 Passi but 113] :
e ] e o
11 not .
[ i ] Probability of ?
Membership necessary |CIFAR-
100
Learned
Displacement
Function
[ Target Model Weights Proxy Model Weights ]
Model Inversion Tnput Find the feasible set that Predict the unknpwp Return ) Significant|IS: 1.01+
1221 1116 dat — the predictionbased on —{ feature value by principal dat Passive bl 0.03
[122] [116] ar known features is correct of maximum entropy aa urry )
Representative
Sample Recon-
. MSE <
struction: Attack Deep Leakage Download global model i gy Update weights based on Loss
a certain from Gradient 5} Parameter || @ o Prediction | |1, Close to  |0.03 vs.
rom radients [ lAW Server | dh Results assive the real  |previous
federated [123] Victim  UPload local model Adversary ~ Computing Loss S o2
learning worker ! T ! '
by extracting the Adversary generates fake data by minimizing ||AW' — AW ||?
characteristics in
the training set,
and generate a GAN Category
tati - .
repre?en atve based |/‘ D §> Local training data Passive |Not IS: 1.18+
sample
p GAN [115] Z noise \i‘ X_fake Converge |0.03
Passive [Close to |IS: 1.42+
Category the real |0.03
mGAN- || /Identity one
Al —L"/‘ D Local training data Active |Most 1.61+
[120] Z noise G X_fake close to  |0.05
\\‘ the real
one
C. Privacy its convergence (e.g., adding noise to data) and may need

As discussed above, privacy leakage occurs in many situ-
ations of collaborative learning and avoiding such a leakage
often requires mechanisms that degrade the overall model or
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encryption or secure multiparty computation discussed above.
Privacy also has a direct impact on the ability to verify
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things, such as ensuring that the training data or the returned
parameters are not compromised. being able to simultaneously
address the two opposing sides, namely, preserve privacy and
yet detect/avoid malicious training or updates and do it in a
cost-effective manner is a fundamental challenge that requires
much further work.

D. Selection of Collaborative ML Algorithms

The selection of ML models is a common problem. Simple
models, such as LR, DT, or SVM, have a simple and explain-
able formulation and are quite efficient to run. However,
an NN can extract more complex features from data but at
a much greater cost. Thus, collaborative LR/SVM/DT can be
used in computation/communication constraint applications,
such as sensor networks, since: 1) computation complexity
of LM/SVM/DT is low; 2) the information to be transmitted
is small (LR: Matrix X, SVM: subvectors, and DT: splitting
information); and 3) most of them do not require interactive
training. Collaborative NN and federated learning can be used
for deep learning models, such as CNN and LSTM, and, thus,
are applicable for image processing or language analysis tasks.
In a collaborative scheme, the applications can be dealing
with distributed hospital image data, autonomous driving data,
audio data, and so on. The huge amounts of training data
required by sophisticated models, such as LSTM, become a
serious limiting factor to their use in many applications. Thus,
the issue of newer, more easily trainable models, especially
for data that incorporate some notion of the ordering of events
remains an open problem.

E. Concluding Remarks

In this article, we have performed a comprehensive survey
on collaborative learning, which is an important research topic
with numerous applications. The survey covers most of the
work that we are aware of in the corresponding research fields.
We focused especially on different learning schemes, robust-
ness, and privacy issues. The learning scheme is fundamental
to collaborative learning and has implications for many other
aspects, such as model update coordination, optimization,
robustness, and privacy. We expect that, in the future, more
general learning schemes, such as active or flexible participant
schemes, may be investigated and will likely benefit many
other application areas of collaborative learning. Robustness
and privacy issues also need to be investigated much more
deeply so that we can find ways of making collaborative ML
truly robust in critical safety applications, such as automated
driving. As to privacy, the existing work shows that over-
fitting affects privacy leakage differently for different types
of attacks, e.g., membership inference or attribute inference.
More theoretical and experimental studies are required for
different types of privacy leakage. Finally, a study of the com-
putation and communication overhead of privacy preservation
schemes and techniques to make them more lightweight is
crucial for their widespread use.
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