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Abstract—Content-Centric Networking (CCN) is a promis-
ing framework for the next generation Internet architecture
that exploits ubiquitous in-network caching to minimize content
delivery latency and reduce network traffic. In this paper, we
introduce a neighborhood aware mechanism for content caching,
named Neighborhood Aware Caching and Interest Dissemination
(NACID) that accounts for the popularity of contents and how
close the content copies are in the neighborhood. We use a
very low-overhead, Bloom Filter based dissemination of caching
information in the neighborhood. Given the neighborhood cached
contents, the proposed scheme decides when and how to handle
the additional caching of content and its eviction. Simulation
results show that NACID performs substantially better than the
existing CCN caching policies. We also study different hetero-
geneous cache memory allocation strategies and show that the
simpler homogeneous allocation strategies work almost as well.

Index Terms—Content centric networks, caching, interest
dissemination, content popularity, Zipf distribution, bloom filter.

I. INTRODUCTION

THE TREMENDOUS growth of Internet traffic in the
recent past has led to intensive research into alternate,

more scalable architectures. This Internet traffic is increas-
ingly dominated by video traffic; according to a report in [1],
the IP video traffic will be 82% of all consumer Internet
traffic in 2022. The increasing demand for video resolution,
Video on Demand (VoD), and time-shift TV services [2]
are expected to continue driving this growth. The emerg-
ing information-centric networking (ICN) [3] architectures are
based on the observation that the content distribution can
be managed better by tracking it by its ID and character-
istics instead of its location. This allows the contents to be
made available based on the user interest in it and its latency
or other QoS requirements. These ideas have been investi-
gated generally under the name content-centric networking
(CCN) [4]–[6] and more specifically under the NSF FIA
project called Named data networking (NDN) [7]. Thus a
key concern in ICN/CCN/NDN is where to host the content
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most efficiently based on dynamically changing demands and
network conditions. This is done by using a publish-subscribe
model to match the demand with availability and a dynamic
caching mechanism to keep the content closer to the demand
points.

In-network content caching has been studied extensively
in the current IP-based networks also, such as Web service,
P2P, CDN [8]–[10]. However, such mechanisms do not apply
directly to CCN caching due to the lack of unique and univer-
sal content name. For example, in Web caching if two copies
of the same content are placed in different servers of differ-
ent content providers, different URLs are used to identify and
access the content [11]. This makes the existing Web caching
or CDN caching unsuitable for CCN caching.

Caching of contents in CCN is also well studied [12]–[15];
however, most of these schemes use the notion of path
caching. That is, if the content is located at an origin node x,
and node y requests it, most schemes cache it along the path
from x to y, although the decisions about which nodes cache
it varies. For example, the content may be cached at every
node in the path, at the next node down from the last caching
place, etc. In contrast, we propose here a Neighborhood Aware
Caching and Interest Dissemination (NACID) scheme where
the caching decision is made based on whether any copy of
the content exists in the neighborhood of the requesting node,
and how far the requester needs to go to fetch the content.
We link this cost to the predicted demand for the content and
its obsolescence rate. In this paper we have characterized the
neighborhood size in terms of the number of hops from the
requesting node; however, other sophisticated metrics such as
a given delay limit can also be considered, which is beyond the
scope of this paper. Different CCN links may have different
costs (capacities, traffic volumes, delay etc.), thus in NACID
the nodes need to consider the routes to their neighborhood
content stores along with their route cost, before evicting the
content.

The main contributions of this paper are as follows. First, we
present an efficient Bloom Filter based dissemination mecha-
nism in the neighborhood so that its overhead remains small.
We also propose a two-level caching architecture in NACID
where the first level (called short-term cache or STC) is driven
by the arrivals of the newer contents, whereas the second level
(called long-term cache or LTC) periodically exchanges con-
tents with the STC to ensure that only the popular contents
are held in LTC. We quantify the advantages of the proposed
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Fig. 1. An abstract model of LDN.

approach via extensive simulations that show that the NACID
performance significantly better than the other well known
caching policies; in fact it increases the cache-hit ratio up
to ∼5X and reduces the average number of hops needed to
fetch the content by up to ∼57% on a network of 100 nodes.
NACID can be used for both inside an ISP as well as across
the ISPs with some peering arrangements.

The outline of this paper is as follows. We first discuss
the key motivation behind developing the NACID architec-
ture in Section II. Section III proposes the system model
including content popularity distribution and network architec-
ture. Section IV introduces the proposed neighborhood aware
caching scheme and describes the operation and interaction of
the two-level caching mechanism. Section V shows the simula-
tion comparison of NACID against other well-known existing
schemes. Section VI studies the performance of NACID from
some real Youtube traces from a campus network. Relevant lit-
erature and discussions are summarized in Section VII. Finally,
we conclude the paper in Section VIII.

II. MOTIVATION BEHIND NACID

Interestingly the key motivation behind this work stems
from our recent efforts for building an efficient Logistic
Distribution Networks (LDN) [16], [17]. We observe that a
significant amount of synergies exist between the LDN logis-
tics and the CCN architecture. Fig. 1 shows a typical LDN
architecture, which also works as a producer-consumer model
similar to CCN. In LDN the commodities move from “source”
to “destination” endpoints, the former being farms and man-
ufacturing/assembly plants, and the latter retailers and other
large customers (e.g., restaurants, hospitals), though there is
generally no transportation in the other direction. Commodities
flow from source to destination via a number of intermediate
points which include local, regional, and global distribution
centers as shown in Fig. 1. These nodes can store full or empty
containers, change container contents (by removing, adding,
or exchanging packages), load/unload containers on carriers,
handle damage/misdelivery, etc.

In LDN the popular commodities are stored and ordered in
large quantity compared to the others, which is identical to the
caching of more popular contents against the rare ones. Thus
proactively storing a popular commodity in logistics is often
beneficial compared to the unpopular ones. In LDN a sudden
demand at a retailer can be satisfied from some nearby distri-
bution points or retailers (instead of bringing all the way from
the “source”). This is technically known as lateral distribution

in logistics. CCN has similar characteristics in that the con-
tent can be fetched from some neighboring cache, rather than
bringing from the actual source server.

The above producer-consumer based LDN model has two
key fundamentals concepts that we want to capture in NACID.
First is the notion of dynamic popularity of the contents, and
we use it to model a benefit function of caching (or not) the
contents in CCN routers. Second is to model the lateral trans-
fer from neighborhood caches, which results in neighborhood
aware caching in CCN context. We next discuss these points
in Sections III–IV.

III. CONTENT POPULARITY PREDICTION IN NACID

A. Content Popularity Distribution

In CCN the content popularity is determined by how often
a piece of content is requested. Recent studies [18], [19] show
that the users are attracted by only few contents, while others
are accessed rarely. In fact a significant portion of the contents
are one-timers. Therefore, the content popularity is commonly
modeled with the Zipf distribution function, which states that
the size of the i-th largest occurrence of an event is inversely
proportional to some power of its rank. In a Zipf distribution,
out of the population of M contents, the frequency of the i-th
content is given by

f (i , α,M) =
1
iα

∑M
j=1

1
jα

=
1
iα

HM,α
(1)

where α is the Zipf exponent and HM,α =
∑M

j=1
1
jα the gen-

eralized harmonic number of order α. In literature the range
of α is varied from 0.6 [20] to 2.5 [21].

By taking logarithmic values on both side in equation(1),
we obtain

logf (i , α,M) = log

(
1

HM,α

)

− αlogi (2)

which means the distribution function is a linear in a log-
arithmic scale. When α = 0, it corresponds to a uniform
distribution. When α > 1, the frequency of the less popular
contents tend to drop quickly.

To illustrate the effects of Zipf based popularity distribution,
we use two real datasets, named Kosarak and Retail, that
have been widely used in the data-mining literature and follow
power law distribution. Kosarak is a click-stream dataset of
a Hungarian online news portal that has been anonymized,
and consists of transactions, each of which is comprised of
several integer items. Retail is a retail market based data
obtained from a Belgium store. Figs. 2(a)–(b) show the number
of times a content has been accessed versus the ordering of
the content in the trace. Both figures show a roughly linear
plot (in the log-log scale) for frequently accessed items. The
tail behavior is usually different and can be captured more
accurately with more complex distribution functions, but this
may not be necessary.

Fig. 2(c) shows the CDF of occurrences of the top r%
contents in four traces (Kosarak, Retail, Q148, Nasa
obtained from [22]). From this figure we can observe that top
1% of the contents are accessed for about 80% of the time
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Fig. 2. Frequency of content accesses versus content ranking for (a) Kosarak (α = 1.99) and (b) Retail (α = 1.55) traces [22]. (c) Cumulative
distribution of content demands vs content ranking for different traces.

in case of Q148 traces, whereas varies in between 30-60%
for others. Whereas the top 10% of the contents are accessed
more than 60% of the time in all traces. Thus correctly identi-
fying the hot contents in CCN is crucial for caching decisions.
We thus model some content popularity prediction schemes in
Section III-B, which are used in content caching in Section IV.

B. Content Popularity Prediction Model

The popularity of a content varies from region to region.
For example, a regional news or sport may be popular within a
region but will be rarely accessed by the users in other regions.
Thus the popularities of programs with regional dialects or
importance greatly vary spatially and temporally. To predict
this dynamic and regional popularity, we first consider a
few well-known time-series prediction schemes as mentioned
below. These prediction models will run at each CCN router
independently to capture the regional variation of content
popularities.

Simple Moving Average Model (SMA): Let Y c
t denotes the

local demand of content-c (i.e., the number of accesses) at a
router at time t. Then the SMA model predicts the demand
for the next time slot as simply the average from the actual
demands from the last m slots [23]. That is, Ŷ c

t+1 = (Y c
t +

Y c
t−1 + . . .+ Y c

t−m+1)/m .
Exponentially Weighted Moving Average Model (EWMA):

EWMA uses a simple exponential smoothing for prediction,
i.e., Ŷ c

t+1 = ηY c
t + (1 − η)Ŷ c

t , where η is the smoothing
constant in between 0 and 1. EWMA is the most widely used
time series prediction model.

Autoregressive (AR) Model: An Autoregressive (AR) model
is one of the most popular methods for modeling and
predicting future values of a time series [24]. Given the past
demands of c, an AR model of order p is defined as:

Y c
t =

p∑

i=1

βiY
c
t−i + εt (3)

where β1, . . . , βp are the parameters of the model and ε is
a white noise error term. The error terms, εt , are generally
assumed to be Gaussian i.i.d. random variables with zero mean
and constant variance.

We evaluate the effectiveness of prediction based caching
against the least recently used (LRU) based caching using

Kosarak [22] trace, having a total of ∼41k distinct items.
Since LRU replaces the least recently used content, it can be
thought of as a popularity prediction mechanism based on the
stack distance estimate. Fig. 3(a)–(b) show the comparison of
LRU, SMA, EWMA, and AR (ties due to identical Ŷ are bro-
ken based on the content recency) with cache size 100 and 500
respectively, i.e., at any instance the cache can store <2% of
the total contents. The contents are assumed to arrive at one
per second, whereas, each slot spans 1000 seconds. For SMA
we assume m = 5 for Fig. 3, i.e., the moving average is cal-
culated over a window of 5000 items. We have set the value
of p to 1 and 3 in Fig. 3; we have experimented with other
values as well, however, the performance of cache hit remains
almost the same. From these figures we can observe that the
above content access prediction based schemes improve the
cache hit by ∼10-12% in comparison to LRU.

Similar improvements are also observed with other well-
known trace files [22], [25]. Such improvement is explained
in Fig. 4, where A and B are two popular contents and C is
relatively less popular. Also assume that a cache can store two
contents at any time. In such situation we can observe that the
LRU strategy performs poorly as compared to a prediction
based scheme that can predict the popular contents (i.e., A
and B) and store them irrespective of their recency. Thus
the popularity prediction based caching scheme experience
6 hits as opposed to just 2 hits in case of LRU. The suc-
cess of the scheme strictly depends on how accurately and
quickly it can distinguish the popular contents A and B as
opposed to C.

We can also observe from Fig. 3 that all the prediction
schemes perform almost similar. The reason is that all these
schemes may vary in terms of their prediction accuracy, but
can distinguish the popular contents as opposed to the less
popular contents almost identically. Because of this reason,
the hit ratio is similar for all these schemes. We thus use
the SMA based popularity prediction model for the rest of
the paper, for simplicity. Other complicated prediction models
(like EWMA or AR) can also be used, however, we consider
SMA mainly because it is simple, lightweight and can be eas-
ily implemented in CCN routers. Such popularity predictions
are useful for taking effective caching decisions as discussed
in Section IV.
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Fig. 3. Comparison of LRU and other popularity prediction based content caching schemes with (a) cache size = 100, and (b) cache size = 500 for
Kosarak trace. The numbers within the brackets corresponding to EWMA and AR represent their η and p values respectively. The cache sizes are defined
by the number of chunks that the cache can accommodate.

Fig. 4. An illustrative example for comparing LRU and popularity prediction
based caching.

C. Memory Overhead of SMA

Now let us analyze the memory overhead for tracking the
demands corresponding to every content in SMA. The number
of total content name prefixes in today’s Internet is around
100 million [26], thus, for a router maintaining per-content
state to evaluate the “usefulness” of an arriving content results
in a significant amount of memory consumption. However,
there is a quite a bit of locality in Internet traffic, and every
tier1 router carries a very tiny fraction of the possible 100M
contents. This cross section is further narrowed down as most
items (i.e., videos, movies, news stories, etc.) are only of local,
regional, and country/language specific interest. Furthermore,
the time zone differences across the prefixes provide further
temporal locality of accesses. However, the most important
characteristic to limit the memory consumption is the highly
skewed (e.g., Zipf like) access pattern. That is, by keeping
only a few percent of the most popular objects, we should be
able to capture most of the repeated accesses. Lets assume
that the routers maintain their per-content state information in
a buffer called tracking buffer (TB); the TB can be treated as
a cache using any replacement policies.1

Let us assume that TB can store the demands of L con-
tents for m slots, where L is less than the number of contents,
and m is the length of SMA. For experimentation we discuss
the performance of two replacement policies in TB. First, we
consider a simple LRU policy for replacing the entries, when
the TB is full. Notice that the number of entries in TB will
be much more than that of the cache, and so using LRU for
maintaining TB is not identical to that of caching. We call this

1This TB cache is different from and much smaller than the data cache; it
only tracks the content ID’s.

scheme TB-LRU. The second policy is to replace the contents
that has been accessed the least in the last m slots, which we
call “TB-Least Frequently Used” or TB-LFU policy. To ensure
that the newly coming contents are not replaced immediately
after been inserted in TB, we ensure that the contents that are
accessed in the current slot are not replaced before the end of
that slot, i.e., if a content is requested in (t − 1, t), then it will
not be replaced before the end of t. Notice that in TB-LFU
policy, the TB length should be atleast as large as the number
of content accessed during a slot time. Such a requirement is
not needed in the TB-LRU policy.

Fig. 5 shows the performance of these two policies with
different TB lengths on Kosarak dataset. With both policies
the hit ratio is hardly affected till the TB length is 2% of
the total number of contents, i.e., nearly all of the repeated
accesses are captured by using a TB size that is only 2% of
the total number of unique items. In case of TB-LRU policy
the cache hit deteriorates slightly when the TB length becomes
1% of the number of contents. Notice that we did not show
this case for the TB-LFU policy, because of its requirement of
having TB length more than the number of contents accessed
in a slot time. To ensure this scheme to be beneficial that the
TB length should be much larger than the number of contents
a cache can store, so that the TB list can have a better view
of the content access demands. Note that even when the TB
length is only a small fraction of the number of contents, the
scheme is still better than simple LRU based caching.

It is also worth commenting that the resources available
at any Internet tier must be commensurate with the num-
ber of routing paths or contents handled by it. For example,
suppose that we use 8B for content ID/item, 4B for access
frequency/item, and 8B for pointers or other data structure
elements. Also suppose that we keep history length of at
most 10. This results in 16 + 40 = 56B per item. Thus, a
tier1 router handling simultaneous 100M items would only
need at most 112MB of memory (assuming 2% most popular
item IDs are cached). This is insignificant for a tier1 router
that is likely to have 64GB or more memory. Similarly, a
much smaller regional router handling 1M items and using
5% caching to capture even less frequent items will still
need only 2̃.8 MB memory. As an example, the YouTube
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Fig. 5. Effect of limited TB length on SMA performance with (a) TB-LRU and (b) TB-LFU.

Fig. 6. The overall NACID architecture.

video traces collected from a gateway router at University of
Massachusetts, Amherst [19] shows only 300K unique items
over a period of two weeks.

The authors in [27] have also mentioned around 500K
unique videos over a two-week period from a leading online
video content provider in China. Similar comments apply to
the computing power required.

IV. NEIGHBORHOOD AWARE CACHING AND INTEREST

DISSEMINATION IN NACID

We next introduce a neighborhood aware mechanism for
content caching and information dissemination scheme for
CCN. We assume that each CCN router is assigned a unique ID
with a flat or hierarchical structure [28].2 We also assume that
the contents are divided into smaller chunks which are identi-
fied by their unique names or IDs. Compared to the previously
studied schemes [12]–[15] on path caching, in NACID the
caching decision is made based on (a) where the content exists
in the neighborhood of the requesting node, and (b) its pre-
dicted content demand and its obsolescence rate. The overall
NACID architecture is shown in Fig. 6. The entire scheme is
summarized below, by describing the two key modules, named
Cache Engine and Routing Engine that run at each router.

2Our scheme is not dependent on the naming structure, so the choice of
the naming structure has no effect on the performance of NACID.

Fig. 7. Two level caching and A typical Bloom Filter.

A. Cache Engine

The main challenge in enabling the neighborhood aware
caching is the advertisement of the cached content-chunks,
while keeping the overhead small. To address this issue, we
propose a two-level caching scheme, as shown in Fig. 7. We
assume that the entire cache/Content store (CS) of a node is
divided into two levels, the upper level is the long-term cache
(LTC) where the most useful content-chunks are cached. The
rest is used to reserve the less useful chunks, and is known
as short-term cache (STC). The STC cache is updated at each
arrival of a chunk, to check whether the chunk is going to be
cached or not. Occasionally the existing cache is reshuffled,
where more useful chunks are transferred to the LTC and oth-
ers are placed in the STC. This reshuffling can be done either
periodically or when the STC is changed significantly. After
such an update, the information regarding the LTC chunks is
broadcast up to a certain number of hops, which is defined
as broadcast range B. As the CCN content names are much
complex and longer than IP addresses, we use Bloom filter
(BF) to encode the presence of a content in a router’s LTC.

A Bloom filter is a hash-coding method used to represent
a large set and at the same time supports membership queries
on the set. The key difference between Bloom filters and tra-
ditional hash based representations of a set of elements is that
the space required for Bloom filters is considerably reduced
at the cost of permitting a small fraction of errors. Each con-
tent (key) is hashed using k different hash functions and the
resulting “hash positions” are updated to 1. When there is a
membership query for a key (or content), if all k hash positions
of the key are set to 1, then a positive membership query is
returned. While the false negative probability is zero, the false
positive probability is a tunable parameter, which depends on
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the size of the filter. BF offers an efficient way to represent the
set of cached chunks and takes O(1) time to check whether
a given chunk is within the set. A typical example of Bloom
filter is shown in Fig. ?? where two contents a1 and a2 are
inserted in a bloom filter by using three hash functions (h1,
h2 and h3) by setting the corresponding bit positions to 1. An
illustration of a false positive scenario is also shown in this
figure where the presence of content b is wrongly inferred as
the three hash functions map b to the bit positions that are
set to represent the presence of a1 and a2. In typical bloom
filters elements can be added to the bloom filter, but cannot
be removed.

The LTC cache remains unchanged throughout the update
interval (i.e., the time in between two successive cache reshuf-
fles). By keeping the LTC chunks unchanged within an
interval, the BF broadcast is limited to one per interval. Note
that the STC elements are not shared in the neighborhood.
Given such a mechanism, it is easy to reactively cache the
incoming chunk if it is not available in the close neighbor-
hood. Notice that the update interval can be either periodic or
adaptive (i.e., when the STC is changed significantly).

When a new chunk arrives at a node, the STC decides which
chunks (if any) should be replaced. The cache reshuffling, done
periodically, chooses the most useful chunks to store in LTC
and broadcast. For this, we define the benefit (wi ) of a chunk
by including two factors: (a) cost-demand factor, which is the
product of the predicted access demand Ŷt and the cost ct to
get it from the nearest neighbor, and (b) recency factor, which
is inversely proportional to the time since last access. That is,

wi = ζct Ŷt +
γ

max(Δi , ε)

(
ζ � γ

ε

)
(4)

where Δi is the difference between the current time and the
time when a chunk was last encountered. The term ε ensures
that the second factor cannot be a dominating factor for very
small Δi . The simplest form of ct can be the number of hops
to the nearest neighbor node; however, more sophisticated cost
metrics such as link capacities, traffic volumes, delay etc. can
also be considered. For our experiments, ct is calculated by the
hop-counts. The intuition behind calculating wi is as follows:
it is beneficial to cache a chunk that has (a) high demand Ŷt ,
(b) is cached in a router that is far away (i.e., high ct ), and (c)
is recently encountered (i.e., low Δi ). In equation(4), ζ, γ and
ε are hyper-parameters with ζ � γ

ε , which ensures that the
cost-demand factor dominates while calculating the benefit of
caching a chunk; when this factor is almost identical to some
contents, then the ties are broken by using their recency.

With these, the general caching problem is described as fol-
lows. Assume that yi is the decision variable to check whether
a chunk is going to be cached or not, and si is the size of the
i-th chunk. Then the problem is to choose certain chunks from
a set of M, that can be accommodated in a cache size of C,
which can be formulated as follows:

Max
M∑

i=1

wi .yi subject to
M∑

i=1

yi .si ≤ C , yi ∈ {0, 1}

(5)

Algorithm 1 Greedy Caching
1: INPUT : Cache capacity C, benefits (wi ) and sizes (si ) of chunks i =

{1, 2, . . . ,M}.
2: OUTPUT : Vector yi ∈ {0, 1} ∀i ∈ {1, 2, . . . ,M}.
3: Sort the chunks in decreasing order of wi

si
, i.e. w1

s1
≥ w2

s2
≥ · · · ≥

wM
sM ;

4: Define � = min{ξ ∈ {1, ...,M}:∑ξ
i=1 si > C};

5: yi = 1 corresponding to the chunks (1, 2, . . . , �− 1) and 0 otherwise;

The above problem is identical to the 0-1 Knapsack
problem [29] in combinatorial optimization, which is proven
to be NP-hard. We thus propose a greedy heuristic which
is similar to the greedy knapsack solution, as described in
Algorithm 1. The scheme first sorts the chunks in decreasing
order of wi

si
and then caches them sequentially until the cache

space is filled up.
We note the following properties of our greedy algorithm:
Observation 1: If the cache size is much larger than the

maximum chunk size, and max{wi} <<
∑M

i=1 wi , then
greedy algorithm approaches to the optimal solution.

Proof: The solution of Algorithm 1 and the continuous (or
LP-relax) version of the knapsack problem differs by at most
one element. The 0-1 knapsack problem is upper bounded by
its LP-relaxation version, and Algorithm 1 differs from the LP-
relaxation version by just one element. Thus in the limiting
case of large cache, Algorithm 1 approaches to the optimal
result, provided max{wi} <<

∑M
i=1 wi .

Observation 2: When all chunks are of the same size, the
greedy algorithm converges to the optimal solution.

In our simulations, we assume that all chunks are of equal
sizes, which is generally assumed in literature [30]. The
assumption can be justified as follows: for heterogeneous con-
tent sizes, the contents are split into chunks of identical sizes
where each of them can be considered as individual con-
tents. Such equal size chunks are used in Dynamic Adaptive
Streaming over HTTP (DASH) protocol which usually splits
each video content into several equal-sized chunks, as reported
in [30].

Algorithm 1 is used asynchronously at the time of cache
reshuffling, to keep the most useful chunks to LTC, whereas
others go to STC. The same algorithm is used to reactively
make the decision of caching (or not) the incoming chunks in
STC depending on their benefits.

Time Complexity of Maintaining the STC in Case of
Identical Content Sizes: The contents-chunks are placed in
a MIN-HEAP data structure (depending on their benefits) for
taking the caching decision efficiently. This ensures that in
case of identical content-chunk sizes, this reactive mechanism
just requires a benefit comparison between the newly arrived
chunk and the chunk with least benefit in STC (i.e., at the root
of the HEAP), and thus can be done at the line speed of the
routers. If the newly arrived chunk is cached, the root of the
HEAP is replaced by the new content and MIN-HEAPIFY is
called to maintain the HEAP, which can be done in O(log n)
time.
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B. Routing Engine

Another component in Fig. 6 is the Routing Engine that
forwards the Interest packets. The existing CCN mechanisms
forward Interest packets towards the content server through
the shortest path since they are unaware of the cached chunks
in their neighborhood. Since our mechanism is aware of
the caching (only LTC chunks) in the neighborhood via a
Bloom Filter (BF) mechanism, the routing engine forwards
the Interest packets towards the nearest (or least cost) cache
instead. To calculate the cost among their neighbors, the
nodes periodically exchange the updated link cost information
(bandwidth, traffic volume, congestion, delay etc.) in their
neighborhood. However, for simplicity we will only use hop-
count as the cost-metric for our simulations. Each router
maintains the cost information along with the broadcasted BF
from its neighbors in its Neighbor table (or Neighbor base).
Upon arrival of a new BF from any neighbor, this table is
updated corresponding to that neighbor. This table is referred
by the routers to forward the Interest messages towards the
nearest cache. If no neighbor entry is available corresponding
to a chunk, it is forwarded towards the repository (Repo in
short).

The overhead of this scheme is that the routers need to store
the bloom filters of all their neighbors in their Neighbor base.
However in Section V-H we show that the additional memory
overhead of this scheme is very limited for practical cache
sizes and thus can be used in a realistic CCN environments.
For further reducing the memory requirements other kinds of
bloom filters (such as compressed bloom filter [31], cuckoo
filter [32] etc.) can also be used, details of which are beyond
the scope of this paper.

One can also argue that the CCN routers can store the hash
functions (like SHA-1, MD5 etc.) of their cached contents, and
broadcast the hashes of only the entries that have changed. If
the entries do not change too frequently this might be more
efficient, whereas if they change frequently then the Bloom
filter exchanges will be more efficient.

In both schemes, each node needs to store the compressed
representation of the LTCs of all the nodes in its neighbor-
hood. With hashing, the representation is in form of a table
of hashes of all LTC entries. The size of the hash entry deter-
mines the collision probability. For example with a cache size
of 106 chunks and with a 32-bit hash function that spreads the
values fairly evenly, the collision probability of the order of
10−3. This amounts to 4MB space per node. With Bloom fil-
ter, the size determines the false positive probability. As shown
in Table I, with 106 chunks and false positive probability of
10−3, the per node size is only 1.7MB. Thus, Bloom filter is
more efficient from storage perspective; however, unlike the
hashing solution, the entire filter must be transferred to convey
the modifications in the LTC at a neighbor. In order to reduce
the transfer overhead, it is possible to forego broadcast of a
BF to the neighborhood if only a few entries have changed.

C. Putting it Together

With these we next propose the overall procedure of
NACID. If a CCN router is interested in a content-chunk that

Fig. 8. An illustrative example.

is not there in its cache, it first checks whether the chunk
is there in its neighborhood by consulting with the Neighbor
Base. If it is not found in the Neighbor Base, the Interest is
forwarded to the Repo. Otherwise the Interest is forwarded to
the neighboring router with the least cost. The Interest packet
carries the ID of the neighboring router that has the chunk.
Along with the ID, the Interest packet also carries a setAg-
gregate flag which is set to true by default (we describe the
use of this flag shortly).

Each router receiving an interest should first check whether
the requested chunk is present in its local cache by looking
up the Content Store (CS) table. If there is a hit, the router
forwards a copy of the chunk to the requester along the reverse
path. Otherwise the router forwards the Interest towards the
router/Repo whose ID is mentioned in the Interest packet.

The Pending Interest Table (PIT) is used to record the ongo-
ing requests. When a router generates an Interest, each router
in the path towards the destination adds an entry in its PIT.
When the response comes back, this table is used for sending
back the requested chunk through the reverse path towards the
sources of the Interests. While forwarding the chunk back in
the reverse path, the CacheEngine of the CCN routers deter-
mine whether to replicate the chunk in the STC based on
the proposed caching strategy. Each Interest has an associated
lifetime; its PIT entry is removed when the lifetime expires.
When multiple Interest packets (with setAggregate = true)
for the same chunk arrive at a CCN router, only the first
Interest packet is forwarded whereas others are suppressed for
reducing the network traffic.

Notice that the effectiveness of the forwarding mechanism
depends on the BF size as well as its false positive probability.
Due to the false positive probability, an Interest packet can be
forwarded to a router i that does not have the desired chunk.
In that case router i detects it and forwards the Interest packet
to the Repo, with the setAggregate flag set to false. When a
router receives an Interest with setAggregate = false, it for-
wards the packet towards the Repo instead of suppressing it.
For example in Fig. 8 assume that R1 sends an Interest packet
with setAggregate = true to R3 thinking that it stores a par-
ticular chunk. This Interest packet is forwarded by R2, any
other Interest packets with setAggregate = true that arrive
at R2 are suppressed. When R3 receives the Interest packet,
it checks its CS and realizes that the Interest is wrongly sent
to it. It then forwards the Interest packet towards Repo with
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Fig. 9. Flowchart illustrating NACID protocol.

setAggregate = false. Whenever routers like R2 receives
such an Interest packet with setAggregate = false, it for-
wards it towards Repo instead of suppressing it. The entire
scheme is illustrated in the activity diagram of Fig. 9.

Notice that NACID requires the information passing across
the content routers, which can be addressed in two ways. First,
NACID can be used freely within the scope of an ISP. This
can be quite useful in itself because a physical region is often
served by one (and at best a few) ISPs, and even when multiple
ISPs are present, they often provide different services, each
with their own unique content. Second, when two or more
ISPs provide services that involve overlapping content in the
same area, we can expect peering arrangements between them
as such arrangements help both providers and customers. We
also envision a finer grain resource sharing and access control
in the future so that all ISPs can more effectively deal with
congestion and slash-dot situations.

V. SIMULATION RESULTS

We analyze our proposed CCN scheme using
CCNSIM [33], which is an application-level simulator
for content centric network based on OMNeT++. We assume
a 10 × 10 grid topology consisting of 100 nodes. The content
store (Repo), is at a corner of the grid. The content request
of a requesting node is assumed to be Poisson with an arrival
rate of one request/second. Unless otherwise mentioned, the
update interval is assumed to be periodic with a period of
200 seconds. We compare our proposed scheme NACID with
the following popular CCN schemes. The default replacement
policy of the following schemes are assumed to be Least
Recently Used (LRU).

LCE: Leave Copy Everywhere, i.e., cache all along the path
from content store to the node with registered interest.

LCD: Leave Copy Down, i.e., bring the content down one
step closer to interest [34].

ProbCache: Cache along the path from Interest to server
probabilistically to accommodate multiple flows using this
path [14].

FixCache: Cache along the path from Interest to server
probabilistically with probability 0.1.

For these above-mentioned schemes, we used the shortest
path routing (SPR) based interest dissemination towards the
repository. We also compare this with two nearest replica rout-
ing (NRR) based forwarding, denoted by NRR’ and NRR” that
are proposed in [35]. NRR’ uses an exploration phase where
a content request is flooded by any node that receives the
request. When a node finds the matching chunk in its cache,
it forwards it towards the requested node. This may result in
multiple chunks in return, and thus stress the network. NRR”
runs in two phases: in the first phase the requesting node sends
a meta-interest packet, indicating that it expects a binary reply
regarding a content’s availability. Based on the replies of the
first phase, the requesting node sends an interest packet to the
nearest node having the available content. NRR” ensures low
traffic load and avoids cache pollution; however, it introduces
delay due to the two phase exploration. In [35] the authors
have shown that the nearest replica routing along with LCD
shows superior performance, thus, we use NRR+LCD as a
comparison benchmark.

We assume that the popularity distribution of the contents
is Zipf with decay parameter α. Note that α = 0 implies
a uniform distribution, and a larger α implies a distribution
with shorter tail. Unless explicitly mentioned, the entire cache
space is divided among the STC and LTC, with a ratio of 1:3.
We assume a total content pool of 104 with identical content-
chunks for most of the simulations, whereas larger number
of contents are studied in Section V-G. As we have assumed
identical content-chunks, the cache sizes are defined by the
number of chunks that the cache can accommodate. We use
α = 0.5, 0.8, and 1.0 for the results. All results are plotted
with a 95% confidence interval.

A. Performance Comparison With Other Schemes

For our simulations, the size of the bloom filter is deter-
mined as follows. In a BF, the presence of collision regions
generate positive matches for a membership check of a content
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Fig. 10. Comparison of cache hit ratios for different caching schemes, with (a) α = 0.5, (b) α = 0.8, (c) α = 1.

Fig. 11. Comparison of normalized hop-counts for different caching schemes, with (a) α = 0.5, (b) α = 0.8, (c) α = 1.

that is actually not present inside the set. A larger BF yields
smaller false positive rate. Let M denote the number items that
may be inserted using the BF. The false positive probability p
is minimized if the length of the BF is optimally chosen to be
m = (−M ln p)/(ln 2)2 [36]. The corresponding optimal num-
ber of hash functions to be used is equal to k = (m ln 2)/M.
For our simulations, we choose the maximum cache size to be
500; with these the values of m and k are chosen to be ∼900
bytes and 10 respectively to keep p approximately 0.001. Our
current implementation of Bloom filter is borrowed from [37],
which uses CRC32-128 bit hash to generate the hash values.

We compare the Cache Hit Percentage and the Normalized
Hop-Count (NHC) for the above schemes. The former repre-
sents the probability that an Interest message finds the chunk
in a cache, and the latter gives the percentage of the network
diameter the Interest must walk before getting to the chunk.

Performance of cache hit percentage: Fig. 10 shows the
cache hit percentage of NACID in comparison to other
schemes, with the variation of cache sizes. From Fig. 10(a)
we can observe that with α = 0.5, NACID improves the cache
hit probability upto ∼5 times compared to the other schemes.
With higher α (i.e., α = 1), this improvement becomes upto
∼2.75 times compared to other schemes. This is because for
large α, most of the popular contents are stored in the cache
and at the same time accessed more frequently, which makes
other schemes perform close to NACID. This shows the effect
of caching the chunks based on their overall benefit, rather than
some implicit information or some probabilistic inference.

We can also observe that the hit probability increases by
upto 2.4 times, when the cache size increases from 100 to
300 based on different α. This is obvious because more cache
size accommodates more chunks, which improves the number

of hits. We can also observe that the hit probability almost
doubles when the α increases from 0.5 to 1. This is because
with the increase in α, more popular chunks are fetched more
often, which overall improves the cache hit probability.

Performance of normalized hop-counts: Fig. 11 shows the
comparison of the normalized hop-counts of NACID against
other proposals. With α = 0.5, NACID reduces the num-
ber of hops traversed by ∼24%-57% compared to others.
Similar improvements are also evident with higher α. This
clearly shows the improvement of NACID due its neighbor-
hood awareness. We can also observe that the NHC goes down
by ∼43% when the cache size is varied from 100 to 300. This
is obvious because of the fact that higher cache size increases
the number of cache hits and effectively improves the number
of hops traversed. With the increase in α from 0.5 to 1, the
NHC reduces by ∼33-56% since higher α concentrates most
accesses to fewer chunks.

The results show that the NACID algorithm improves the
cache hit ratio upto 5 times over all other algorithms, and
it does so while also simultaneously reducing the NHC by
upto 57%. This establishes the superiority of our algorithm
over previous CCN caching algorithms, with only a small
increase in the complexity. Among the other schemes, LCE
performs worse than others because it always cache the con-
tents along the path from the content store to the source of the
interest.

Comparison with NRR’ and NRR”: Figs. 12–13 show the
comparison of NACID with NRR’ and NRR” schemes. From
Fig. 12 we can observe that NACID increases the cache
hit by upto 10 times as compared to NRR’ and more than
twice in case of NRR”, with α = 0.5. This is because
NACID not only exploits the advantage of neighborhood aware
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Fig. 12. Comparison of cache hit ratios for NACID, NRR’, NRR”, with
(a) α = 0.5, (b) α = 1.

Fig. 13. Comparison of normalized hop-counts for NACID, NRR’, NRR”,
with (a) α = 0.5, (b) α = 1.

interest dissemination, but also takes advantage of caching
the popular chunks by using simple SMA based popularity
prediction along with their neighborhood aware collaborative
benefit calculation. We can also observe that the improve-
ment between NACID and NRR” decreases when α = 1.
This shows that the popularity prediction gives more advan-
tage with lower α. This is intuitive because with higher α,
the content popularity becomes more skewed, thus, the gain
from the collaborative benefit calculation reduces. Because of
these advantages, NACID reduces the normalized hop-counts
by ∼22-50% as compared to NRR’ and ∼13-38% as compared
to NRR”, with α = 0.5, while the improvement decreases with
higher α.

Fig. 12–13 show an interesting observation, which is the
performance penalty of NRR’ due to its request interest flood-
ing from the requesting node and the multiple cache evictions
due to the return of multiple chunks in response to this flood-
ing. While comparing in between NRR’ and NRR” we can
observe that with LCD, NRR” improves the cache hit by more
than 3 times with α = 0.5. While the performance of NRR”
improves with higher α, NRR’ still shows poor performance.
Because of this reason with α = 1, NRR” improves the cache
hit by upto 7 times as compared to NRR’. This penalty also
results in higher hop-counts for NRR’ as seen from Fig. 13.

B. Performance of NACID With Different Tuning Parameters

1) Comparison With Different Broadcast Range: Fig. 14
shows the variation of cache hit ratio and normalized hop-
traversal with different broadcast ranges, when α is assumed
to be 1. From Fig. 14 we can observe that the cache hit ratio
improves by ∼35-65%, and the NHC reduces by ∼14-43%
when B increases from 2 to 12. This is because with more
broadcast range, the content routers become more informed
about the LTC contents around their neighborhood, which

Fig. 14. Comparison of (a) cache hit ratios and (b) normalized hop-counts
with broadcast range.

Fig. 15. Comparison of (a) cache hit ratios and (b) normalized hop-counts
with update interval.

Fig. 16. Comparison of (a) cache hit ratios and (b) normalized hop-counts
with different bloom filter sizes.

improves the network performance. However, this improve-
ment comes at the cost of more control overhead. Notice that
the improvement becomes marginal beyond B = 6 hops. Thus
most of the contents are available within 6 hops around a
router’s neighborhood.

2) Comparison With Different Update Intervals: Fig. 15
shows the variation of cache hit ratio and normalized hop-
traversal with different update intervals, when the cache size
is assumed to be 100. From Fig. 15 we can observe that
the performance varies marginally when the update interval
varies from 200 to 1000 seconds. This is because the individ-
ual popularity of the contents in the simulator remains almost
identical with time, thus the update interval does not affect the
performance, especially with higher α. Only when α = 0.5,
we notice a slight change in cache hit when the update interval
varies from 200 to 400 seconds, as an small α implies that
the distribution has a longer tail.

3) Comparison With Different BF Size: The bloom filter
size plays a significant role in NACID performance due to its
false positive effects. Fig. 16 shows the effects of bloom filter
size on the cache hit ratio and NHC, where the α is assumed to
be 1. From Fig. 16 we can observe that the hit ratio increases
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by ∼42-82%, whereas the NHC reduces by ∼28-50% when
the filter size is increased from 40 to 5120 bytes. This is due to
the false positive effects of the BF especially when the size is
small. Due to the false positive effects, some interest packets
are forwarded to wrong routers which leads to lower cache
hit and higher NHC. However, beyond 640-1280 bytes the
improvement starts saturating, as beyond that the false positive
effects are marginal.

C. Comparison With Real Datasets

We next compare NACID with others using several real
datasets including Kosarak and Retail that can be con-
sidered to follow the power law approximately. These datasets
are publicly available and are widely used in data mining liter-
ature. We use twelve datasets that have diverse characteristics,
as shown in Fig. 17. These are described in the following:

Q148: This dataset is derived from KDD Cup 2000 data,
compliments of Blue Martini.

Nasa: This dataset is derived from the “Field Magnitude”
and “Field Modulus” attributes from the Voyager 2 space-
craft Hourly Average Interplanetary Magnetic Field Data
and the Voyager 2 Triaxial Fluxgate Magnetometer principal
investigator, from NASA.

IBM Almaden dataset: The datasets T10I4D100K and
T40I10D100K are generated using the generator from the
IBM Almaden Quest research group.

UCI/PUMSB Datasets: The datasets chess, connect,
mushroom, pumsb, pumsb_star are prepared by Roberto
Bayardo from the UCI datasets and PUMSB. Chess and
Connect are gathered from game state information and are
available from the UCI Machine Learning Repository [22],
[38]. Pumsb and Pumsb_star datasets contain population
and housing related census data.

Accidents: This dataset is donated by Karolien Geurts and
contains anonymized traffic accident data [22], [39].

Although several of these datasets are not obtained in the
CCN context (like Mushroom, Accidents etc.), they show
approximately Zipf distribution and thus can be studied as a
representative datasets for content popularity distribution as
seen in Fig. 18.

We divided the contents obtained from these datasets
among individual content routers, and considered them as
their content requests. We assume the cache size to be 100.
Fig. 18 shows the performance of NACID compared to the
other schemes. For Kosarak, Retail, T10I4D100K and
T40I10D100K datasets, NACID improves the cache hit
by ∼2-3 times, whereas the hop-count is reduced upto 2-3
times. NACID also shows 22%-57% improvement in terms of
cache hit and ∼13%-33% improvement in NHC with Q148
dataset, compared to the other schemes. For Nasa dataset,
the improvement of cache hit and NHR are ∼15%-32%
and ∼23%-33% respectively. The performances are similar
for Chess, Connect and Mushroom datasets. For the
other datasets (i.e., Pumsb, Pumsb_star and Accidents),
NACID improves the cache hit and NHC by ∼6%-96% and
∼1.5 times respectively.

The hit ratio of Chess, Connect and Mushroom are
much higher compared to the other two datasets, because of
fewer distinct contents in these datasets. For a similar reason,
the NHR is also small for these datasets. Among the others,
Pumsb_star and Accidents perform significantly better,
mainly because of fewer distinct contents and/or higher α.

D. Comparison With Different Network Topologies

We next show the comparison of NACID with others
for different network topologies. To cover different types of
networks, we consider both sparse (Abilene, Geant, NDN
Testbed, Tiger, Tree) and dense (Dtelecom, Level3) network
topologies. Fig. 19 shows the key characteristics of each graph,
namely, the network size |V |, the average degree |E |/|V |, the
coefficient of variation of the node degree CoV, and the graph
diameter D.

From Fig. 20 we can observe that NACID improves the
hit ratios by ∼20%-92% and decreases the NHC by up to
∼31% compared to the other schemes. We can observe that the
improvement is maximum in case of Dtelecom and Level3
topologies because of their higher node degree (i.e., |E |/|V |)
compared to the other network topologies. This is because a
dense network provides NACID higher chances of fetching
the content from the neighborhood caches corresponding to
a particular router. Also in a dense network a neighborhood
aware caching strategy can intelligently place the content-
chunks among the neighborhood caches, so that the chunks
are mostly available in a router’s neighborhood if not in its
local cache.

E. Homogeneous Caching vs Heterogeneous Caching

Next we show the effect of NACID in presence of hetero-
geneous cache size of the routers, where we assume that a
total amount of cache memory is distributed among the con-
tent routers. We distribute the cache memory by analyzing the
level of centrality of the routers within a network. As the cen-
tral routers of a network serve more content requests, they are
assigned more cache space as explained later on. We consider
the following centrality metrics for this purpose:

Degree Centrality (D): Degree centrality of a router is
defined as the number of links incident on that router, or the
node degree of the routers.

Closeness Centrality (C): Closeness centrality of a router
is calculated as the sum of the length of the shortest paths
between the router and all other routers in the network. Thus
the more central a router is, the closer it is to all other routers.
Thus closeness centrality of a router x is given by c(x ) =

1∑
y d(y,x)

,3 where d(y, x) is the distance between x and y.

Betweenness Centrality (BC): Betweenness centrality of a
router is the fraction of all shortest paths in the network
that contain a given router. Routers with high values of
betweenness centrality participate in a large number of short-
est paths. Thus, betweenness centrality of a router x is given
by g(x ) =

∑
s �=x �=t

σst (x)
σst

, where σst is the total number of

3For a large network, if c(x) is very small, we can normalize it by
multiplying this with the number of nodes or network diameter.
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Fig. 17. Statistical characteristics of the datasets used.

Fig. 18. Comparison of (a) cache hit ratios and (b) normalized hop-counts corresponding to different real datasets.

Fig. 19. Statistical characteristics of the network topologies.

shortest paths from s and t, and σst (x ) is the number of those
paths that pass through x.

More Cache Close to Repo (MR): We also adopt a cache
deployment strategy where the cache sizes of the routers that
are closer to the Repo are more than that of the routers that are
farther away. The intuition is that the routers that are closer to
the Repo serve more requests, and thus putting larger caches
there will be beneficial. We thus devise a metric, named Repo-
closeness of a router x which is given by r(x ) = 1/Dx where
Dx is the shortest distance from router x to the Repo.

Less Cache Close to Repo (LR): We next consider the sce-
nario where larger caches are assigned to the routers that are
far away from the Repo. The intuition behind this is that the
interest packets from the far-away routers need to traverse
more hops to reach the Repo, and so they are assigned larger

Fig. 20. Comparison of (a) cache hit ratios and (b) normalized hop-counts
corresponding to different network topologies.

caches. We thus develop a metric l(x) = D(x) to model the
LR cache distribution.

We assume that the total cache size of the topology is
fixed and is assumed to be Ctot. In case of homogeneous
caching (or identical caching I), we divide the cache equally
among the routers, i.e., Ci = Ctot/|V |. However, in case of
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Fig. 21. Comparison of (a) cache hit ratios and (b) normalized hop-counts
in case of heterogeneous caching.

Fig. 22. Comparison of (a) cache hit ratios and (b) normalized hop-counts
with the percentage of cache in LTC.

heterogeneous caching the cache space of router i is given by

Ci = � Xi∑
j∈V Xj

Ctot� (6)

where Xi is the suitable metric for router i depending on which
caching strategy (D, C, BC, MR, LR) is adopted.

Fig. 21 shows the performance of NACID with heteroge-
neous caching schemes. We assume α = 1 for this set of
figures, and Ctot is assumed to be 100 × |V |. From this
figure we can observe that the performance of NACID does
not change significantly with heterogeneous cache distribu-
tion. Only a modest performance gain of <1.15x (in cache
hit) is observed in case of Dtelecom and Level3 compared
to its homogeneous counterpart. Similar findings are also
observed in [40]. This leads to the conclusion that there is
no real incentives of using heterogeneous caching as opposed
to homogeneous caching strategy in case of NACID.

F. Comparison With the Distribution of Cache Across
STC and LTC

Fig. 22 shows the how the cache hit and NHC change with
different cache distribution across STC and LTC, with α = 1.

Fig. 23. Comparison of (a) cache hit ratios and (b) normalized hop-counts
with different number of contents.

TABLE I
MEMORY OVERHEAD FOR STORING BLOOM FILTER

From Fig. 22 we can observe that when we increase the stor-
age in the LTC, the cache hit starts increasing (whereas the
NHC starts decreasing) till 70–90% of the storage is assigned
to LTC, and then starts dropping. This phenomenon can be
explained as follows. When STC:LTC = 100:0, all the cache
storage is assigned to the STC. Thus no contents go to the
LTC, and therefore no LTC cache information sharing can take
place among the neighbors of the content routers. Because
of this reason, the benefits of neighborhood awareness of
NACID becomes ineffective, which hurts the performance.
With the increase in LTC storage, the scheme takes advantage
of the neighborhood awareness, which improves the overall
performance. However, the size of the STC starts shrinking,
thus there is less room for the new-coming contents to be
cached. When STC:LTC = 0:100, no new contents are cached
after the cache is filled up. However, even in this situation the
performance is better than that in case of LTC = 0, because
of its neighborhood awareness.

G. Comparison With Different Number of Items

Fig. 23 shows the performance of NACID where the num-
ber of items, say N, varies from 104 to 106. As discussed
in Section III-B, 106 items is quite adequate to study the
performance of a regional router. We assume α to be 1 for
this figure. To consider the stressed scenario, we made the
lowest C

N to as low as 0.01% in Fig. 23. In that case also
NACID achieves a hit ratio of ∼8%. From Fig. 23 we can
observe that the performance of NACID deteriorates with the
increase in number of items. With C = 1000, the hit ratio
reduces from ∼45% to ∼12%, when N is increased from
104 to 106; the corresponding NHC also increases by ∼3-4x.
With the increase in cache size from 100 to 1000, the hit ratio
increases by up to 2 times, whereas the NHC decreases by up
to 3 times.
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H. Overhead Analysis for Using Bloom Filter Based Content
Dissemination

1) Memory Overhead: We next estimate the memory over-
head for disseminating and storing the bloom filters of all the
neighbors in a router’s Neighbor base. To consider a stress
situation, we consider a rather small chunk size of 10KB and
a rather large cache size of 10 GB. Reference [41] argues
that chunk size of less than 10KB is undesirable due to high
overhead of headers and chunk management. Similarly, arti-
cles [26], [42] have studied the cache size issue and consider
more than 10GB cache unrealistic. This results in a maximum
number of chunks within a cache to be 106, which we consider
as a realistic upper limit of cached contents. Table I shows
the additional memory requirement for storing the bloom fil-
ter in the Neighbor base with different number of neighbors
(assumed to be n) and false positive rates. From Table I we can
observe that even with C = 106 and n = 50, the additional
memory requirement is 256 MB which is <3% of the cache
memory of 10 GB. This shows that the additional overhead of
storing the bloom filters are relatively small and thus can be
integrated into real CCN environments.

2) Computational Overhead: For every incoming request
a router first needs to do a look-up in the local caches (STC
and LTC). This can be implemented by an hash-table. The
requested chunk-id is hashed and the entry at the hash address
is searched for a match. With good hashing and suitable hash
table size, this look-up operation takes O(1) amount of time.
When a chunk is cached, its chunk-id is hashed and its cache
address is stored in the hash table. This operation also takes a
constant time. The deletion operation from the hash-table also
takes a constant time.

If the chunk corresponding to a local request is found in the
cache, then it is served. Otherwise the router (say x) originates
an Interest packet. The router needs to do a look-up in its
neighbor’s BF from its Neighbor Base, each at a constant cost.
If the chunk is not found in the Neighbor Base (based on
the BF look-up) then the Interest packet is sent to the Repo.
Otherwise it is sent to the neighboring router (say y) with the
least cost. This entire operation takes O(n) time, where n is
the number of entries the Neighbor Base of x. The intermediate
routers in between x and y (or Repo) check whether the chunk
exists in their local caches or not in O(1) time. If the chunk
is found at y it is served, otherwise it is sent to the Repo. All
these operations take constant time.

When a chunk arrives at a router, it takes the caching deci-
sion/replacement (if any) for STC. This is done using the
Heap mechanism discussed in Section IV-A. The checking
only takes constant time, but the subsequent heap reorganiza-
tion (not on the critical path) takes O(logm) time (where m is
the number of entries in STC). As the STC size will typically
20-25% of the cache size (which is 105 − 106 as obtained
from Table I), this operation is pretty fast.

Now let us consider the computation of the benefit (wi in
equation (4)). The popularity predictions of the chunks are
done infrequently (in few minutes to hours) as typically the
popularity of the Internet contents do not change too fre-
quently. Ideally the recency of the contents (i.e., Δi ) need

to be updated continuously. However in case of a realistic
implementation, this factor can be updated in an infrequent
fashion (in few minutes). Similarly the reshuffling of the con-
tents within the LTC and the STC depending on their benefit
functions is also infrequent.

VI. RESULTS FROM REAL VIDEO TRACES

We now show the performance of NACID on Youtube
video traces collected from a gateway router of University
of Massachusetts, Amherst [19]. The traces are collected by
monitoring the traffic between clients in the campus network
and YouTube servers. Trace-1 was collected for 3 days in the
last week of Spring 2007 semester, and consists of a total
of 32367 requests. Trace-2 consists of the requests gener-
ated during the two weeks at the beginning of the Spring
2008 semester, whereas Trace-3 consists of seven consecu-
tive 24 hours traces during the Spring 2008 semester. The
overall statistics of these three traces are enlisted in Table II.
Fig. 24(a)–(c) shows the number of times the contents has
requested versus their ordering, which again shows the Zipf
distribution with the exponents equal to 0.3842, 0.5959 and
0.5198 respectively.

With these traces we have considered the 10 × 10 grid
topology, divided the contents from these traces among indi-
vidual the routers, and considered them as their content
requests. Fig. 24(d)–(e) show the result of cache hit ratio and
NHC of these three traces with different cache sizes. From
these figures we can observe that NACID achieves a cache hit
of ∼15% with C = 500 in case of Trace-1, which results in
a NHC of 40. On the other hand larger traces like Trace-2
and Trace-3 take a cache size of 4000 and 2000 respec-
tively to reach a cache hit of ∼9-10%. This is because these
two traces consist of a significant number of distinct contents,
with a content size of ∼303K and ∼141K respectively, which
leads to a C

N ratio of less than 1.5% with the cache size of
4000 and 2000 respectively. Also observe that for Trace-2
and Trace-3, the cache hit and NHC start saturating after a
cache size of 4000. This can be explained from the popularity
distribution of Fig. 24(b)–(c), which shows that the number of
accesses of the contents after the top 4000 are even less than
10, thus making the cache size even bigger will not result in
further improved performance.

VII. RELATED WORKS

Caching in General: Cooperative caching has been stud-
ied extensively in different environments such as World Wide
Web, peer-to-peer system, as well as in the file and stor-
age systems. Cooperative Web caching is explored including
hierarchical, hash-based and directory-based caching schemes
in [8]. Cache management in peer-to-peer storage system
has been presented in [9], that replicates multiple copies
of a file to reduce access latencies. Coordinated caching of
multiple clients in a LAN is presented in [10] to improve the
performance of a network file system.

However such caching schemes run at the end peers
and proxies over an IP layer, whereas in CCN caching
is targeted to be done in every router. At the same time
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TABLE II
YOUTUBE VIDEO TRACES [19]

Fig. 24. (a)-(c) Frequency of content accesses versus content ranking for the Youtube traces obtained from UMass, Amherst dataset [19], along their
corresponding (d) cache hit and (e) normalized hop counts.

in CCN caching management needs to be done at line-
speed of the routers to make it universal. Caching in
content distribution networks (CDN) are explored in [43],
[44]. CDN is essentially an overlay infrastructure where
caching is done only at the content distribution routers,
which is different from CCN caching which is universal in
nature.

Caching Decision and Forwarding Policy in CCN: Caching
in CCN is also well researched topic, however, in most of
the proposed schemes a content router does not need to know
the cache information in its neighborhood, and the caching
decisions are taken autonomously by the routers. Leave copy
down (LCD) [34], Move copy down (MCD) [34], copy with
some probability [34] and Probabilistic cache [14] falls in this
category. In [12], the authors have argued that the chunks of a
file is correlated or fetched in a sequential manner. They have
proposed a scheme named WAVE, where the routers exponen-
tially increase in the number of chunks cached for a file with
the increase in the number of requests. In [45] the authors
have proposed a label-based caching where the nodes cache a
specific range of contents (defined as levels), defined a priori.
A popularity based cache consistency mechanism is designed
in [46]. In [47] the authors have discussed the optimal cache
allocation problem in CCN with an objective of optimally
distributing the cache capacity across the CCN routers under
the constraint of total network storage budget. A number of

surveys on content caching is reported in [48]–[50], whereas
energy aware caching is studied in [51].

For the forwarding of interest packets, shortest path rout-
ing towards the repository is typically used. In [52] the authors
have proposed a hierarchical architecture where the consumers
are at the lowest level, whereas the publishers are at the
highest level. Upon arrival of a request at any layer, the
request is forwarded randomly on any of the outgoing links
within the same layer up to a certain time-threshold. When
this threshold is exceeded, the request is forwarded to the
next upper level. The nearest replica routing based forward-
ing is proposed in [35], [53], however, this requires flooding
the request packets during the exploration phase, which causes
extra traffic, delay, and unnecessary cache evictions. To limit
the effects of flooding, in [54], [55] the authors propose
flooding only for popular contents based on an exponentially
fading probability. In [56] the authors have studied the effects
of scoped-flooding for content discovery in an information-
centric network. Stateful forwarding is proposed in [57] where
the links are ranked to be either green, yellow or red. A link
is considered as green if no delivery failure or congestion
has been acknowledged, yellow when congestion has been
acknowledged, and red when the transmission is unlikely or a
link failure has occurred. Upon the arrival of a request, a node
prefers the green paths over the yellow ones, whereas the red
paths are avoided. In [58] the authors have used an Ephemeral
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Forwarding Information Base (EFIB) to keep track of the
direction in which the data packets were temporarily cached
in the recent past; the EFIB opportunistically creates an entry
by a returning data packet so that a matching interest packet
can follow towards the direction, where the corresponding data
has been recently cached.

In contrast, in NACID the CCN routers occasionally forward
Bloom Filter to share their cached contents, so that the routers
can (a) use this information while caching the content-chunks,
and also (b) forward their content interest to their neighboring
caches rather than always forwarding them towards the con-
tent store. This makes NACID unique in that it does not use
network-wide flooding and the neighborhood aware caching
yields lower hop count and higher cache hits.

Cache Replacement Policy in CCN: The most common
cache replacement policy is Least Recently Used (LRU) pol-
icy where the least recently accessed content is replaced with
a newly arriving content when the cache is full. However LRU
captures the freshness of a content, but not its frequency of
accesses. Some variants of LRU are LRU-K [59] and 2Q [60].
Least Frequently Used (LFU) is an alternative of LRU to cap-
ture the access frequency. ARC [61] captures both the recency
and frequency of a cache’s contents by keeping track of two
lists: one keeps track of the recently accessed contents whereas
other one records the frequently accessed contents.

Content Popularity in CCN: Content popularity distribution
is studied extensively in [18], [19]. The studies conclude that
the content popularity in CCN follows heavy-tailed distribu-
tions, which can be modeled as a power-law distribution. They
also observe that a significant portion of the contents are just
one-timers. The effect of short-term and long-term content
popularity is studied in [62], [63]. The value of the scale-
factor of the popularity distributions varies in the literature
from 0.6 [20] to 2.5 [21].

Bloom Filter: The Bloom filter data structure was first
introduced by Burton H. Bloom in 1970 [64]. Since then
Bloom filter has been used in various domains including Web
caching [65], P2P networks [66], packet routing and forward-
ing [67], RFID tag identification [68], differential file access
in DBMS systems [69] etc. There are different variants of
Bloom filters that are proposed in the literature, such as count-
ing Bloom filter [70], compressed Bloom filter [31], deletable
Bloom filter [71], hierarchical Bloom filter [72] etc.

The use of Bloom filter in CCN/NDN architecture has been
studied in [73]–[79]. In [73], [74] the authors have proposed
a name lookup engine where each NDN name/prefix is split
into a B-prefix with limited length, followed by a T-suffix with
variable length. While name lookup the B-prefix is matched
by Bloom filters whereas T-suffix is processed by the small-
scale trie. Authors in [75] have proposed a semi-stateless
forwarding scheme for CCN routers to reduce the amount of
forwarding state, by combining a mix of in-router stateful and
in-packet, BF-based stateless forwarding. In [77] the authors
have proposed a Bloom filter-based method to continuously
capture content popularity with efficient usage of memory. In
this scheme, multiple BFs are implemented, whereas each one
is responsible for a particular range of popularity. The content
objects whose popularities fall into a BF’s range are inserted

into that BF. In [78] the authors have explored the use of BF
to replace the current FIB with a probabilistic data structure
to guarantee fast lookup and efficient memory consumption.
In [79] the authors have proposed a novel implementation of
PIT; the idea is to divide the PIT table into several sub-tables.
Each one of these tables basically implements a BF for each
CCN node face to store the list of pending Interest packets
coming from the associated face.

VIII. CONCLUSION

In this paper, we investigated a neighborhood aware in-
network cache management and information dissemination
scheme in order to minimize content fetch latency in CCN.
Three key features of NACID architecture are (a) the use
of repositories for maintaining the content recency, (b)
lightweight content information dissemination by the use
of Bloom filters, and (c) using them for developing a
neighborhood-aware two-level caching and interest forward-
ing scheme. The simulation results show that the NACID,
compared to the existing caching algorithms, significantly
increases hit ratio, and at the same time reduces the number of
hops for fetching the contents. This performance improvement
is consistent across different network topologies, as well as for
different content mining datasets. We also consider the effects
of various heterogeneous cache memory allocation strate-
gies on NACID by using different graph centrality metrics.
However, a thorough simulation comparison suggests that het-
erogeneous caching strategies can only affect the performance
gain marginally and thus are insignificant in practice.
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